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1Introduction

The asymptotic, global and exponential stability properties of Hopfield-type neural networks
have been extensively studied since Hopfield announced his results in the early 1980s (for areview
of recent results, see Guan et al. [1]) . This reflects the importance of Hopfield-type neural
networks as applied to associative memory, pattern recognition and optimization problems.

This paper considers aseemingly less important stability concept to neural networks. His-
torically termed practical stability and first proposed by LaSalle and Lefschetz [2], it offers a
very general notion that may indicate any one of these: asymptotic or global types of stability;
total stability or stability under persistent disturbances; instability or boundedness of solutions.
It is neither weaker nor stronger than ordinary stability, and it does not imply stability or con-
vergence of trajectories. This may explain the negligible volume of literature devoted so far to
practical stability of neural networks.

The theory of practical stability, developed intensively in the $1980\mathrm{s}$ and early $1990\mathrm{s}([3]-$

[6] $)$ , is important in certain engineering applications, some of which are cited in $[7]-[9]$ . Essen-
tially, these applications have one common problem, namely, the existence of external inputs or
disturbances, possibly random, time-varying or unbounded in time, that cause instability and
tend to produce oscillations. In such asituation, if the system trajectories oscillate around a
mathematically unstable course, then the next best course of action would be to ensure that
the performance of the system in question is still acceptable in apractical sense. Specifically, a
concrete system will be considered stable if, in case the initial values $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ the external distur-
bances are bounded by suitable constraints, the deviations of the motions from the equilibrium
remain within certain bounds determined by the physical situation. LaSalle and Lefschetz [2],
clearly summed up the underlying issue:

Before one can speak of practical stability one must decide on: (a) how near the desired
state it is necessary to have the system operate; (b) the magnitude of the perturbations to
be expected; and (c) how well the initial conditions can be controlled. After this has been
decided, it is possible to speak of practical stability.

In this article, we reconsider practical stability as applied to neural networks –since it was
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first briefly discussed (without compelling reasons, however) in 1993 by Koksal and Sivasun-
daram [10] –given the obvious importance of the role of external inputs in neural networks,
such as setting the general level of excitability of the network through constant biases, or pr0-

viding direct parallel inputs to drive specific neurons [11]. In the control of chaos in neural
networks, external inputs are ameans of “pinning” the state of afew neurons [12]. In the study
of oscillatory neurocomputers, the external inputs, either constant, quasiperiodic or chaotic,
impose adynamic connectivity [13]. In the design of cerebellar model articulation controllers
(CMAC), the aim is to obtain tolerable solutions, not desirable solutions [14]. Perhaps, amore
telling situation involves networks which are fed via external inputs, possibly time-varying, and
then run without resetting the initial conditions. Hence, as indicated by Guzelis and Chua [15],
having abounded input that assures abounded output –that is, input-Output stability –is
of importance in such applications. Using afeedback configuration and the finite gain stability
concept ([16], [17]), –the standard techniques for input-0utput stability analysis –Guzelis and
Chua designed aneural network system which is $L_{p}$-stable, basically meaning that an external
input in $L_{p}$ space produces an output in $L_{p}$ space, $p=2$ and $p=\infty.1$

Hence, there is indeed some merit in looking at the effects of external inputs. This paper
offers asimple but rigorous method of doing so, namely, via the concept of practical stability. The
Hopfield-type neural network, due to its well-understood functions, is analyzed for its practical
stability properties. The overall emphasis in this paper is on the effects of time-varying external
inputs. We shall not consider external disturbances that depend both on time and system
variables, given that well-known results, one of which is Malkin’s Theorem [2], have established
stability under such disturbances.

We begin by showing that if an external input in $L_{2}$ is applied to an exponentially stable
system, then the system maintains convergence of system trajectories to fixed-point attractors.
This result is obtained without recasting the network into afeedback configuration. In the
absence of convergence, we provide apractical stability criterion, the main focus of this pa-
per. To establish practical stability, we use the comparison principle. The interested reader in
this simple, but effective method, may consult Yoshizawa [19], or, for amore recent reference,
Kaszkurewicz and Bhaya [20], who showed that the use of the comparison principle leads to
diagonal stability [21].

The preliminary sections (Sections 2and 3) list the definitions of stability and appropriate
theorems to be applied, and provide an outline of the Hopfield-type model. The main results
are in Section 4.

2Useful Stability Results

In this paper, we use the definitions of Lyapunov stability and exponential stability found
in Sastry [17].

We will need the following important lemma proved in Appendix A. It will play the key role

$1\mathrm{r}$ This questions Haykin’s general statement ([18], page 537) that BIBO stability analysis was irrelevant in
neural networks,
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in proving convergence of system trajectories in the presence of time-varying external inputs. It
will also be useful in establishing our practical stability criterion.

LEMMA 1Let $x(t)\geq 0$ satisfy the differential inequality

$x’(t)\leq-\alpha x(t)+\sigma(t)$ , $x(0)=x0$ , $t\geq 0$ .

Suppose $\alpha>0$ and that $\sigma(t)$ is bounded on $[0, \infty)$ and $\sigma(t)arrow 0$ as $tarrow\infty$ . Then $x(t)=$

$x(t;x_{0})arrow 0$ as $tarrow\infty$ .

The definitions of practical stability concepts are as in Lakshmikantham et al. [4], page 9. For
these, consider the system

$x’=f(t, x)$ , $x(t\mathrm{o})=x0$ , $to\geq 0$ , (2.1)

where $f\in C[R_{+}\mathrm{x}R^{n}, R^{n}]$ . Suppose that the function $f$ is smooth enough to guarantee
existence, uniqueness and continuous dependence of solutions $x(t)=x(t;t_{0}, x\mathrm{o})$ of (2.1).

Definition 1System (2.1) is said to be

(PS1) practically stable if given $(\lambda, A)$ with $0<\lambda<A$ , we have $||x_{0}||<\lambda$ implies that $||x(t)||<A$ ,
$t\geq t0$ for some $t0\in R_{+};$

(PS2) uniformly practically stable if (PS1) holds for every $t_{0}\in R_{+};$

(PS3) uniformly practically quasi stable if given $(\lambda, B, T)>0$ , we have $||x_{0}||<\lambda$ implies that
$||x(t)||<B$ , $t\geq t0+T$ , for every $t0\in R_{+}$ ;

(PS4) strongly uniformly practically stable if (PS2) and (PS3) hold simultaneously.

The following comparison principle for practical stability, where $K=\{b\in C[R_{+}, R_{+}]$ : $b(u)$ is
strictly increasing in $u$ and $b(u)arrow\infty$ as $uarrow\infty$ }, and $S(\rho)=\{x\in R^{n} : ||x||<\rho\}$ , is also from
[4], page 60:

THEOREM 1Assume that

1. Aand $A$ are given such that $0<\lambda<A$ ;

2. $V\in C[R_{+}\cross R^{n}, R_{+}]$ and $V(t, x)$ is locally Lipschitzian in $x$ ;

3. for $(t, x)\in R_{+}\cross S(A)$ , $b_{1}(||x||)\leq V(t, x)\leq b_{2}(||x||)$ , $b_{1}$ , $b_{2}\in K$ and
$D^{+}V(t, x)(2.1)\leq g(t, V(t, x))$ , $g\in C[R_{+}^{2}, R]$ ;

4. $b_{2}(\lambda)<b_{1}(A)$ holds.

Then the practical stability properties of the scalar differential equation $z’(t)=g(t, z)$ , $z(t\mathrm{o})=$

$z_{0}\geq 0$ , imply the corresponding practical stability properties of the system (2.1).
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3The Hopfield-type Model

The Hopfield-type model [11] is of the type

$x’=Ax+h(x)+\mathrm{u}(\mathrm{t})$ . (3.1)

Here, $x=$ $(X1, \ldots, x_{n})^{T}$ where $xi$ denotes the activation potential of the $i$-th neuron, $i=1$ , $\ldots$ , $n$ ;
$A=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(-a_{1}, \ldots, -a_{n})$ , where

$a_{i}= \frac{1}{C_{i}}$ ( $\frac{1}{R}$

.
$+ \sum_{j=1}^{n}|\frac{1}{R_{ij}}|)>0$ ,

$C_{\dot{l}}>0$ is the input capacitance, $R_{i}>0$ is the input resistance and $R_{ij}\in R=(-\infty, \infty)$ is the in-
put connecting resistance (no assumption is made on its symmetricity); $h(x)=(h_{1}(x), \ldots, h_{n}(x))^{T}$

$h_{i}(x)= \sum_{j=1}^{n}$ BijFj(\mbox{\boldmath $\varphi$}jxj), where $B_{ij}=1/(C_{i}R.j)$ and $F_{i}$ : $Rarrow(-1,1)$ is anonlinear acti-
vation function not necessarily monotonically increasing, with gain constant $\varphi_{i}$ ;and $u(t)=$
$(u_{1}, \ldots, u_{n})^{T}$ , $u_{i}(t)=I_{\dot{l}}(t)/C_{i}$ , where $I_{i}$ : $R_{+}arrow R$ is an external input current, and Ui(t) is
defined almost everywhere in $[0, \infty)$ . In this paper, we shall refer to $Ui(t)$ as an external input
and $u(t)$ as the external input vector. The $i$-th component of system (3.1) is

$x_{i}’=-a_{i}x_{i}+ \sum_{j=1}^{n}B_{ij}F_{j}(\varphi_{j}x_{j})+u_{i}(t)$ .

When the external input vector is zero, the nonautonomous system (3.1) reduces to the au-
tonomous system

$x’=Ax+h(x)$ . (3.2)

For this, we assume that $x^{*}$ is an equilibrium point, so that $Ax^{*}+h(x^{*})=0$ . By translating the
origin, 0, to this equilibrium point, we can make 0an equilibrium point. In this case, $h(0)\equiv 0$ .
Since this is of great notational help, we will henceforth consider 0as an equilibrium point of
(3.2). Finally, we require that $h(x)$ has continuous first partial derivatives in $x$ .

4Main Results

4.1 Convergence of System Trajectories in the Presence of External Inputs
in $L_{2}$-Space

For the purpose of illustrating persistence of convergence in the presence of time-varying ex-
ternal inputs, we need, for the autonomous system (3.2), asimple exponential stability criterion,
which may not necessarily be the best compared with established results. Some of these results,
applicable to autonomous systems with constant external input vectors, are proposed in Fang
and Kincaid [22] and Yi et al. [23].

Define

$D(x)=[d_{ij}]_{n\mathrm{x}n}=\{$

$[ \int_{0}^{1}\frac{\partial h_{l}(sx)}{\partial(sx_{j})}ds]_{n\mathrm{x}n}$ , $x\neq 0$ ,

0, $x=0$ .
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Then, given the differentiable function $f=f(sx+(1-s)y)$ , the result

$\int_{0}^{1}\frac{d}{d(sx+(1-u)y)}[f(sx+(1-s)y)]ds=\frac{f(x)-f(y)}{x-y}$ ,

which can be easily verified by the fundamental theorems of calculus, yields $h(x)-h(0)=$
$\mathrm{h}(\mathrm{x})x$ . Hence, assuming $h(0)=0$, system (3.1) can be written as

$x’=Ax+D(x)x+u(t)$ , (4.1)

or, componentwise,

$x_{i}’=m_{ii}(x)x_{i}+ \sum_{-,j-1}^{n}m_{ij}(x)j\neq i$

’

$x_{j}+u_{i}(t)$ , (4.2)

where $m_{ii}(x)=-a_{i}+d_{ii}(x)$ and $m_{ij}(x)=d_{ij}(x)$ when $i\neq j$ . Define

$-r_{i}(x)=m_{ii}(x)+ \frac{1}{2}\sum_{j-1,j\neq i’}^{n}(|m_{ij}(x)|+|m_{ji}(x)|)-\cdot$
(4.3)

THEOREM 2Assume that $h(0)=0$ , $h\in C^{1}[R^{n}, R^{n}]$ . If for $1\leq i\leq n$ and $x\in R^{n}$ , $x\neq 0$ ,

there exists aconstant $c$ such that $0<c\leq ri(x)$ , then the equilibrium point 0of the autonomous

system (3.2) is globally exponentially stable.

$\mathrm{P}$ roof Using $V= \sum_{i=1}^{n}x_{i}^{2}/2$ , we have

$V_{(3.2)}’= \sum_{i=1}^{n}x_{i}(m_{ii}(x)x_{i}+\sum_{-,j-,1i\neq j}^{n}m_{ij}(x)x_{j)}\leq-\sum_{i=1}^{n}r_{i}(x)x_{i}^{2}\leq-2cV$ .

Hence, $V(t, x(t;x_{0}, t_{0}))\leq V(t_{0}, x\mathrm{o})e^{-2c(t-t_{0})}$ , $t\geq t_{0}\geq 0$ , implying global exponential stability

of the trivial solution of system (3.2).

Remark 4.1 As remarked earlier, Theorem 2is asimple, possibly relatively restrictive result,

the emphasis in this paper being on the effects of time-varying inputs. Nonetheless, it is appli-

cable and examples can be easily found. It could also be recast to fit under other generalized

concepts of stability. As an example, if we write $\mathrm{M}(\mathrm{x})$ $=A+D(x)$ in (4.1) and let $C(x)$

denote the comparison matrix of $\mathrm{M}(\mathrm{x})$ , where $C(x)=[cij(x]_{n\cross n}$ is defined as $cii(x)=mii(x)$

and $c_{ij}(x)=|m_{ij}(x)|$ . Let $R=[C(x)+C^{T}(x)]/2$ . Then $r_{i}(x)$ defined in (4.3) is the negative

of the $i$ -th row of $R$ . Requiring that $r_{i}\geq c>0$ in Theorem 2is equivalent to requiring that $R$

is strictly diagonally dominant, so that $R$ has the property of diagonal stability ensuring global

asymptotic stability. Then several conditions for global stability, weaker than requiring $R$ to be

diagonally stable, are given in Kaszkurewicz and Bhaya [21].

For our main result in this subsection, we recall the definition of functions in the class $L_{p}[16]$ .

Definition 2For all constants $t_{0}\geq 0$ and $p\in[0, \infty)$ , we label as $L_{p}[t_{0}, \infty)$ , or simply $L_{p}$ , the

set consisting of all measurable functions $f$ ( $\cdot$ ) : [to, $\infty$ ) $arrow R$ such that $\int_{t_{0}}^{\infty}|f(t)|^{p}dt<\infty$ .
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THEOREM 3Let the conditions of Theorem 2hold so that the equilibrium point 0of the
autonomous system (3.2) is globally exponentially stable. If $u_{i}(\cdot)\in L_{2}[t_{0}, \infty)$ for all $i=1$ , $\ldots$ , $n$ ,
then every solution $xi(t)$ given in (4.2) of the nonautonomous system (3.1) tends to zero as
$tarrow\infty$ .

Proof For $t\geq t0\geq 0$ , define

$W(t, x)= \frac{1}{2}\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{4\epsilon}\sum_{i=1}^{n}\int_{t}^{\infty}[u_{i}(s)]^{2}ds$ .

Since $ui(\cdot)\in L_{2}$ [to, $\infty$), we have

$\frac{d}{dt}[\int_{t}^{\infty}[u_{i}(s)]^{2}ds]=\frac{d}{dt}[\int_{t_{0}}^{\infty}[u_{i}(s)]^{2}ds-\int_{t_{0}}^{t}[u_{i}(s)]^{2}ds]=-[u_{i}(t)]^{2}$ ,

implying therefore the differentiability and hence the existence on $[t_{0}, \infty)$ of the second term of
$W$ . Thus, for $\epsilon>0$ sufficiently small such that $(c-\epsilon)>0$ , we have, along atrajectory of the
nonautonomous system (3.1),

$W_{(3.1)}’$ $\leq$ - $\sum_{i=1}^{n}r_{i}(x)x_{i}^{2}+\mathrm{I}$ $x_{i}u_{i}(t)- \frac{1}{4\epsilon}\sum_{i=1}^{n}[u_{i}(t)]^{2}$

$\leq$ $-(c- \epsilon)\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{4\epsilon}\sum_{i=1}^{n}[u_{i}(t)]^{2}-\frac{1}{4\epsilon}\sum_{i=1}^{n}[u_{i}(t)]^{2}$

$=$ $-(c-\epsilon)$I $x_{i}^{2}=-2(c- \epsilon)W+\frac{c-\epsilon}{2\epsilon}\sum_{i=1}^{n}\int_{t}^{\infty}[u_{i}(s)]^{2}ds$ . (4.4)

Let $\sigma(t)$ be the second term in (4.4). Then $\sigma(t)$ is bounded on $[t_{0}, \infty)$ and $\mathrm{a}(\mathrm{t})arrow 0$ as $tarrow\infty|$ .
Thus, by Lemma 1, $Warrow \mathrm{O}$ as $tarrow\infty$ . Thus, all solutions $x(t)\in R^{n}$ of system (3.1) tend to 0
as t $arrow\infty$ .

Remark 4.2 Since

$( \int_{t}^{t+1}|u_{i}(s)|ds)$ $\leq$ $( \int_{t}^{t+1}|u_{i}(s)|^{2}ds)^{1/2}(\int_{t}^{t+1}1ds)^{1/2}$

$\leq$ $( \int_{t}^{\infty}|u_{i}(s)|^{2}ds)^{1/2}$ $arrow 0$ as $tarrow\infty$ ,

Theorem 3includes the external input $ui$ such that $\int_{t}^{t+1}|ui(s)|dsarrow \mathrm{O}$ as $tarrow\infty$ . Astronger
condition, namely that $ui$ be uniformly continuous on $[t_{0}, \infty)$ gives us inputs of the form $u_{i}arrow 0$

as $tarrow\infty$ by Barbalat’s Lemma [17].

Remark 4.3 In Theorem 3, if $|u_{i}(t)|=k_{i}$ , for some constant $k_{i}>0$ and for all $t\geq t_{0}\geq 0$ ,
then we still have an autonomous system. For this, an interesting result by Kaszkurewicz
and Bhaya [24], who utilized the concept of diagonal stability, ensured persistence of global
asymptotic stability of system (3.1) under perturbations in the nonlinear activation functions,
assumed to have satisfied certain conditions. Improved results, also where the external input
vector is constant, can be found in Arik and Tavsanoglu [25] and Guan et al. [1]. If $|u_{i}(t)|<k_{i}$ ,
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then it is amistake to use the well-known Malkin’s Theorem to conclude total stability or
stability under persistent disturbances since $u$ does not depend on $x$ . In fact, to conclude this,
it is best to use apractical stability criterion since it gives more than amere statement of
the existence of the bounds of the disturbances and initial conditions that maintain bounded
outputs. We provide such acriterion next.

4.2 Practical Stability

THEOREM 4Let $h(0)=0$ . Assume that $|ui(t)|\leq k_{i}$ for some constant $k_{i}\geq 0$ and for all
$t\geq t0\geq 0$ , or $u_{i}(\cdot)\in L_{2}$ [to, $\infty$ ), $i=1$ , $\ldots$ , $n$ . Then system (3.1) is strongly uniformly practically
stable.

Proof This is given in the Appendix B.

Remark 4.4 In Koksal and Sivasundaram [10], it is not always easy to satisfy the given practical
stability criteria. Moreover, even if the criteria are applicable, they allow only the analysis of
Hopfield-type neural networks whose autonomous components are globally exponentially stable.
To apply Theorem 4, we need not have an asymptotically stable autonomous system.

Remark 4.5 Theorem 4proves conclusively that, in addition to having bounded activation
functions, we must have at least an external input vector that is constant, or time-varying but
bounded or in $L_{2}$ to ensure practical stability. That is, it shows that in the presence of such
disturbances, it is possible to pre-assign the bounds of the initial states and the neural network
outputs using only the parameters $B_{ij}$ of the system. One way to do this is to use the estimates,
(4.7) and (4.8), or (4.9) and (4.10) shown in the proof, noting that one can get different sufficient
conditions for practical stability if different norms are used.

EXAMPLE 1Practical stability concepts could add an extra dimension to the control of chaos
in neural networks, given that controlling chaos usually consists in forcing asystem out of a
chaotic attractor by using external inputs [12]. This extra dimension involves the determination
of the output bound of achaotic system given the bounds of the initial state and the external
inputs. As asimple illustration, consider the following tw0-neuron system analyzed by De
Wilde [26] :

$x_{1}’$ $=$ $-x_{1}+\tanh x_{1}+\tanh x_{2}$ ,
$x_{2}’$ $=$ $-x_{2}-100\tanh x_{1}+2\tanh x_{2}$ .

The system exhibits aperiodic attractor at $(0, 0)$ . The behaviour of this system becomes more
complex if an external input is added, and becomes chaotic if aperiodic input such as the sine
or cosine function is added. Nevertheless, in such cases, for example,

$x_{1}’$ $=$ $-x_{1}+\tanh x_{1}+\tanh x_{2}+a\sin t$ ,
$x_{2}’$ $=$ $-x_{2}-100\tanh x_{1}+2\tanh x_{2}+b\cos t$,

$x_{2}(t_{0})=x_{20}x_{1}(t_{0})=x_{10}$

.
$\}$ (4.5)

where the external inputs are bounded by $k_{1}=|a|$ and $k_{2}=|b|$ , the solutions oscillate about
$(0, 0)$ and remain bounded by Theorem 4. Indeed, by the results given in the proof of the
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theorem, if $n=2$ , $a_{1}=a_{2}$ $=1$ , $|u_{1}(t)|\leq 1=k_{1}$ , $|u_{2}(t)|\leq 2=k_{2}$ , and $\epsilon_{1}=\epsilon_{2}=0.5$ , then
$\alpha_{*}=2\min\{a_{1}-\epsilon_{1}, a_{2}-\epsilon_{2}\}=1$ , and

$\beta_{*}=\frac{(|B_{11}|+|B_{12}|+k_{1})^{2}}{4\epsilon_{1}}+\frac{(|B_{21}|+|B_{22}|+k_{2})^{2}}{4\epsilon_{2}}=\frac{10825}{2}$ .

Thus, (4.7) yields $\max\{\lambda^{2},10825\}<A^{2}$ . Hence, for example, if we fix $A=\sqrt{10825}+\epsilon$ , $\epsilon$ $>0$ ,

then we can fix any $\lambda<A$ , and every chaotic trajectory of system (4.5) starting within Astays

within $A$ .

Appendix A:Proof of Lemma 1
By standard manipulation, we have

$\mathrm{x}(\mathrm{t})\leq e^{-\alpha t}x_{0}+e^{-\alpha t}\int_{0}^{t}e^{\alpha s}\sigma(s)ds$. (4.6)

The first term of (4.6) goes to 0as $tarrow\infty$ . By assumption on $\sigma$ , we have that for every $\epsilon>0$ ,

there exists a $T>0$ such that $|\sigma(t)|<\epsilon$ for all $t\geq T$ . Hence, on letting $|| \sigma||_{\infty}=\sup_{t\geq 0}|\sigma(t)|$ ,

the second integral term of (4.6) is estimated as

$|e^{-\alpha t} \int_{0}^{t}e^{\alpha s}\sigma(s)ds|\leq e^{-\alpha t}\int_{0}^{t}e^{\alpha s}|\sigma(s)|ds$

$\leq e^{-\alpha t}(\int_{0}^{T}+\int_{T}^{t})e^{\alpha s}|\sigma(s)|ds\leq e^{-\alpha t}(\int_{0}^{T}||\sigma||_{\infty}e^{\alpha s}ds+\epsilon\int_{0}^{t}e^{\alpha s}ds)$

$\leq e^{-\alpha t}(||\sigma||_{\infty}\frac{e^{\alpha T}}{\alpha}+\epsilon\frac{e^{\alpha t}}{\alpha})\leq\frac{||\sigma||_{\infty}}{\alpha}e^{-\alpha(t-T)}+\frac{\epsilon}{\alpha}$ .

Since for every $\epsilon>0$ , there exists $S>0$ such that $e^{-\alpha t}<\epsilon$ for all $t\geq S$ , we have, for all
$t\geq T+S$ ,

$|e^{-\alpha t} \int_{0}^{t}e^{\alpha s}\sigma(s)ds|\leq\frac{\epsilon}{\alpha}(1+||\sigma||_{\infty})$ .

This proves $x(t)=x(t;x\mathrm{o})arrow 0$ as $tarrow\infty$ because we can choose $\epsilon$ as small as we wish.

Appendix B : Proof of Theorem 4

1. Case where $|u_{i}(t)|\leq k_{i}$ .
Using $V_{\dot{l}}(t, x)$ $=x_{i}^{2}/2$ we have, recalling that $F_{i}$ : $Rarrow(-1,1)$ ,

$V_{i_{(3.1)}}’$ $=$ $x_{i}[-a_{i}x_{i}+h_{i}(x)+u_{i}(t)]=-a_{i}x_{i}^{2}+x_{i}( \sum_{j=1}^{n}B_{ij}F_{j}(\varphi_{j}x_{j})+u_{i}(t))$

$\leq$ $-a_{i}x_{i}^{2}+|x_{i}|( \sum_{j=1}^{n}|B_{ij}|+k_{i})$

Since we can always find aconstant $\epsilon i>0$ sufficiently small such that $(a_{i}-\epsilon_{i})>0$ , we

have

$V_{i(3.1)}’ \leq-(a_{i}-\epsilon_{i})x_{i}^{2}+\frac{1}{4\epsilon_{i}}(\sum_{j=1}^{n}|B_{ij}|+k_{i})^{2}$
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Let $V= \sum_{i=1}^{n}V_{i}=||x||^{2}/2$ , and $\epsilon_{i}\in(0, ai)$ be aconstant. Define $\alpha_{*}=2\min\{a_{1}$ -

$\epsilon_{1}$ , $\ldots$ , $a_{n}-\epsilon_{n}$ } $>0$ , and

$\beta_{*}=\sum_{i=1}^{n}\frac{1}{4\epsilon_{i}}(\sum_{j=1}^{n}|B_{ij}|+k_{i})^{2}$

Then, $V_{(3.1)}’\leq-\alpha_{*}V+\beta_{*}=g(t, V)\mathrm{d}\mathrm{e}\mathrm{f}$ . Hence, the comparison scalar differential equation is

$z’=g(t, z)=-\alpha_{*}z+\beta_{*}$ , $z(t\mathrm{o})=z0$ , $z(t)\geq 0\forall t\geq t_{0}\geq 0$ ,

the solution, of which, is

$z(t;t_{0}, z_{0})=(z_{0}- \frac{\beta_{*}}{\alpha_{*}})e^{-\alpha_{*}(t-t_{0})}+\frac{\beta_{*}}{\alpha_{*}}$ ,

so that $z(t;t_{0}, z_{0}) \leq\max\{z_{0}, \beta_{*}/\alpha_{*}\}$ and $\lim\sup_{tarrow\infty}z(t)\leq\beta_{*}/\alpha_{*}$ , implying therefore the
boundedness of the solutions of system (3.1). Now, let $(\lambda, A, B, T)>0$ be given such that
$\lambda<A$ , $B<A$ , $t\geq t_{0}+T$ ,

$(z_{0}- \frac{\beta_{*}}{\alpha_{*}})e^{-\alpha_{*}(t-t_{0})}+\frac{\beta_{*}}{\alpha_{*}}\leq\max\{(z_{0}-\frac{\beta_{*}}{\alpha_{*}})e^{-\alpha_{*}T}+\frac{\beta_{*}}{\alpha_{*}}$ , $\frac{\beta_{*}}{\alpha_{*}}\}$

$\leq\max\{b_{2}(\lambda)e^{-\alpha_{*}T}+\frac{\beta_{*}}{\alpha_{*}}(1-e^{-\alpha_{*}T})$ , $\frac{\beta_{*}}{\alpha_{*}}\}<b_{1}(B)$ ,

and $\max\{z\circ, \beta_{*}/\alpha_{*}\}\leq\max\{b_{2}(\lambda), \beta_{*}/\alpha_{*}\}<b_{1}(A)$ , where $b_{1}$ and $b_{2}$ are as defined in
Theorem 1. Let $b_{1}(||x||)=b_{2}(||x||)--V(t, x)$ . Then $b_{1}(A)=A^{2}/2$ , $b_{1}(B)=B^{2}/2$ ,
$b_{2}(\lambda)=\lambda^{2}/2$ ,

$\max\{\frac{\lambda^{2}}{2}$ , $\frac{\beta_{*}}{\alpha_{*}}\}<\frac{A^{2}}{2}$ , (4.7)

and
$\max\{\frac{\lambda^{2}}{2}e^{-\alpha_{*}T}+\frac{\beta_{*}}{\alpha_{*}}(1-e^{-\alpha_{*}T})$ , $\frac{\beta_{*}}{\alpha_{*}}\}<\frac{B^{2}}{2}$ . (3.1)

Hence, system (3.1) is strongly uniformly practically stable since $V$ satisfies the conditions
of the comparison principle Theorem 1.

2. Case where $u_{i}(\cdot)\in L_{2}[t_{0}, \infty)$ .

Let $q_{i}= \sum_{j=1}^{n}|B_{ij}|$ . Again, with I4 $(t, x)=x_{i}^{2}/2$ , we have,

$V_{i_{(3.1)}}’$ $=$ $-a_{i}x_{i}^{2}+x_{i}( \sum_{j=1}^{n}B_{ij}F_{j}(\varphi_{j}x_{j})+u_{i}(t))$

$\leq$ $-a_{i}x_{i}^{2}+q_{i}|x_{i}|+|u_{i}(t)||x_{i}|$ .

Let $\epsilon_{i}>0$ and $\epsilon_{i}’>0$ , $i=1$ , $\ldots$ , $n$ , be constants such that $(\epsilon_{i}+\epsilon_{i}’)\in(0, a_{i})$ and define
$\alpha=2\min\{(a_{1}-\epsilon_{1}-\epsilon_{1}’), \ldots, (a_{n}-\epsilon_{n}-\epsilon_{n}’)\}>0$ , $\epsilon_{*}=\min\{\epsilon_{1}, \ldots, \epsilon_{n}\}>0$ ,

$\tau=\max\{\frac{(a_{1}-\epsilon_{1}-\epsilon_{1}’)}{2\epsilon_{1}}$ , $\ldots$ , $\frac{(a_{n}-\epsilon_{n}-\epsilon_{n}’)}{2\epsilon_{n}}\}$ and $\beta=\sum_{i=1}^{n}\frac{q_{i}^{2}}{4\epsilon_{i}’}$ .
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Then we can always find $\epsilon_{i}>0$ and $\epsilon_{i}’>0$ sufficiently small such that $(a_{i}-\epsilon_{i}-\epsilon_{i}’)>0$

and

$V_{i(3.1)}’$ $\leq$ $-a_{i}x_{i}^{2}+ \frac{1}{4\epsilon_{i}’}q_{i}^{2}+\epsilon_{i}’x_{i}^{2}+\frac{1}{4\epsilon_{i}}[u_{i}(t)]^{2}+\epsilon_{i}x_{i}^{2}$

$\leq$ $-(a_{i}- \epsilon_{i}-\epsilon_{i}’)x_{i}^{2}+\frac{1}{4\epsilon_{i}’}q_{i}^{2}+\frac{1}{4\epsilon_{i}}[u_{i}(t)]^{2}$

Now, for $t\geq t0\geq 0$ , define

$W_{i}(t, x)=V_{i}+ \frac{1}{4\epsilon_{i}}\int_{t}^{\infty}[u_{i}(s)]^{2}ds$ .

Then,

$W_{i(3.1)}’ \leq-2(a_{i}-\epsilon_{i}-\epsilon_{i}’)W_{i}+\frac{(a_{i}-\epsilon_{i}-\epsilon_{i}’)}{2\epsilon_{i}}\int_{t}^{\infty}[u_{i}(s)]^{2}ds+\frac{1}{4\epsilon_{i}’}q_{i}^{2}$ .

Let $W(t, x)= \sum_{i=1}^{n}W_{i}$ , $\sigma(t)=\tau\int_{t}^{\infty}||u(s)||^{2}ds$ and $Q= \int_{t_{0}}^{\infty}||u(s)||^{2}ds$ . Then $W_{(3.1)}’\leq$

$-\alpha W+\sigma(t)+\beta^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}g(t, W)$ . Hence, we have the comparison scalar equation

$z’=g(t, z)=-\alpha z+\sigma(t)+\beta$ , $z(t\mathrm{o})=z0$ , $z(t)\geq 0\forall t\geq t0\geq 0$ .

Solving this, we have, for $t\geq t0\geq 0$ ,

$z(t;t_{0}, z_{0})$ $=$ $(z_{0}- \frac{\beta}{\alpha})e^{-\alpha(t-t_{0})}+\frac{\beta}{\alpha}+e^{-\alpha t}\int_{t_{0}}^{t}e^{\alpha s}\sigma(s)ds$

$\leq$ $(z_{0}- \frac{\beta}{\alpha})e^{-\alpha(t-t_{0})}+\frac{\beta}{\alpha}+\tau Qe^{-\alpha t}\int_{t_{0}}^{t}e^{\alpha s}ds$

$=$ $(z_{0}- \frac{\beta}{\alpha})e^{-\alpha(t-t_{0})}+\frac{\beta}{\alpha}+\frac{\tau Q}{\alpha}(1-e^{-\alpha(t-t_{0})})$

$=$ $(z_{0}- \frac{\beta}{\alpha}-\frac{\tau Q}{\alpha})e^{-\alpha(t-t_{0})}+\frac{\beta}{\alpha}+\frac{\tau Q}{\alpha}$ ,

so that $z(t;t_{0}, z_{0}) \leq\max\{z_{0}, (\beta+\tau Q)/\alpha\}$ . Moreover, as aconsequence of Lemma 1,
$\lim\sup_{tarrow\infty}z(t)\leq\beta/\alpha$, implying therefore the boundedness of the solutions of system (3.1).

We now have strong uniform practical stability if $(\lambda, A, B, T)>0$ are given such that
$\lambda<A$ , $B<A$ , $t\geq t_{0}+T$ ,

$(z_{0}- \frac{\beta}{\alpha}-\frac{\tau Q}{\alpha})e^{-\alpha(t-t_{0})}+\frac{\beta}{\alpha}+\frac{\tau Q}{\alpha}$

$\leq\max\{b_{2}(\lambda)e^{-\alpha T}+\frac{\beta+\tau Q}{\alpha}(1-e^{-\alpha T})$, $\frac{\beta+\tau Q}{\alpha}\}<b_{1}(B)$ ,

and $\max\{z_{0}, \beta+\tau Q/\alpha\}\leq\max\{b_{2}(\lambda), (\beta+\tau Q)/\alpha\}<b_{1}(A)$ , where $b_{1}$ and $b_{2}$ are defined
as in the comparison principle Theorem 1. Let $b_{1}(||x||)=||x||^{2}/2$ and $b_{2}(||x||)=||x||^{2}/2+$

$Q/(4\epsilon_{*})$ , noting that $b_{1}\leq W\leq b_{2}$ . Then, $b_{1}(A)=A^{2}/2$ , $b_{1}(B)=B^{2}/2$ , $b_{2}(\lambda)=\lambda^{2}/2+$

$Q/(4\epsilon_{*})$ ,

$\max\{(\frac{\lambda^{2}}{2}+\frac{Q}{4\epsilon_{*}})e^{-\alpha T}+\frac{\beta+\tau Q}{\alpha}(1-e^{-\alpha T})$ , $\frac{\beta+\tau Q}{\alpha}\}<\frac{B^{2}}{2}$ ,
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$\max\{\frac{\lambda^{2}}{2}+\frac{Q}{4\epsilon_{*}}$ , $\frac{\beta+\tau Q}{\alpha}\}<\frac{A^{2}}{2}$ . (4.10)

Thus, by the comparison principle Theorem 1, system (3.1) is strongly uniformly practi-
cally stable.
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