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1. INTRODUCTION AND MAIN RESULTS

We shall be concerned with the oscillatory behavior of solutions of the even order
neutral differential equation

(1.1) $\frac{d^{n}}{dt^{n}}[x(t)+h(t)x(t-\tau)]+f(t,x(g(t)))=0$ .

Throughout this paper, the following conditions are assumed to hold: $n\geq,$ is even;
$\tau>0;h\in C(\mathrm{R});g\in C[t_{0}, \infty)$ , $\lim_{tarrow\infty}g(t)=\infty;f\in C([t_{0}, \infty)\cross \mathrm{R})$ , $uf(t, u)\geq 0$

for $(t, u)\in[t_{0}, \infty)\cross \mathrm{R}$ , and $f(t, u)$ is nondecreasing in $u\in \mathrm{R}$ for each fixed $t\geq t_{0}$ .
By asolution of (1.1), we mean afunction $x(t)$ that is continuous and satisfies

(1.1) on $[t_{x}, \infty)$ for some $t_{x}\geq t_{0}$ .
Asolution is said to be oscillatory if it has arbitrarily large zeros; otherwise it is

said to be nonoscillatory. Equation (1.1) is said to be oscillatory if every solution
of (1.1) is oscillatory.

Oscillation properties of even order neutral differential equations have been inves-
tigated by many authors. We refer the reader to [1-9, 11, 1,, 18-,4]. In particular,
it has been shown by Zhang and Yang [,4] that the odd order neutral differential
equation

$\frac{d^{N}}{dt^{N}}[x(t)-x(t-\tau)]+p(t)|x(t-\sigma)|^{\gamma-1}x(t-\sigma)$ $=0$

is oscillatory if and only the ordinary differential equation
$x^{(N+1)}(t)+\tau^{-1}p(t)|x(t)|^{\gamma-1}x(t)=0$

is oscillatory, where $N\geq 1$ is odd, $\gamma>0$ , $\sigma\in \mathrm{R}$ , $p\in C[t_{0}, \infty)$ , $p(t)\geq 0$ for
$t\geq t_{0}$ . (See also Tang and Shen [,3].) For even order neutral differential equations,
recently, the following result has been established in [,,].
Theorem A. Let $c>0$ . Then the even order neutral differential equation

$\frac{d^{n}}{dt^{n}}[x(t)+cx(t-\tau)]+f(t, x(g(t)))=0$

is oscillatory if and only if the even order non-neutral differential equation

(1.,) $x^{(n)}(t)+ \frac{1}{1+c}f(t, x(g(t)))=0$

is oscillatory.
The purpose of this paper is to generalize Theorem Awith c $\neq 1$ for equation

(1.1) with the following cases (HI) and (H2)
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(HI) $0\leq\mu\leq h(t)\leq\lambda<1$ for $t\in \mathrm{R}$ ;
(H2) $1<\lambda\leq h(t)\leq\mu$ for $t\in \mathrm{R}$.

Here, $\mu$ and Aare constants. It is convenience only that the parts of $\mu$ and Ain
(HI) and (H2) are opposite each other.

Throughout this paper we use the notation:

$H_{0}(t)=1$ ; $H_{i}(t)=h(t)h(t-\tau)\cdots$ $h(t-(i-1)\tau)$ .

We define the function $S(t)$ on $\mathrm{R}$ by

$S(t)=\{$

$\sum_{i=0}^{\infty}(-1)^{i}H_{i}(t)$ if (HI) holds,

$\sum_{i=1}^{\infty}\frac{(-1)^{i+1}}{H_{i}(t+i\tau)}$ if (H2) holds,

for $t\in \mathrm{R}$ .

It is easy to see that $S(t)$ is converges uniformly on $\mathrm{R}$ , and hence $S(t)$ is contin-
uous on R. In Section 2we will show that

(1.3) $0< \frac{1-\lambda}{1-\mu^{2}}\leq \mathrm{S}(\mathrm{t})\leq\frac{1-\mu}{1-\lambda^{2}}$ , $t\in \mathrm{R}$ .

We note that if $\mu=\lambda$ $=c\neq 1$ , then

$\frac{1-\lambda}{1-\mu^{2}}=\frac{1-\mu}{1-\lambda^{2}}=\frac{1}{1+c}$ , and $S(t)= \frac{1}{1+c}$ .

Main result of this paper is the following theorem.
Theorem 1.1. Suppose that (HI) or (H2) holds. Then equation (1.1) is oscillatory
if and only if
(1.1) $x^{(n)}(t)+f(t, S(g(t))x(g(t)))--0$

is oscillatory.
The proof of Theorem 1.1 will be omitted for lack of space.
Theorem 1.1 means that equation (1.1) has anonoscillatory solution if and only

if equation (1.4) has anonoscillatory solution.
Suppose that $h(t)\equiv c$ , $c>0$ and $c\neq 1$ . Then $S(t)=(1+c)^{-1}$ . Note that (1.2)

is oscillatory if and only if

$y^{(n)}(t)+f(t, (1+c)^{-1}y(g(t)))=0$

is oscillatory. Indeed, put $x(t)=(1+c)y(t)$ . Hence, Theorem 1.1 is ageneralization
of Theorem Awith $c\neq 1$ .

Now we assume that

(1.5) $h(t+\tau)=h(t)$ , $h(t)\neq 1$ and $h(t)\geq 0$ for $t\in \mathrm{R}$.

Then it is easy to verify that (HI) or (H2) holds, and $S(t)=[1+h(t)]^{-1}$ . Conse-
quently, from Theorem 1.1, we have the following result
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Corollary 1.1. Suppose that (1.5) holds. Then equation (1.1) is oscillatory if and
only if

$x^{(n)}(t)+f(t,$ $\frac{x(g(t))}{1+h(g(t))})=0$

is oscillatory.
The oscillatory behavior of solutions of non-neutral differential equations of the

form

(1.6) $x^{(n)}(t)+f(t, x(g(t)))=0$

has been intensively studied in the last three decades. We refer the reader to [3, 9,
13-16, 19] and the references cited therein. Combining Theorem 1.1 with the known
oscillation results for non-neutral differential equations of the form (1.6), we can
derive various oscillation results for neutral differential equations of the form (E).
In Section 2we obtain oscillation criteria for the linear neutral differential equation

(1.7) $\frac{d^{n}}{dt^{n}}[x(t)+h(t)x(t-\tau)]+p(t)x(t-\sigma)=0$,

and for the nonlinear neutral differential equation

(1.8) $\frac{d^{n}}{dt^{n}}[x(t)+h(t)x(t-\tau)]+p(t)|x(t-\sigma)|^{\gamma-1}x(t-\sigma)=0$ ,

where $\gamma>0$ , $\gamma\neq 1$ and the following conditions are assumed to hold:

(1.9) $\sigma\in \mathrm{R}$; p $\in C[t_{0}, \infty)$ , $p(t)>0$ for t $\geq t_{0}$ .
It is possible to obtain oscillation results for more general equations such as (1.1).
However, for simplicity, we have restricted our attention to equations (1.7) and (1.8).
In Section 3we prove that the function $u(t)$ behaves like the function $S(t)[u(t)+$
$h(t)u(t-\tau)]$ as $tarrow\infty$ , under some conditions, which plays acrucial part in the
proof of Theorem 1.1. We show the “if” part and the “only if” part of Theorem
1.1 in Sections 4and 5, respectively.

Neutral differential equations find numerous applications in natural science and
technology. For instance, they are frequently used for the study of distributed
networks containing lossless transmission lines. See Hale [10].

2. OsclLLATloN CRITERIA

In this section we establish oscillation criteria for neutral differential equations
of the form (E).

First let us show that $S(t)$ satisfies (1.3).
Lemma 2.1. If (HI) or (H2) holds, then $S(t)$ satisfies (1.3).

Proof. Assume that (HI) holds. Let t $\in \mathrm{R}$ . Then

$S(t)= \sum_{j=0}^{\infty}H_{2j}(t)[1-h(t+2j\tau)]$ .

276



We see that

and

$S(t) \leq\sum_{j=0}^{\infty}\lambda^{2j}(1-\mu)=\frac{1-\mu}{1-\lambda^{2}}$,

$S(t) \geq\sum_{j=0}^{\infty}\mu^{2j}(1-\lambda)=\frac{1-\lambda}{1-\mu^{2}}$.

In the same way, the conclusion follows for the case (H2), by using

$S(t)= \sum_{j=1}^{\infty}\frac{1}{H_{2j}(t+2j\tau)}[h(t+2j\tau)-1]$ .

We need the following result which was obtained by Kusano and M. Naito [16].
Lemma 2.2. If the differential inequality

$x^{(n)}(t)+f(t, x(g(t)))\leq 0$

has an eventually positive solution, then the differential equation
$x^{(n)}(t)+f(t, x(g(t)))=0$

has an eventually positive solution.
From Theorem 1.1, Lemmas 2.1 and 2.2, we have the following result.

Corollary 2.1. Suppose that (HI) or (H2) holds. If
(2.1) $x^{(n)}(t)+ \frac{1-\lambda}{1-\mu^{2}}f(t, x(g(t)))=0$

is oscillatory, then (1.1) is oscillatory. If
(2.1) $x^{(n)}(t)+ \frac{1-\mu}{1-\lambda^{2}}f(t, x(g(t)))=0$

has a nonoscillatory solution, then (1.1) has a nonoscillatory solution.

Proof. Assume that there exists anonoscillatory solution of (1.1). Then Theorem
1.1 implies that (1.4) has anonoscillatory solution $x(t)$ . Without loss of generality,
we may assume that $x(t)>0$ for all large $t$ , since the case $x(t)<0$ can be treated
similarly. Put $y(t)=(1-\lambda)/(1-\mu^{2})x(t)$ . From Lemma 2.1 we see that

$-y^{(n)}(t)=- \frac{1-\lambda}{1-\mu^{2}}x^{(n)}(t)=\frac{1-\lambda}{1-\mu^{2}}f(t, S(g(t))x(g(t)))$

$\geq\frac{1-\lambda}{1-\mu^{2}}f(t,$ $\frac{1-\lambda}{1-\mu^{2}}x(g(t)))$

$= \frac{1-\lambda}{1-\mu^{2}}f(t, y(g(t)))$

for all large $t$ . From Lemma 2.2 it follows that (3.1) has anonoscillatory solution.
Let $y(t)$ be an eventually positive solution of (3.2). Then Lemma 2.1 implies that

$x(t)=(1-\lambda^{2})/(1-\mu)y(t)$ is an eventually positive solution of
$x^{(n)}(t)+f(t, S(g(t))x(g(t)))\leq 0$,
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and hence (1.1) has anonoscillatory solution, by Lemma 2.2 and Theorem 1.1. This
completes the proof.

Now let us derive oscillation criteria for (1.7) and (1.8).
The following oscillation result was obtained by Kitamura [15, Corollaries 5.1 and

3.1].

Lemma 2.3. Assume that (1.9) holds. If

(2.3) $\int^{\infty}t^{n-1-e}p(t)dt=\mathrm{o}\mathrm{o}$ for some $\epsilon$ $>0$ ,

then the equation

(2.4) $x^{(n)}(t)+p(t)x(t-\sigma)=0$

is oscillatory. If

(2.5) $\int^{\infty}t^{n-1}p(t)dt<\infty$ ,

then equation (3.4) has a nonoscillatory solution.
Lemma 2.4. Assume that $\gamma>0$ , $\gamma\neq 1$ and (1.9) h.olds. then the equation

$x^{(n)}(t)+p(t)|x(t-\sigma)|^{\gamma-1}x(t-\sigma)=0$

is oscillatory if and only if

(2.6) $\int^{\infty}t^{\min\{\gamma,1\rangle(n-1)}p(t)dt=\infty$ .

Combining Corollary 2.1 with Lemmas 2.3 and 2.4, we have the following oscil-
lation criteria for equations (1.7) and (1.8).

Corollary 2.2. If (3.3) holds, then (1.7) is oscillatory. If (3.5) $h$ olds, th en (1.7)
has a nonoscillatory solution.
Corollary 2.3. Equation (1.8) is oscillatory if and only if (3.6) holds.
Remark 2.1. Corollary 2.2 with (HI) have been already established by Jaros and
Kusano [11, Theorems 3.1 and 4.1]. Corollary 2.2 with (H2) extends the results in
[5, Theorem 1] and [8, Theorem 7].
Remark 2.2. Corollary 2.3 with (HI) has been obtained by Y. Naito [19] in the
case where $h(t)$ is locally Lipschitz continuous.

3. OSCILLATION cRlTERlA

In this section we establish oscillation criteria for neutral differential equations
of the form (E).

First let us show that $S(t)$ satisfies (1.3).

Lemma 3.1. If (HI) or (H2) holds, then $S(t)$ satisfies (1.3).
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Proof. Assume that $(\mathrm{H}\mathrm{I})$ holds. Let $t\in \mathrm{R}$ . Then

$S(t)= \sum_{j=0}^{\infty}H_{2j}(t)[1-h(t+2j\tau)]$ .

We see that

$S(t) \leq\sum_{j=0}^{\infty}\lambda^{2j}(1-\mu)=\frac{1-\mu}{1-\lambda^{2}}$,

and

$S(t) \geq\sum_{j=0}^{\infty}\mu^{2j}(1-\lambda)=\frac{1-\lambda}{1-\mu^{2}}$.

In the same way, the conclusion follows for the case (H2), by using

$S(t)= \sum_{j=1}^{\infty}\frac{1}{H_{2j}(t+2j\tau)}[h(t+2j\tau)-1]$ .

We need the following result which was obtained by Kusano and M. Naito [16].

Lemma 3.2. If the differential inequality

$x^{(n)}(t)+f(t, x(g(t)))\leq 0$

has an eventually positive solution, then the differential equation

$x^{(n)}(t)+f(t, x(g(t)))=0$

has an eventually positive solution.

From Theorem 1.1, Lemmas 2.1 and 2.2, we have the following result.

Corollary 3.1. Suppose that (HI) or (H2) holds. If

(3.1) $x^{(n)}(t)+ \frac{1-\lambda}{1-\mu^{2}}f(t, x(g(t)))=0$

is oscillatory, then (1.1) is oscillatory. If (1.1) is oscillatory, then

(3.2) $x^{(n)}(t)+ \frac{1-\mu}{1-\lambda^{2}}f(t, x(g(t)))=0$

is oscillatory.

Proof of Corollary 2.1. It is sufficient to show the following (i) and (ii):

(i) equation (3.1) is oscillatory, then equation (1.4) is oscillatory;
(ii) equation (1.4) is oscillatory, then equation (3.2) is oscillatory.

We give the proof of (i) only. In exactly the same way, we can prove (ii). Let $x(t\backslash$

be anonoscillatory solution of (1.4). Without loss of generality, we may assum
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that $x(t)>0$ for all large $t$ , since the case $x(t)<0$ can be treated similarly. Put
$y(t)=(1-\lambda)/(1-\mu^{2})x(t)$ . Then Lemma 2.1 implies that

$-y^{(n)}(t)=- \frac{1-\lambda}{1-\mu^{2}}x^{(n)}(t)=-\frac{1-\lambda}{1-\mu^{2}}f(t, S(g(t))x(g(t)))$

$\geq f(t,$ $\frac{1-\lambda}{1-\mu^{2}}x(g(t)))$

$\geq f(t,y(g(t)))$

for all large $t$ . From Lemma 2.2 it follows that (3.1) has an eventually positive
solution. This completes the proof.

Now let us derive oscillation criteria for (1.7) and (1.8). It is possible to ob-
tain oscillation results for more general equations of the form (1.1). However, for
simplicity, we have restricted our attention to equations (1.7) and (1.8).

The following oscillation result was obtained by Kitamura [15, Corollaries 5.1 and
3.1].
Lemma 3.3. Assume that (1.9) holds. If
(3.3) $\int^{\infty}t^{n-1-e}p(t)dt=\mathrm{o}\mathrm{o}$ for some $\epsilon$ $>0$ ,

then the equation

(3.4) $x^{(n)}(t)+p(t)x(t-\sigma)=0$

is oscillatory. If
(3.5) $\int^{\infty}t^{n-1}p(t)dt<\infty$ ,

then equation (3.4) has a nonoscillatory solution.
Lemma 3.4. Assume that $\gamma>0$ , $\gamma\neq 1$ and (1.9) holds. Then the equation

$x^{(n)}(t)+p(t)|x(t-\sigma)|^{\gamma}\mathrm{s}\mathrm{g}\mathrm{n}x(t-\sigma)=0$

is oscillatory if and only if
(3.6) $\int^{\infty}t^{\min\{\gamma,1\}(n-1)}p(t)dt=\mathrm{o}\mathrm{o}$.

Combining Corollary 2.1 with Lemmas 2.3 and 2.4, we have the following oscil-
lation criteria for equations (1.7) and (1.8).
Corollary 3.2. If (3.3) holds, then (1.7) is oscillatory. If (3.5) holds, then (1.7)
has a nonoscillatory solution.
Corollary 3.3. Equation (1.8) is oscillatory if and only if (3.6) holds.
Remark 3.1. Corollary 2.2 with (HI) have been already established by Jaros and
Kusano [11, Theorems 3.1 and 4.1]. Corollary 2.2 with (H2) extends the results in
[5, Theorem 1], [8, Theorem 7] and [21, Corollary 3].
Remark 3.2. Corollary 2.3 with (HI) was obtained by Y. Naito [19] in the case
where $h(t)$ is locally Lipschitz continuous. Corollary 2.3 with (H2) is aimprovement
of the result in [21, Corollary 4]
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