gobooooboo 1216 0 2001 O 90-98

90

Existence of canards at a
pseudo-singular node point

Eric Benoit*

7 november 2000

1 Introduction

The original problem concerns qualitative theory of ordinary differential equation in di-
mension 3: what is the limit of the phase portrait of

= f(z,y,z,e)
v = g(z,9,26)
ez = h(z,y,2,¢€)

when € tends to zero. It is natural (and true) that the phase portrait converges to a
concatenation of

e the phase portrait of the fast vector field

T
N Y
z

which is drawn on a vertical line, for each value of (z,y).

0
0
h(z,y,2,0)

e the phase portrait of the slow vector field

x’ f(z7 y, z’ 0)
y' 9(z,9,2,0)
0 h(z,y, 2,0)

which is drawn on the slow surface defined by h(z,y, z,0) = 0.
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But conversely, if such a concatenation is given, it is not obvious to determine if this
concatenation is the limit of a trajectory.
In the classical topological studies ([Tyk48, VB73, LST98]), some difficulties appear
when the slow surface h = 0 is tangent to the vertical direction. The set of these points
is called the fold ; it is defined by h = h, = 0. v

In some situations, even on the fold, more sophisticated topological studies can give
the complete description (see [Ben83, Wec98]). One generic situation (the pseudo-singular
node point) was more difficult to understand. I will propose, in this talk, a different
approach, using complex analysis of Gevrey functions, to prove the existence of canards.
We will use the dilatation method of B. Malgrange [Mal89)], applied on Banach spaces of
formal Gevrey series.

A canard is a trajectory of a slow-fast vector field which first follows the attractive
part of the slow curve, and then the repulsive one.

The complete proofs of the theorems of this paper are given in [Ben00).

2 Hypotheses and main theorem

The system is given by

r = f(:v,y,z,e)

y = g(z,v,2,€) | (1)
ez = h(z,y,2,€)

when f, g, h are analytic functions for z, y, 2, € in some neighborhood of the origin. We
suppose that, at the origin, we have:

e h =20: the origin is on the slow surface.

e h, =0 : the origin is on the fold.

(hg, hy, hz) 7 (0,0,0) : the origin is a regular point of the slow surface.

h,, # 0 : the origin is not a cusp.

(f,9,h) # (0,0,0) : the origin is not a stationnary point of the whole system.

hef + hyg = 0 : the origin is a pseudo-singular point : (the normalized projection
of) the slow vector field has a singularity. The linear part of this singularity has two
eigenvalues A and p.

e 1 < )< 0: the pseudo-singular point is of node type.

e k= pu/)\ &N : there is no resonance.
The simplest system which satisfies all these hypotheses is
{ ' 2ky +2(k + 1)z

Il

Y 1
d —22—z

€z
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On the figure, one can see the slow vector field and some concatenations of trajectories
of the fast and the slow vector fields.

Figure 1: Some possible canards

The main result of this paper is

Theorem 1 With all the hypotheses above, there ezist a positive time T (independent of
€) and two solutions (zi(t),yi(t), 2i(t)) of (1), for i € {)\, u}, such that

o (zi(t),yi(t), 2 (t)) is defined at least for t in [~ T, T).
o lim,_o+(z%(0),:(0), 24(0)) = (0,0,0).
o (z5(t),yi(t), 2 (t)) converges uniformly on [~ T,T] to a solution of the slow system.

o (z3'(0),45'(0), 2'(0)) converges to a vector of the eigenspace associated to the eigen-
value 1.

Such solutions are canards : it is obvious on the picture, and easy to prove that the
limit of the trajectories are drawn first on the attractive slow surface, and then on the
repulsive one.

To prove this main theorem, we will prove another more technical result :

Theorem 2 With the same hypotheses, there ezists a formal solution of (1) :

2(t) = Lazozn(t)e"
Yn>0 Yn(t)e™
Yn>0 Zn(t)e™

where the functions Tn, yn, 2n are analytic on a disk of radius r (independent of €)
and where the series are Gevrey (the definition will be given later). Moreover, we have
(20(0), %0(0), 20(0)) = (0,0,0), and (z}(0),5(0), 25(0)) is tangent to the eigenspace asso-
ciated to the eigenvalue ).

o
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3 Preparation of the equation

In this paragraph, we will transforme system (1) into a second order non autonomous
equation. The aim is to work with only one (and not three) unknown function.

First, we use polynomial change of unknowns, of degree at least 2, with polynomial
inverses, to obtain
2ky + 2(k + 1)z + F(z,y, 2,¢)
1+ G(z,y,2¢) (2)
~2% — .’L‘+H(z,y,z,€)

Pt
™
W

where k is the ratio u/A, and F, resp. G, H, have valuations at least 2, resp. 1, 3, as
weighted homogeneous polynomials with the weights (2,1,1,2) for (z,y, 2,€). For that,
we need all the hypotheses on the pseudo-singular point, but the non resonance.

In a neighborhood of the origin, we have 1 + G > 0. Thus, we can divide the vector
field by 1 + G to obtain a new system which is written as (2) but with G = 0. For
convenience, we will write now ¢ instead of y.

Using the implicit function theorem in the third equation of (2), we can express z as
a function £(t, z,€,€2'). Then, identifying the derivative of { with respect to ¢ with the
right hand side of the first equation, we will find the new equivalent form of the equation
(1) :

%z” +2z2 +kt+ (k+ 1)z = ®(t,e,2,e2') + 2®1(t, €, 2,62') (3)

where ®;, and ®, have weighted valuation at least 2 (the weights of (t,¢,z,€2') are
(1,2,1,2+1—1=2))

4 Dilatation method

Let us define two Banach spaces B; and B, of formal series of €, with analytic coefficients
of ¢t (the definition of the norms will be given later). Let us denote by A the operator
defined from C x By into B; by :

A(6,2) = %&:z" + 22 + kt+ (k+ 1)z — ®y(t, 0¢, z,0e2’) — 2/ @1 (¢, b€, 2, §e2’)

It is obvious that, if we know a complex number § # 0 and a formal series 2(t, €) such that
A(6,z) = 0, then we have A(1,2(t,e/d)) = 0 and the formal series z(t,e/d) is a solution
of (3). We will find such 4 and z using implicit function theorem. For that purpose, we
will

e solve A(z,0) =0, and denote by z, a solution,
e prove that A is of class C!,
e compute the partial derivative L of A with respect to z at the point (0, z),

e prove that L is invertible.
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5 Approximation of order 0
Equation A(0, z) = 0 can be written
22 +kt+ (k+1)z—o(t,2z) — Zp1(t,2) = 0

where ¢y and ¢; have valuation at least 2.
With a change of time, this equation can be studied as a vector field

¥

and the question is to find an analytic trajectory around the origin. If the ratio k of the
eigenvalues is not an integer, then there is no resonance and the Poincaré theorem (see
[Arn80]) yields the existence of exactly two analytic solutions, one for each eigenspace.
Let us denote by z the solution with 2/(0) = —1.

-2+ 1, 2)
kt+ (k + 1)z — po(t, 2)

6 Banach spaces of Gevrey series

Here is the more technical part of this paper, and the reader will find the detailed proofs
of the lemma in [CDRSS99, Ben00).
The eigenspaces B, and B, are spaces of formal series

f= ansn

where the f,, are analytic functions on the same disk as z. In order to define the modified
Nagumo norms (see also [CDRSS99]), we put

= =i e sy
av) = {r—p it 0<ll<p
ol = _sup_lo()] "
Il = ssup el Il = 2max (U7, 1)

The space B, is the space of formal series with finite norm [|.];, the same for B;. They
are Banach spaces.

Lemma 3 1. We have

17k < UM gl Wfglle < IFke ol
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2. If ® is an analytic function on a polydisc of radius (r1,72,...,Ts), and if each f; is
an element of By, with |fil, < i, then ®(f1,. .., fn) 15 an element of B, with

0o (fr,- .-, fa)lh < @ (Ui, - - - > U fnllr)

(®* is the analytic function obtained from the Taylor expansion of ® by taking the
modulus of each coefficient).

3. If ¢ is an analytic function on the disk of radius r, then the function f + @o f is
defined on the disk of radius r in By into B,. It is of class C' and the derivative at
the point f is the multiplication by ¢©'(f).

4. (Malgrange’s lemma) We have
Il < mellfllm-1

5. We have
lefll: < elfllu

6. If S and Z are the following operators on B, :

(Zf)(t,€) = F0,6)  (Sf)(t,e) = f(t,€) ;f(O,e)

then the identity tS = 1 — Z gives a kind of Taylor’s formula :

f = S HES) () + PP )

=0

and we have

2
12l <Wfl and  |ISSl < ;Illfllll

With this lemma, it is easy to prove that the operator A is C', and it is easy to
compute the partial derivative L with respect to z at the point (0, 2p) :

i)
L(u) = (20— D1(6020,0) v’ + (z(’, +k+1- %(I-;g(mzo,o) - zt’)%;}(@(lzo,o))u (4)

7 Inversibility of L

We will write equation (4) in a more shorter form :
L(u) = —tou' + kyu

with ¢(0,¢) =1, ¥(0,¢) = 1.
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To compute the inverse of L, we have to solve equation L(u) = f, with a given f in
B,. The explicit solution of this equation is given by the formula

~k-1 -G
u = thef® /‘ il @

o(1) frydr

where G(t) = J/o tg(r)dr and g = kS('l:p— ®)

For the integral in the definition of u, we need a constant. It will be determined by the
analiticity of u in ¢ = 0. The inverse of L is now defined by the composition of three
operators : the multiplication by e~6/¢p, the operator M below, and the multiplication
by €C.

M(5) = ¢ [ ek f(r)dr

The two multiplications are bounded linear operators in the appropriate Banach spaces.
In order to prove the continuity of the operator M, and to determine the constant of
integration, we use Taylor’s formula to write

k S
f = Ztizsif + tk+lsk+1f

i=0

where k is the integer part of k + 1. Moreover, it is easy to compute M (¢f) = t'. The
computation of M(t¥*1h) is given by

M(tFHp) = ¢k /()tTE"“h(T)dT

The function under the integral sign is bounded, and one can compute the norm of M :

ML < (z: (?,-,-)+(?;)H) 171

Moreover, we have M(f) = S (kM(f) — f), and we can deduce that M is a bounded
operator from B, to Bs.

8 Proof of theorem 2

In sections 5 to 7 we proved that the hypotheses for the application of the dilatation
method are satisfied, then we built a formal Gevrey series 2 = ¥ 2, (t)e™ which is solution
of equation (3). Using backward the transformations of paragraph 3 (including change of
time) , we can find the formal series Z, j and 2 which are solutions of equation (1).
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9 Proof of theorem 1

To prove the existence of function from the existence of formal series, the tool is the
Borel-Laplace summation and the theory of Gevrey functions (see [CDRSS99]). I will
give here only the main ideas :

e Let us denote by S and  some positive real numbers such that 7 < r and 8 < dd(r).

e Let us define the Borel transform by

Zn (t) n-1
2 Tm)"

n>1
It is an analytic function in the domain |t| < 7, |n| < B.

e Let us define the truncated Laplace integral by

Z(t,e) = 2(t) + /f;;"(—g;n"‘le‘"/edﬂ

It is an analytic function for |¢| < 7 and £ in some sector. It’s asymptotic expansion
is 2. It satisfies the Gevrey conditions :

#(t,€) — Ez,,(t)gn < AdT(N)eN

n=0

with the constants A and o independent of N, ¢ and ¢.

e Following [MR92], we prove that Z is a quasi-solution of (3), i.e.
gz" 437 + kt+ (k + 1)5®o(t, e, 2, 67) — 2By (t, €, 5,65)| < Ae~™/°

for some constants A and k > 0.

e Using Gronwall’s lemma, we prove that the solution z(t,¢) of (3) with initial condi-
tion 2(0,€) = 2(0,¢) has the required properties for the theorem 1.
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