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1 Introduction

There are many fruitful results on the
representations of fuzzy numbers, differentials
and integrals of fuzzy functions ( see, e.g.,
in Goetschel-Voxman [8, 9], Dubois-Prade [3,
4, 5, 6], Puri-Ralescue [13], Furukawa [T7],
Kaleva [10, 11] etc). They establish funda-
mental results concerning differentials, inte-
grals and fuzzy differential equations of fuzzy
functions which map R to a set of fuzzy num-
bers. By using the results it seems to be dif-
ficult to apply all the practical and significant
problems. In this studying we introduce the
couple parametric representation(see [2]) cor-
responding to the representation of fuzzy num-
bers due to Goetschel-Voxman so that it is easy

to solve fuzzy differential equations.

In Buckley [1], Kaleva [10, 11}, Park [12] and
Song [16], various types of conditions for the
existence and uniqueness of solutions to fuzzy
differential equations. By the couple represen-
tation some kinds of differential and integral
of fuzzy functions can be easily treated in an

analogous way with the real analysis as well as

some type of fuzzy differential equations can
be solved without difficulty.

In Section 2 we denote a fuzzy number z
by (a,b), where a, b are endpoints of a—cut set
of the membership function u,. We give some
kind of metric space which includes the set of
fuzzy numbers as well as prove the continuity
of a, b. In Section 3 we give definitions of differ-
ential and integral of fuzzy functions and suffi-
cient conditions for fuzzy functions to be differ-
entiable or integrable. In Section 4 we get basic
results of existence and uniqueness of solutions
for fuzzy differential equations by applying the
contraction principle. In Section 5 we treat
a fuzzy differential equation 3 = p(t)z,where
p(t) is a fuzzy valued function, and we calcu-
late the the exponential functioﬂ e*, where z
is a fuzzy number. In the section we show the
attractivity set, where all the solutions are ab—
proaching to the zero as the time increasing

the infinity.
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2 Parametric Representa-
tion of Fuzzy Numbers

In order to introduce a metric space which
includes the set of fuzzy numbers, we define

the following set.
X ={z = (a,b) € C(I) x C(I)}

where I = [0,1] and C([) is the set of continu-
ous functions from I to R. Denote a metric by
d(z,y) = sup,es(la(a) — c(a)| + [b(e) — d(a)])
for z = (a,b),y = (¢,d) € X. Then the metric
space (X,d) is complete.

Definition 1 Consider a set of fuzzy numbers
with bounded supports as follows:

Ft = {u: R — I satisfying (i) — (iv) below.}

(i) There ezist a unigue m € R such that
u(m) =1;

(#i) The set supp(p) = cl({{ € R : u(£) > 0})
is bounded in R;

'(iii) One of the following conditions holds;
(a) p is strictly fuzzy convez, i.e.,

p(ckr + (1 — c)§2) > minfu(£1), u(é2)]

foré,82€R,0<c<1;
(b) u(m) =1 and u(§) =0 for § #m;

(iv) p is upper semi-continuous on R.

Remark 1 The above condition (iiia) is
stronger than one in the usual case. It follows
that p(€) is strictly increasing in § € (—oo,m)
and strictly decreasing in £ € (m,o0). This
condition plays an important role in the proof
of Theorem 1.
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We introduce the following parametric rep-

resentation of p € F,

a(c) = minLy(u),

b(e) = maxLa(p)

for0<a<1and

La(p) = {(€R:pu(€)=a},
a(0) = mincl(supp(p)),
b(0)

max cl(supp(u))-

See Figure 1.

Remark 2 From the ertension principle of
Zadeh, it follows that

ﬂz+v(£)
ax min (4:(&:)))
max{a € I:§{=¢§ +&,& € La(wi)}

max{a € I : £ € [a(a) + ¢(a),b(a) + d(a)]},

where u1, po are membership functions of z, y,

respectively. Thus we getz+y = (a+c,b+d).
The following theorem is a basic result.

Theorem 1 Denote p = (a,b) € F2t, where
a,b: I - R. The following properties(i)-(iii)

(i) a,b are continuous on I;

(ii) maxa(a) = a(l) = m and minb(a) =

b(1) =m;

(iii) One of the following statements holds;

(a) a is strictly increasing and b is strictly
decreasing with a(a) < b(a);

(b) a(a) =ba)=m for0<a < 1.



Conversely, under the above conditions (i)

-(i11), if we denote
u(&) =sup{a € I': a(a) < £ < ba)}

then p € FSt. Moreover it follows that R C F

and that F&t is a closed convex cone in X.

In the following example we illustrate typi-

cal three types of fuzzy numbers.

Example 1 Consider the following L — R
fuzzy number z € FZt with a membership func-

tion as follows:

L(Z),  foré<m
Bz (§) = _
R(ESR),  for£>m

where m € R,l > 0,7 > 0. L, R are into map-
pings defined on R* = [0,00). Let L(§)+ =
max(L(£),0) etc. We identify p, with x =
(a,b) Then we have a(a) = m — L™ Y(a)l and
b(a) = m + R™(a)r provided that L=! and
R emist.

Let L(§) = —1€ + 1, where ¢; > 0. We

illustrate the following cases (a)-(c).

(i) Let R(§) = —c2€ + 1, where ca > 0. Then

col(b—m) = e;r(m — a).

(ii) Let R(§) = —cav/€+1, where c; > 0. Then

c2l(b—m)? = c17%(m — a).

(ii) Let R(€) = —co€?+1, where c; > 0. Then

cli2(b—m) = c2r(a — m)2.

See Figure 2.

3 Differential and Integral
of Fuzzy Valued Func-
tions

Let an interval J C R. We call a function
z : J — F to be a fuzzy valued function.

Denote

z(t)

(a(t), b(t))
{(a(t,a),b(t,a))T € R?:a € I}.

i

We define the continuiety and differentiabil-

ity of fuzzy valued function as follows:

Definition 2 A fuzzy valued functionx : J —

F3t is continuous att € J if
lim d(z(t + k), z(t)) = 0.
h—0

Denote the set of all the continuous functions
z:J - Ft by C(J).
Let the function z : J — F by

z(t) = {(a(t,a),bt,a))T cR%:a¢c I}
= (a'(t’ ')) b(t’ )) = :L‘(t, )
for t € J. The function z 1is dif-

ferentiable at t € J if for any a €

I there exist Zt—a(t, a), %(t, a) such that

Oa ob

- < = . st

6t(t’ a) < Bt(t’ a) and u(t,-) € Ftf, where

u(t,€) = St < ¢ <

%(t, a)}. The function z is differentiable on

J if = is differentiable at any t € J. De-
dz ' Oa ob :

note E(t) =z (t) = ('é?(t’ ), Et—(t, -)) and it

is called to be the derivative of z(t).

sup{a € I :

We define an integral of an Ff— valued

function z.
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Definition 3 Let z : J — Fgt be z(t,-) =
(a(t,-),b(t,-)) for t € J. The function x is
called to be integrable over [t1,t2], since a,b
are Riemann integrable over [t1,t2]. Then we

define the integral as follows:

/t:z z(s,-)ds

ball by B = {z € Fg' : d(z,0) < 1}. Define
rB={rze Ft:z € B} forr >0.
Assumption (A) Let r > 0 and

B(zo,7) = 20 + rB.

The following conditions (i) and (ii) are satis-

fied.

17 t2 .
= {( a(s’ a)ds,/ b(s, a)ds)T € R2 ra € I}_(l) It follows that f(t,m) € fi:t for any
t ty

Remark 3 Let z(t) = (a(t,-),b(t,-)) € F
forted.

(i) If z is differentiable at t, we get the inte-
gral over [t1,t2] C J as follows:

460, = atta,) - 2t ).

131

(i) If z(t) € F& is integrable over [t1,t2),
then we have f:: z(s,-)ds € Fgt. And also

we have

t

d( i z(s,-)ds,0) < /-tz d(z(s,-),0)ds.

t1

4 Fuzzy Differential Equa-
tion I

Consider an initial value problem of a dif-
ferential equation in the metric space X as fol-

lows:
& () = f(t,z), z(to)=z0  (N)

where to € R,z9 € Ff. Let f : Jc x X = X,
where J. = [to,t0 + ¢],c > 0. We call the
equation of (N) to be a fuzzy differential equa-
tion if f(t, x)v is a fuzzy valued function on a
subset of J. x X. Moreover we assume that

the following assumption. Denote the unit

(t,z) € J. x B(zg,7), ie., for any z =
{(a(a),b(a)) : a € I} € Fg',t € J. the
following properties (a)-(c) hold for t € J:
(a) fi(t,(a(a),b(a)),a),i =

contiunous in a;

1,2, are

(b) For each t € J there exists a unique
value M(t) € R such that

max f1(, (a(), b()), @)
= fa(t, (a(1),b(1)), 1) = M(®);
min f2(t, (a(@), (@), @)
= falt, (1), 5(1)), 1) = M(2);

(c) One of the following statements

holds;
(a) fi(t, (a(a),b(a)), @) is
strictly increasing in a and

f2(ta (a'(a)v b(a))a a) is
decreasing in a;

(b) fl (t’ (a(a)’ b(a))’ a) =
fa(t, (a(@),b(a)),a) for 0 < a < 1.

strictly

(ii) Function f(t,z) is continuous on (t,z) €
Je X B(zo,T).

In the same way in the theory of ordinary
differential equations we give the following def-
inition of solutions for initial value problems of

fuzzy differential equations.
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Definition 4 Let J, be an interval in R and
to € J1. A function z :
tion of (N) on Ji,if = satisfies the following

J1 = Ftois a solu-

conditions (i)-(iii).
(i) z(to) = zo;
(ii) z(t) € F&t fort € Ju;

(iii) There ezists x (t) and = (t) = f(t,z(t))
forte Jy.

By applying the contraction principle we get

the following theorem.

Theorem 2 Suppose that the following condi-
tions (i) and (i) are satisfied under Assump-

tion (A):

(i) f is bounded, i.e., there exists an M > 0
such that

d(f(t,z),0) <M
for (t,z) € J. x B(xo,1);

(ii) f is Lipschitzian in x ,i.e., there exists an

L > 0 such that
d(f(t,z), f(t,y)) < Ld(z,y)
fOT‘ (ta :L‘),(t, y) € Jc X B(:EO’T)‘

Then there ezists a unique solution z for (N)

such that
¢
:L'(t) =T+ f(sa :L'(S, ))dS
to
fort € J, = [to, to+p], where p = min(c,r/M).

We illustrate the above theorem by applying

it to the following example.

Example 2 Consider the following problem of
fuzzy differential equation

z =p(t)z+q(t), z(to)=z0 (E)

t € R, zo,z(t) € Fgt. Functionsp,q: R 5 R

are continuous.

Let f(t,z) = p(t)z+q(t) and p(t) > 0. Since

d(f(¢,2),0) < p(t)d(z,0)+ |q(t)l,
flt,z) € f(ty)+p(t)d(z,y)B,

it follows that f is bounded and Lipschitzian in
z. From Theorem 2 we have a unique solution

of (E) such that

t

t ot
z(t) = ef to p(s)dswo + efa P (r)drq(s)ds

to
forte R.

Le¢ p : R =  (-00,0] and
z(t) = (22(t),z2(t)). Then we have
21(t) = p(t)22(t) + q(t), 23 = p(t)21(t) + q(2),
by denoting zo = (ao,bp), so zi(¢,a) and

z2(t, ) satisfy
( z1(t, @) ) — () ( ao(t, a) )
‘ 22(t, a) ) bo(t, a)

w0 )

where ®(-, -) is a fundamental matrix of

+®(t,a)

2 (@a(t, 00, zalt, @)

= (p(t7 a)$2 (t’ a))p(t7 a)xl (t7 a))T

ie.,

o(t,a) = $u(t,a) éi2(t,a)
s . ¢2l(t, a) ¢22(t, a)

ef:o p(s,a)ds n 6_ f; p(s,a)ds
2

$u(t,a) =
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ef:) p(s,a)ds _

¢
. e— Lo p(s,a)ds

b12(t,a) =

2
ef‘:) p(s,a)ds —e f::, p(s,a)ds
¢21 (t1 a) =
2
ft p(s,a)ds —f‘ p(s,a)ds
e’to +e “Jto
¢22(t’ a) = 2

for t > tg,a € I.

5 Fuzzy Differential Equa-
tion II

We consider the exponential function e* =

0 & Where € Fgt, in the similar to the
real analysis.

Let z = (a,b), then a—cut sets of mem-
bership function y, is Lo(4z) = [a(a),b(e)]
for a € I. We calculate z%,i = 2,3,---, in
the following cases (a) — (c). By the extension
principle of Zadeh, it follows that

Pz (E)

= Dax min [(1(65))

= max{a €I:{=11;{;§ € La(pa)}-
When ¢ = 2, we find the following relations.
(a) If 0 < a(a) < b(a), then we get
La(pz2) = [a(a)?,b(e)?],
thus z2 = (a?,#?) € F2.
(b) If a(a) < b(a) < 0, then we have
La(pz2) = [b(2)?,a(e)?],
thus 22 = (b2, a?) € FE.
(c) If a(a) < 0 < b(a), then it follows that

La(pz2) = [a(a)b(a), ¢()]

‘where c(a) = max(a(a)?,b(a)?). With-
out loss of generality we denote u, by the
membership function in Ezamplel. De-

note

L™ Ya+h)
R Ya+h) =

L'l(a) + Al,
R_l(a) + Ag,

where A; < 0,A2 <0 for h > 0. Then we

have

a(a + h)b(a + h) — a(a)b(a)
= a(a)Asr — b(a)A1l — A1 Aglr > 0.

Since

ala+h) =
bla+h) =

a(a) — A1l <0,
bla) - Agr > 0,

then we have

(a(a) - All)Agr >0,
(b(a) - AzT)All <0.

Thus ab is increasing in o and in the same
way c is decreasing. And z? = (ab,c) €
Fot.

From the above discussion we give the fol-

lowing definition.

Definition 5 Define

e"—f:?:ef"
=1 b
==l

for z € Fgt.

The following theorem shows the represen-

tation of e” for z € Fgt.

Theorem 3 Letz = (a,b) € F£t. Then we get
the following representation of the fuzzy num-

ber e* as follows:
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(i) If 0 < a(a) < b(c), then we have (i) Let py(t,a) > 0 on R x I and an initial

> _ (e, ¢%) condition o = (ag, bo). Then the solution
e” =(e%e

z = (z1,2) of (Eo) is described by
= {(e*®), )T ¢ R?: a € I}.

2(t,a) = (el P18 g(q), e P20ty )
(i) If a(a) < b(a) < 0, then we get

o = e* + et +( et —eb gm0 —e"b) as long as z1(t,a) > 0 for t € J,a €
2 2 ’ 2 I, where Jy is an interval in [1,00) and
In some case the following property holds. z(7) = (a(a),b(a)). It follows that
Theorem 4 Let ¢ = (a,b) € Ft and y = 2(t, ) = (ef:p’(”“)d’a(a) ef: pz(s,a)dsb(a))
(e,d) € Fgt with a(a) > 0 and c(a) > 0 for
a € I. Then we have as long as z1(t,a) < 0 < 25(t, @) and that
Pl = otV a:(t, Ot) — (ef_: Pz(s,a)dsa(a)’ef: Pl(a,a)dsb(a))
Example 3 Consider behaviors of solutions as long as za(t,a) < 0 fort € Jy,a € I.

of the following problem of a fuzzy differential
(i) Let pa(t,a) < 0 on R x I. As long as

z1(t,a) 2 0 or z3(t,a) <0 fort > 1,a €
I, it follows that

equation
€ =p(t)z, x(to)=xo (Eo)

where t € R,z¢ and z(t) € Ft. Function

e
p(t) = (p1(t,-),p2(t,-)) : R — fét is contin- . (@(r-), 0)e

< d(z(t,-),0)
< d(z(r, ), 0)eJ- P2(e)de

uous.

Remark 4 Let T(z) = p(t)z. It follows that

T is non-linear. where T > t9,t > T,a € I. As long as

z1(t,a) <0< zo(t,a) fort > T,a €1, it
follows that

In analyzing the ordinary differential equa-
tion £ = a(t)z + b(t), where a,b
R — R are continuous, the condition that d(z(r,-),0)e” f: pa(s,-)ds

t
lim / a(s)ds = 0 plays an important role in
Jim [ a(s) play p < d(z(t,),0)

showing the property that lim z(t) = 0. "
;o < d(a(r, ), 0)e~ J- Prien)ae

Conserning fuzzy differetial equation (Ey), we
t tensi It of totic behavi

get an extension result of asymptotic behaviors t>racl

of ordinary linear differential equations as well

as we observe a little different result as follows. Example 4 Consider Problem (E,) with

— st
Theorem 5 Consider Problem (Eg). The fol- z(to) . (a0,b0) € . Suppose that
lim / p2(t,a) = —o0 fortp e R,a € I.

to

lowing cases (i) and (ii) hold: t—o00



Seikkala [15] calculates the solution in case
that p(t) = —1. See Figure 3.

In the following theorem we show an attrac-
tivity set AFo(tp) of (Ep) at to. Here AFo(ty)
is a subset of F* as follows:

Definition 6 If zo € APo(ty), then all the so-
lutions x of (Eo) passing through (to, z9) € Rx
Fit satisfies Jlim d(z(t,a),0) =0 fora € I.

It is clear that zo = 0 € APo(ty) for any
toeR.In tgle case that p1(t,a) = p2(t,a) <0
and tljgno /t; pi(s,a)ds = —oo for tg € R,a €
I, it follows that AP°(¢y) = R for ¢y € R.

When p;(t,a) # p2(t,a), we have the fol-

lowing theorem.
Theorem 6 Consider Problem (E;) with
P1(t) # p2(t). Let po(t,a) <0 on R x I and

t
for to € R. Then we have APo(ty) = {0 € R}
for any tp € R.

The above theorem is proved in [14]. Consider

the following problem

T =Pn(t)z, z(t))=20 (Pm)
Pp : R = Ft such that P, = (-m—q;, —-m+
g2) satisfying

m:RxI—->R,m(ta)>0,

g:RxI—->R,

0 <gi(t,a) < m(t,a),i =1,2.

Theorem 7 Suppose that fora € I,tp € R

t—o0

t
lim / m(s,a)ds = oo
to

t—o0

=0

t t .
lim e Jig miras / q(s, a)efzo@’"("“)ﬂ("va))drd
to

where ¢q(t,a) = max(q:i(t,@),q2(¢,a)). Then
for any solution x = (z1,22) of (Pm) it fol-

lows that
tl_l_glo lz1(t, @) + z2(t,@)| =0

forael
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Figure 1: Fuzzy number u = (a,b)

Figure 2: Fuzzy numbers u = (a,b) in the following cases(a)-(c)

(i) cal(b—m) =crr(m —a) (ii) c2l(b—m)? =c1r?(m —a) (iii) EI2(b— m) = cir(a — m)?
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Figure 3: The solutions z (t,-) = —z(¢,)



