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1Introduction

In the present paper, we consider the stationary problem about the following activator-
inhibitor system in one space dimension:

(1.1) $u_{t}$ $=$ \epsilon 2uエエ $+f(u)-\sigma v$ in $(0, 1)$ ,
$\delta v_{t}$ $=$ $v\text{エエ}+u-m-\gamma v$ in $(0, 1)$ ,

with the homogeneous Neumann boundary condition and an adequate initial condition
Here $f(u)$ is as0-called balanced nonlinearity of Fitz-Hugh Nagumo type. Actually, in
the main results (Theorem 1.1 and 1.2) in this paper, $f(u)$ may as well be more $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}^{1}$

nonlinearity of Fitz-Hugh Nagumo type like non-balanced one without the constraint. In
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fact, by use of akind of affine transformation, we may assume that $f(u)$ is balanced without
loss of generality. But we do not assume that this is symmetric. Precisely, we assume the
following (A1), (A2), (A3), and (A4) about the nonlinearity $f(u)$ :We define the double-
well potential $F(u)$ as the primitive function $\mathrm{o}\mathrm{f}-f(u)$ (i.e., $F’(u)=-f(u)$ ) and there exist
constants $a<0$ and $b>0$ such that

(A1) $F(z)=0$ , if $z=a$ and $z=6$, and $F(z)>0$ , otherwise,

(A2) $F\in C^{3}$ , $F’(a)=F’(0)=F’(b)=0$ , and $F’(a)$ , $\mathrm{F}’(\mathrm{b})>0$ , $\mathrm{F}’(0)<0$ .

(A3) $F’(z)<0$ , $\mathrm{i}\mathrm{f}-\infty<z<a$ or $0<z<b$ , and $F’(z)>0$ , if $a<z<0$ or $b<z<\infty$ .

(A4) $\varliminf_{zarrow\pm\infty}|F’(z)|>0$ .

The other parameters are that $0<\epsilon\ll 1$ , $\sigma>0$ , $\delta\geq 0$ , $m\in(a, b)$ , and $\gamma>0$ .
The stationary problem of (1.1) is

(1.2) 0 $=\epsilon^{2}u_{xx}+f(u)-\sigma v$ in $(0, 1)$ ,
0 $=v_{xx}+u-m-\gamma v$ in $(0, 1)$ ,

with the homogeneous Neumann boundary condition.
There are long history and fruitful results of research about exsitence and stability of

stationary solutions of (1.2). See, for instance, [1], [3], [4], and references therein. Recently,
we are primarily concerned with structure of stable stationary solutions in an adequate
space of functions. This is because it is known that there are “infinitely” many stable
steady states of (1.2), as $\epsilon$ tends to zero. More precisely speaking, we have proved that,
for given $n\in \mathrm{N}$ , $\sigma>0$ , $m\in(a, b)$ , and $\gamma>0$ , there exists aconstant $\epsilon_{0}>0$ such that,
$\mathrm{i}\mathrm{f}\cdot 0<\epsilon$

$<\epsilon 0$ , then $n$-layered stationary solution of (1.2) is exponentially stable by use of
the SLEP method which has been developed by the second author. For details, refer to
[3] again. Therefore, if $\epsilon$ is very small, there are enormously many stationary solutions
of (1.2), all of which are exponentially stable in sense of (1.1). We would like to seek a
criterion by that we judge which one is the “most” stable. For the purpose we come up
with the following functional:

(1.3) $J_{e,\sigma,\gamma}(u):= \int_{0}^{1}(\frac{\epsilon^{2}}{2}|u_{x}|^{2}+F(u)+\frac{\sigma}{2}|(-\triangle_{N}+\gamma I)^{-\frac{1}{2}}(u-m)|^{2})dx$ ,

because (1.2) is the Euler-Lagrange equation of $J_{\epsilon,\sigma,\gamma}$ in the admissible space $H^{1}(0,1)$ .
Here $(-\triangle_{N})^{-1}$ means the inverse of the minus Laplacian with the homogeneous Neumann
boundary condition, and the fractional power is defined by the spectral decomposition.

Moreover, if $\delta$ is equal to 0, then (1.1) is the $L^{2}$ -gradient flow of $J_{\epsilon,\sigma,\gamma}$ . That is easily
seen by solving the second equation of (1.1) in $v$ and putting it into the first equation
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Therefore, as calculating the value of the energy of each stable steady state, we judge it
conveniently. We can use it as acriterion, only when $\delta$ is equal to 0in (1.1). Then, surely,
(1.1) is asystem of equations, but there also is aproperty similar to asingle equation. This
is because the variable $v$ in (1.1) changes quite immediately according to $u$ ’s changing. The
field of inhibitor has no time lag to reach astationary state, when the activator changes. In
point of view of phenomena, that is ameaning of the fact that the system (1.1) with $\delta=0$

is the gradient flow of (1.3). Hence, there is no possibility for Hopf bifurcation to occur,
and it is seen that there is no time periodic solution in this system (1.1) with $\delta=0$ by
use of general theory of gradient systems. On the other hand, in mathematically technical
point of view, we can use some variational methods to solve the stationary system (1.2).
We therefore have apossibility to get more information about the structure of stationary
solutions of (1.2) than about the one of asystem of equations without variational structure.
In fact, we show the following theorem:

Theorem 1.1 For given $\sigma>0$ , $\gamma>0$ , m $\in(a,$b), and the nonlinearity f, there exists
$\epsilon_{1}>0$ such that, if $0<\epsilon<\epsilon_{1}$ , then the following properties hold:

(1) If $u^{\epsilon}$ is a global minimizer of $J_{\epsilon,\sigma,\gamma}$ in $H^{1}(0,1)$ , then $u^{\epsilon}$ is spatially periodic and its
minimum period $P^{\epsilon}$ satisfies

$P^{\epsilon}=2(3A( \frac{b-a}{(b-m)(m-a)})^{2}\frac{\epsilon}{\sigma})\frac{1}{3}+O(\epsilon^{\frac{2}{3}})$ .

(2) There are at most two distinct global minimizers up to translation.

Here we have defined by $A:= \sqrt{2}\int_{a}^{b}\sqrt{F(\tau)}d\tau$ .

Remarks:

(1) At the global minimizers, all of three components of energy, $J_{\epsilon,\sigma,\gamma}$ , have the same
value. Namely, when asteady states has the global minimum energy, the energy
is distributed equaly to the three terms of $J_{\epsilon,\sigma,\gamma}$ . This is also proved rigorously
at the same time as we get Theorem 1.1. Moreover, if astable steady states has
less frequency than the global minimizers, the third term has more energy than the
first and the second terms do. Inversely, in more frequent steady states, the first
and the second terms are bigger than the third term. Furthermore, some numerical
computations suggest that there is arugged landscape of agraph of energy, $J_{\epsilon,\sigma,\gamma}$ , in
which the bottom of energy is the global minimizer that we have characterized in the
above theorem, and the more or less frequency asteady state have, the more energy
it has. On the way to prove Theorem 1.1 (and Theorem 1.2 below), we have also
proved those rigorously, as long as we consider about normal $n$-layered solutions for
any $n\in \mathrm{N}$ .
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In the present paper, we basically concentrate anon-conserved case of (1.1). But
we have gotten the similar characterization of global minimizers in aconserved case.
Here the conserved case means that the integration $\int_{0}^{1}udx$ is conserved, if $u$ evolves
in time. Therefore, the time evolution equation and the stationary problem must
be changed. In fact, we have considered the following Cahn-Hilliard type parabolic
system as the time evolution equation

(1.4) $u_{t}$ $=$ $-(\epsilon^{2}u_{xx}+f(u)-\sigma v)_{xx}$ in $(0, 1)$ ,
$\delta v_{t}$ $=$ $v_{xx}+u-m-\gamma v$ in $(0, 1)$ ,

$u(x, 0)$ $=$ $u_{0}(x),v(x,0)$ $=$ $v_{0}(x)$ ,

with the homogeneous Neumann boundary condition. If $\int_{0}^{1}u_{0}(x)dx=m$ , then
$\int_{0}^{1}u(x,t)dx=m$ for any $t>0$ , as long as the solution of (1.4) exists. If $\delta=0$ ,
then this is the $H^{-1}$ -gradient flow of $J_{e,\sigma,\gamma}(u)$ . The reason why we consider the
Cahn-Hilliard type time evolution equation is that the activator’s action must be 10-
cal. If in the conserved case we dare to write the equation similar to the socond order
one (1.1), we need to put the integral term $- \int_{0}^{1}f(u)dx$ and $\sigma\int_{0}^{1}vdx$ in it, namely,

(1.5) $ut$ $= \epsilon^{2}u_{xx}+f(u)-\int_{0}^{1}f(u)dx-\sigma v+\sigma\int_{0}^{1}vdx$ in $(0, 1)$ ,
$\delta v_{t}$ $=v_{xx}+u-m-\gamma v$ in $(0, 1)$ ,

$u(x, 0)$ $=u_{0}(x)$ ,

with the homogeneous Neumann boundary condition. This is non-local and are not
prefered by the principle of local action. But in both cases, the stationary problem
can be written as the same and is the following:

(1.6) 0 $= \epsilon^{2}u_{xx}+f(u)-\int_{0}^{1}f(u)dx-\sigma v+\sigma\int_{0}^{1}vdx$ in $(0, 1)$ ,

0 $=v_{xx}+u-m-\gamma v$ in $(0, 1)$ ,
$\int_{0}^{1}udx$ $=m$,

with the homogeneous Neumann boundary condition. This can be regarded as the
Eu$\mathrm{l}\mathrm{e}\mathrm{r}$-Lagrange equation of $J_{\epsilon,\sigma,\gamma}(u)$ under the constraint $\int_{0}^{1}udx=m$ , so that the
term of integration of the first equaiton of (1.6) can be considered of as the Lagrange
multiplier. We also refer to [10] about abackground of the equations (1.6). In the
conserved case, we also consider the case when $\gamma=0$ . This is amodel equation
of micr0-phase separation phenomena of diblock copolymer melts. We also refer to
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[5], [8], [9], and rederences therein about its background. We note that it is also
known that, if $\delta=0$ , then the stability of steady states in the sense of the non-local
second order parabolic system (1.5) completely agrees with the one in the sense of
the Cahn-Hilliard type system (1.4). See [6].

(3) Because of some technical reasons, we need to assume “good” periodicity of global
minimizers to get the theorem of the conserved case. Here we define the “good”
periodicity of afunction in $C^{1}$ -class by aperiodic function which acrosses $x$-axis only
once in its half period. For example, anormal $n$-layered solution has this “good”
periodicity. We refer to [3] about anormal $n$-layered solution. We exactly state the
theorem of the conserved case:

Theorem 1.2 For given $\sigma>0,$ $\gamma>0$ , $m\in(a, b)$ , and the nonlinear$r^{*}ity$ $f$ , there
exists $\epsilon_{2}>0$ such $that_{f}$ if $0<\epsilon<\epsilon_{2}$ and if any global minimizer of $J_{\epsilon,\sigma,\gamma}$ in $H^{1}(0,1)$

with the integral constraint has the “good” periodicity, then the following properties
hold:

(1) If $u^{\epsilon}$ is a global minimizer, then $u^{\epsilon}$ ’s minimum period $P^{\epsilon}$ satisfies

$P^{\epsilon}=2(3A( \frac{b-a}{(b-m)(m-a)})^{2}\frac{\epsilon}{\sigma})\frac{1}{3}+O(\epsilon^{\frac{2}{3}})$ .

(2) There are at most two distinct global minimizers up to translation.

The theorem is weaker than Theorem 1.1 of the non-conserved case, although we can
judge which one is the most stable steady state among all the stable steady states
gotten by $n$-times flipping a1-layered solution for any $n\in \mathrm{N}$ . In this paper we mainly
prove it about the non-conserved case, and we remark differences and difficulties of
the conserved case, occasionally. We also note that the results of both cases are
independent of $\gamma$ .

(4) Professor Stefan Miiller has first proved this kind of characterization of global min-
imizers in the conserved case with $\gamma=0$ , with $m=0$ , and with the symmetric
nonlinearity, which is derived from the problem in adifferent context of physics. See
[2]. In the conserved case, we cannot simply extend his result to the conserved case
with non-symmetric nonlinearity (even if it is balanced), unless we assume the “good”
periodicity of global minimizers, as we have remarked in (3).

(5) Professor Xiaofen Ren and Professor Juncheng Wei have studied the similar problem
of the conserved case in [10]. Their case is in $\sigma=O(\epsilon)$ , because they basically
adopt $\Gamma$-convergence technique to characterize global minimizers and to seek other
local minimizers. Although the parameter value is special alittle, their results have
similar meaning to ours, but they are represented in aquite different way
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(6) According to Theorem 1.1 and Theorem 1.2, the global minimizers have the spatial
period which is proportional to $\epsilon^{1/3}$ . On the other hand, recently, we have made
numerical experiments in which we take many kinds of randomly frequent functions
whose modes are from one to athousand as initial data and we solve the time evolution
equation (1.1) numerically by use of discretization. These numerical computations
suggest us that the spatial period of the most frequently appearing final steady states
have another dependency on $\epsilon$ . Namely, it seems that it is propotional to $\epsilon^{1/2}$ . We
will report it in the forthcoming paper [7] after we have done enough numbers of
numerical experiments to conclude it.
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