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Counting functions for branched covers of elliptic curves
and quasi-modular forms
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Abstract: We prove that each counting function of the m-simple branched covers with a
fixed genus of an elliptic curve is expressed as a polynomial of the Eisenstein series 3, F4 and
Eg. The special case m = 2 was considered by Dijkgraaf.

1 Introduction

We consider the counting function

Fim(g) = 37 N g8

d>1

of the branched covers of an elliptic curve. Here, N, (1;') is the (weighted) number of isomorphism

classes of branched covers, with genus g(> 1), degreé d, and ramification index (m,m,...,m), of
an elliptic curve. Such a cover is called an m-simple cover. Our aim is to prove that the formal
(m)

power series Fg’ converges to a function belonging to the graded ring of quasi-modular forms
with respect to the full modular group SL(2,Z), and hence can be expressed as a polynomial of
the Eisenstein series Ey, F4 and Eg with rational coefficients.

For m = 2, a 2-simple branched cover is usually referred as a simple branched cover. Dijk-
graaf [3] has proved that the counting function Féz) (g) is a quasi-modular form with respect to
SL(2,Z). Our result is a generalization of this result for arbitrary m > 2.

The proof [3] for m = 2 employs the ‘Fermionic formula’ [5] of the partition function,
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whose quasi-modularity was proven by Kaneko and Zagier [7]. The quasi-modularity of the
counting function Fg(z)
the relation between the counting function Fg(m) and the theory of mirror symmetry has not yet
been clarified, the quasi-modularity of the counting function is shown to hold.

The proof of our main theorem, Theorem 9, implies that all counting functions Fq(m) with

m > 2 and g > 1 live in the infinite product

supports the mirror symmetry for an elliptic curve. For m > 3, although

V(g t2,t3,...) =exp(— Y_&(=)t;) x
j=1

Res | [I (1+:2exp(Xphte))(1 + 27 P exp(= Y (-t 2 |

z=0
P€%+Z>o k>2 k22

with the infinite set of variables ¢ = e, t5,3,..., where the renormalizing factor £(—j) is the
special value of a Hurwitz zeta function. To be more precise, we show that every Fg(m) is a
linear combination of the Taylor coefficients of the function V. Then, the quasi-modularity
of the counting function F,;m) is derived from the corresponding property for V, which was
established by Bloch-Okounkov [2]. The key step in the proof of our theorem is Proposition 4,
which expresses certain character values of the symmetric group Sy in a way free of the degree d,
thus enabling us to summing up the numbers of branched covers to form the generating function
as indicated above.
The author expresses his gratitude to Professor Masanobu Kaneko for helpful discussions.

2 Counting functions

2.1 m-simple branched cover

We fix an elliptic curve E over C and an integer m > 2. A pair (f,C) consisting of a (smooth
complex) curve C and a holomorphic map f : C = E is an m-simple branched cover if the
following three conditions are safisfied:

(i) C is connected.
(ii) For any P € C, the branching index e(P) = 1 or m.
(iii) If P # P’ and e(P) = e(P') = m, then f(P) # f(P').

In the case m = 2, a 2-simple branched cover is usually called a ‘simple branched cover’. An
m-simple branched cover is a natural generalization of a simple branched cover. If f is of degree
d and the curve C is of genus g, then the pair (f, C) is said to be of genus g and degree d.

Two m-simple branched covers (f,C) and (f’, C') are isomorphic if there is an isomorphism
¢ : C — C' such that f = f'op. The group of automorphisms on (f, C) is denoted by Aut(f,C)
[or simply by Aut(f)]. We will see that this is a finite group.



By the Riemann-Hurwitz formula (see e.g., [6]), we have

29(C) -2 =d(29(E) - 2) + »_ (e(P) - 1).
PeC

Thus the number b of branch points and the genus g of the curve C always satisfy the relation
29 —2 = (m - 1)b. Note that the genus g does not depend on the degree d. This relation implies
that the number b of branch points should be even if m is even. If m is odd, the number of
branch points is arbitrary. The case ¢ = 1 corresponds to the case b = 0; that is, the cover
f : C — E is unramified.

We choose b (distinct) points Py,..., P, € E. For g = 1+ (m — 1)b/2, let Xg4 = X3 be
the set of isomorphism classes of m-simple branched covers of genus g and degree d such that
the ramifications occur exactly over the points P, ..., P,. We will see that Xy 4 is a finite set
and does not depend on the choice of the set of branch points Py,..., F. In fact, Xy 4 can also
be regarded as the fiber in the fibration

Xg,d - MQ(E7 d) - Eb1

where My(FE,d) is the Hurwitz space of m-simple branched covers, and E} is the configuration
space of unordered b-points on E.
We count the (weighted) number of elements of X 4 so that

1
Noa= D TRl

fGXg'd

Note that Ny 4 = 0 unless 2(g — 1) € (m — 1)Z>¢. The generating functions F, for g > 1 are
now defined by :

Fylg) = F{™(q) =) _ Ngaq*.
d>1
These functions are called the ‘counting functions’.
It is necessary to define F; separately. This is because covers in the case of ¢ = 1 are

unbranched (b = 0). Note that neither X; 4 nor N4 depends on m. Then we employ the
definition of Fi(q) introduced for the case m = 2 [3, §2J:

1
—571080+ ) _Niad®.
d>1

Fi(q) =

Here, the first term can be considered as the contribution of the constant map (the map of
degree zero) which is not a stable map. Since N; 4 = 01(d)/d, where o1(d) is the sum of all
divisors of d, we have the expression

Fi(g) = —logn(q),
where we denote the Dedekind eta function by

n(g =g/ [0 -q"

n>1
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Next, we introduce a two-variable partition function Z,

X (29-2)/(m-1)
Z(¢,X) = 2™ (g, X) := exp Zng
: &7 (29 - 2)/(m - D)!

Xb
= exp (Z F1+(m—1)b/2(Q)F) 3

>0

which is a formal power series in ¢ and X. We see that

X (29-2)/(m-1)
n(g9)Z(g,X) = exp (ng )

< DGy =D/m =D

b
= exp (Z Fl+(m—1)b/2(‘1))§_!) (1)

b>1

In the definition of the counting function Fy, we restricted ourselves to connected covers.
We also need to introduce the partition function Z of the counting functions of covers which
are not necessarily connected. Let X 9,4 be the set of isomorphism classes of m-simple branched
covers, which are not necessarily connected, of genus g and degree d. In other words, for X g,d) We
impose conditions (ii) and (iii), but drop condition (i). We define the corresponding (weighted)
number of elements of X, 4 by

- 1
Nya= Y
Aut
& TR
the modified counting function ﬁ'g for g > 1by .
Fg(q) = EN ,d qda
i>1
and its generating function Z by
5 X (29-2)/(m~1)
20X = 2 K g g m oy

g>1

Xb
= ZF1+(m—1)b/2(Q)
b>0
The relation between the functions Z and Z is given as follows.
Lemma 1 We have the relation Z(gq, X) = ¢"/*Z(q, X).

Proof: This follows from a standard argument [3]. O



2.2 Representations of the fundamental group

The weighted number ng,d of covers which are not necessarily connected is expressed in terms
of representations of the fundamental group of the punctured elliptic curve.

Let 7 be the fundamental group of the b-punctured curve E\ {Py,..., P}. It is known that
the group 7 can be expressed in terms of the generators and relations as

‘"11, = (av 137 YyeeesBiML N0 = aﬂa—lﬂ_l)'

Here, we denote the simple curve around a point P; by ~; € m;(E').
Let Sy be the symmetric group on d elements, and let ™) be the conjugacy class of S; of
type (m,19™). In other words, the class c(™) consists of cycles of length m. We define

250 = 2y = {p € Hom(}, Sa) | () € ™ for i =1,....,b},

where the symbol “Hom” represents the set of group homomorphisms. The symmetric group Sy

acts on 944 by

“o(v)o, 0 €S4,p € Dygq.

Lemma 2 (i) As a set, we have the bijection Xg,d =®y4/S4.
(ii) Nga = |®g,al/|Sdl.

Proof: (i) Let E' = E\ {Pi,..., Py} be a punctured curve. Let us choose a base point P, e FE
as a base point. Then the funda.menta.l group m(E') = m(E', Py) is isomorphic to 2. For an
fex g.d» We construct the corresponding map ¢ € ®y 4. Let f~1(Py) = {Q1,--.,Qa}- Then we
have the natural map

¢y = m(E') - Aut(f~1(Py)) = Sy

Conversely, for each ¢ € @44, we construct a covering f € ng We denote the universal
covering of E' by E'™%,  Let C' = E'un® xp {1,...,d} = E"™™ x {1,...,d}/ ~, where
(z, z) ~ ('ym ©(7)i) when v € m (E'), z € E'"™ and 1 < i < d. Then the natural projection
e — Evmv/nb = E' is a covering of degree d. This extends to a ramified covering
f: C — E It is easy to see that this construction gives the required bijection.

(ii) Under the bijection in (i), the group Aut(f) of automorphisms corresponds to the stabi-
lizer subgroup of S; at . This implies that

|Aut(f)| = #{o € Sa| p = 7}

Then we have

. 1 1 ,
Ngg= ; TAut (]~ 154 ; #{¢? | 0 € S4, ¢ corresponds to f} = |®, 4|/|S4l.
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2.3 Irreducible characters of symmetric group

The number of group homomorphisms appearing in the previous lemma is written as a sum over
the irreducible representations of the symmetric group.

A partition A = (A1, A2,...,Aq) of d is a non-increasing sequence M2XA>-2>2X200f
non-negative integers such that Ef___l ); = d. We denote by P, the set of all partitions of d. It is
known that the set of irreducible representations of the symmetric group Sy is parametrized by
P,. For each A € P;4, we denote by x) the corresponding irreducible character. Since a character
is a class function, the value x»(c) is well-defined for each conjugacy class c of S4. We introduce
the modified character

. lel-xale)
where |c| is the number of elements in the conjugacy class ¢, and dim A is the dimension of the
representation ), that is, the value of x)(e) at the identity of Sq.

Lemma 3 For g =1+ (m — 1)b/2, we have

18021/15d = 3 fald™)P.

AEPy

Proof : We apply the formula in Lemma 4 of 3] with G = S¢, R=Pg, c1 =+ =cN = cm),
h=1and N =b. =

2.4 Frobenius notation

Now we recall properties of Frobenius ccordinates of partitions and shifted symmetric functions.
Our Frobenius coordinates are parametrized by half-integers, not by integers, as is explained
below.

_ For a partition A = (A1,..-,Ad) € Pq, we define the shifted partition A=(01..., Ad) by
A=X—1+ % Let I be the set of positive half-integers, I = % +Zy = {%, %, ... }. A partition
) gives us two subsets P,Q C I such that

P = {M|X>0,i=1,...,d},
Q = {1/2,3/2,...,d-1)/2}\{-Xi | -} > 0,i=1,...,d} = {N; | i >0,i=1,...,d},

where )’ is the conjugate partition of A. Then the cardinality of P equals that of Q. Conversely,
for a given pair of subsets P,Q C I with |P| = |Q|, we have the corresponding partition A € Py
withd =3 cpP+ e ¢

We remark that our Frobenius coordinates (P,Q) are shifted by 1/2 from the Frobenius
coordinates (a1, ...,ar | B1,-..,0B) introduced in Section I.1 of [8]. The precise relation is

1 1 1 1 1 1
P={a1+§a02+§,---aar+§}a Q={ﬁl+§,ﬂ2+§,...,ﬂr+§}.



For k € Z>¢ we define

(N = é (x; (i %)k) .

This function is written as px()) in (5.4) of [2]. For example, pp(A) = 0, p1(A) = d. From 1.1.4
of [8] we have the relation

d

Z(tii — t—i+%) — ZtP - Zt‘l’,

i=1 pEP PEQ

where (P, Q) is the Frobenius coordinates of the partition A. Applying (t%)" on both sides and
letting £ = 1, we have

' d
. v A |
A =3 (3 - i+ ) = ot - T
i=1 peEP PeEQ
This is a power-sum symmetric functions in A = (A1, .., Ag) plus some polynomial in d of degree

k + 1. We now introduce two additional polynomials symmetric in the );. Let ej(i) be the jth

elementary symmetric function and h;(A) the jth complete symmetric function, defined by

GJ(X) = Z xil T xiﬁ
1<41<-+<4; <d
BO = Y Rae R

1<i < <ij<d

These two functions can be expressed as polynomials in power-sum symmetric functions, and
thus as polynomials in pg()) and d.

2.5 Character formula

The character value fj(c(™) can be written in terms of 5()\). Although the character depends
strongly on the rank d of the symmetric group Sy, the following expression is independent of d.
This is crucial for our calculation of the counting function.

Proposition 4 There ezists a polynomial ¢ (Yi,...,Ym) € Q[Y1,...,Yn] such that for all
d > 1 and A € Py, we have ’-

AE™) = @BV, - - -, Bm(N).-

Proof: We consider a partition A = (A,...,Ag). Let

m=,\,-+d—i=5\,~+d—%,
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o(z) = H(a: — p;). Then, from Example 1.7.7 in [8], we have
i=1

Fr(d™) = m_% (w(z —1)-- (rv;(;r; +1)p(z — m)dz) ,

where the symbol “Res” denotes the residue. Since p(z +d— }) = le(:c — Xi), we obtain

Ar(c™)
1 3 i1
= mz,_w((z+d——)(x+d-§) (z+d—m+ > )So(z(x':;_l)z)dx)

I

. 1 3 1’[’_ (m+5\)y) dy
*,—n?l}fg((”(d"i)y)(lﬂd__)) A+ (@d-m+3 )y 1’1[,_1(1— Aiy) y'"“)

by changing coordinates. The products appearing here are generating functions of elementary
(resp. complete) symmetric functions:

d d
[Ia - (m+ X)) D (1 - my)*i (—yYe;i(V),
i=1

j=0
d 00
[[a-%y™ = DY vh),
i=1 3=0
Then,
fA(c("'))
= ZZe,(/\)hJ A) x
i=0 j=0
Res ((1 = DW= ) O+ (= met D - )0 )
= Z Z( 1)%ei(N)h;(\)bij,
1=0 j=0
where

by = Reg ((1+ (= D)1+ @= )+ (14 @=m+ )1 =)t~ s ).

Lemma 5 The value b;; is written as a polynomial in d. Specifically, it is 0 if i+j > m+2 and
a polynomial with rational coefficients of degree no greater thanm+1—i—j5 if0 <i+j <m+1.
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Proof: If i + 7 > m + 2, then the function inside the summation is a polynomial in y, and thus
it has no pole at y = 0 and its residue b;; is 0.

We consider the case 0 < i +j < m + 1. Since b;; is the coefficient of y™+1~=7 in the
polynomial

(14 (@~ )1+ (= ) (L+ (d = m+ )1 — my)é~

d—i m

1. [/d—1
= Y > ald-gid-ded-ma (1) mpv,
s=0 t=0 5
we have
m+1—i—j .
1 3 1. [/d—i
bij= ; em+1_i_j_,(d—E,d—i,...,d-m-i-i ( s )(—m)’.
Then b;; is a polynomial in d of degree no greater than m +1 —1 — j. O

We now return to the proof of Proposition 4. We have the finite sum expression
fle™) = -— Z e;(M)h; (V)bi;.
t+_,<m

This is a polynomial in e;, h; and d. We know that e; and h; are polynomials in power-sum
symmetric functions p(\) and d. Then, since d = p;(A), we have proved the existence of the
function ¢ = ¢py,. O

Example 6 Form=2,...,5, the polynomial ¢m s of the following form:

1 5 1 11
- _ _—Y Y; =YY Y + —-Y-
o2 2Y2, ¢3 = Y3 f +12 1, ¢4 e~ h 2 + g 12
1 19 1 5 15 189
= Y5 - VaYi+ —Va— SV + 2V - ¥+ oY
95 =¥ —Ysh + ¥ =5k 6Y1 17 go b

This example suggests that the degree of the polynomial ¢m would be m if we consider the
degree of Y; to be j. The highest order term of ¢,, would then be Y;,/m. Although it is not
necessary to know the explicit form of the polynomial ¢,,, it could be of an independent interest.

Lemma 7 (i) Fori+j=m+1, we have b;; =1 and
Y (“D'e(Mhi(Nbi; =o.
i+j=m+1
(ii) For i+ j =m, we have b;; = —"‘72 + ma.

For m = 2, pa()\)/2 = fr(c!?) has a simple expression in terms of partitions. For a partition
A, we define n(X) = Y., (¢ — 1)A;. We also define the content c(z) as c(z) = j — i for each box
z = (i,j) € A, as in Section .1 of [8]. Then

p2(N)/2 = fr(e?) = n(X) = n(X) = ) _ ().

TEX
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3 Quasi-modular form

3.1 Eisensteln series

We give a brief summary of quasi-modular forms to fix the notation used here. (For the precise
definition and further properties, see [7] and §3 of [2].) Let 7 be a complex number with 7 > 0
and ¢ = e2™V=1I7, We denote the differential operator -27;17_—134; = qa% by D. For a subgroup I of
the full modular group SL(2, Z) of finite index, we denote the set of modular forms of weight k
by Mj(I') and the graded ring of modular forms by M, (I') = @x>oMi(T'). Similarly, we denote
the set of quasi-modular forms of weigiic k£ by QM. (") and the graded ring of quasi-modular
forms by QM,(I') = ®kx>0QM(I'). The ring M, (T') is not closed under the differentiation D,
but the ring QM, (T") is closed under D. Examples of (quasi-)modular forms are provided by the
Eisenstein series.

k
We denote the Bernoulli number by B € Q, = Z Bk 7 For
k=0
example, Bo = 1, Bl = —5, 32 = Ea B4 = —— and Bs = 42
We define the (normalized) Eisenstein serxes Ej for even k > 4 by
1
Ex(r) = Z
(et +dk
2 (odet (et +d)
2k o= nF-1g"
= k=l)gh = 1 — ==
= 1-—Z(Zd 1 B,,Zl-qn'
kn=1 dpn n=1

(This is a convergent series in q.) Then Ej is a modular form of weight k for SL(2,Z):

B(ZE = (o7 + dFBulr)

We also define
) 00
Ey(r)=1-24) (D _d)q".
n=1 djn
Then E; is not a modular form, but a quasi-modular form of weight 2 for SL(2,Z), so that

at +b

p—s d) = (er +d)?Ea(7) +

Es( \/._c(c'r + d).

The ring of quasi-modular forms for the full modular group SL(2,2) is QM,(SL(2,Z)) =
C[E», E4, Eg), and the operator D preserves this ring and increases the weight by 2:

D(E;) = (E3 — E4)/12, D(Es) = (E:E4— Eg)/3, D(Ees) = (E;Es — E})/2.
The following lemma is used for the proof of the main theorem.

Lemma 8 If7(q)A(q) € QM,(SL(2,Z)), then n(q)D?(A(q)) € QMy42;(SL(2, Z)) for a positive
integer j.
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Proof: Recall the definition of the Ramanujan delta, A(7) = n(q)** = (E} — EZ)/1728. Then
we have D log A(T) = E3(7) and D(logn) = F3/24, and we obtain the formula

1(@)DA() = D(n(a)A(9)) — 57 Ean(a)Ag)

The condition 7(q) A(q) € QM(SL(2,Z)) implies 1(q)D(A(g)) € QM;,2(SL(2,Z)). The asser-

tion follows from induction on j. )

3.2 The character of the infinite wedge representation

We introduce the variables t,,%3,%3,..., and write Dy = % for k > 1. In what follows, the

variable t; is related to g by ¢ = e'. In particular, for k = 1 we have D = D; = qb— We define
the infinite series

V(g ta,t3,...) = Z Z exp(P1( At + P2 (A)ta + ps( M)tz +--+) )
d>0 AEP,

= > ) @ Vexp@B(Ntz + Fs(Ats + ). 3)
d>0 AePy

"This expression appears in (0.10) of [2] as a character of the infinite wedge representation of an
infinite dimensional Lie algebra (W), and it is known to be a quasimodular form of weight —3
when suitably normalized. Let us explain this in more detail.

It is easy to see that V' is the coefficient of 20 of an infinite product:

V' = Res H (1+zexp(Zpktk (1+ 27 texp(— Z—pkt dz

2=0
PES +ZZO k>1 k>1
= g | I O+aen(Trmi+s e e 2(—.»)%))
Pe +Z>o k>2 k>2

To obtain a quas1modular form, we have to multiply a fractional power in e%. Let &(s) =
> n>1(n—3)7° = (2° —1)¢(s), which is continued to a meromorphic function of s. The function
£(s) at negative integer values of s is well-defined, and £(—2i) = 0 for i € Zq. (For example,
€(—1) =1/24, £(-3) = —7/960.) We define ‘

. ;
V(g t2,...) = exp(= D &(—4)t;) x V'(g, ta,...). (4)
Jj=1
If we consider the case t3 = t3 = --- = 0, then the infinite product reduces to

n n?/
D[] @+ a@)a i) = Zne2t D

P€%+ZZO n(q)
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since £(—1) = 1/24. Then

n(¢9)V(g,6,0,...) = 1. (5)
Now, consider the Taylor expansion of V with respect to (t2,3,...)
tK
V(qat2,t3a“') = ZAK(Q)E7 (6)
K

where K = (ko,ks,...) with almost all k; = 0, and tX/K! = th2¢53 ... [kolks!- -+ is multi-
index notation. The relation (5) implies that 7(g)A(,,..)(g) = 1. It is shown in the proof
of Theorem 4.1 of [2] that n(¢)Ak(q) € QM,(SL(2,Z)) and is of weight 3ky + 4k3 +--- =

%,(i + 1)k;. By Lemma 8, we know that 1(q)D?(Ak(q)) € QM,(SL(2,Z)) and its weight is
25 + Y02, + 1)ki. :

3.3 Main theorem

We arrive at the stage to state our main theorem.

Theorem 9 The counting functions Fy(q) = Fg(m)(q) for g > 2 belong to the graded ring
QM, (SL(2,2)) of quasimodular forms with respect to the full modular group SL(2,Z). In par-
ticular, Fg(m) is a polynomial in E5, E4 and E¢ with rational coefficients.

Proof: Summarizing Lemmas 1, 2 and 3, we obtain
R 1
2(qX)=1+3 3 Y h@™Pe'X*=1+3 3 exp(a™)X)e". ()
>0 d>12€Py d>1AePy

We can consider the term 1 as coming from the case d = 0, where Ry = {0}, fp = 0. From
Proposition 4, we obtain

exp(f2(c™) X)g*
[exp(¢m (B1(A), B2(N), - - -, m(A)) X) exp(£1P1(A) + t2P2(A) + -+ + tmBPm(N)]ets =g, 1,15 = =0
[exP(¢M(D’ Da, ... ’Dm)X) exP(tlﬁl(A) - t2ﬁ2(A) +---+ tmﬁm(x))]e‘l =q,tg=+=tm=0" (8)

Then by (7), (8) and (2), we have
2(q, X)

d>0 X\ePy
= [exp(¢m(D, D,,..., Dm)X)V’(q, to,13,... )] ta=tg=rr=0

= |exp(¢m(D,Da,...,Dp)X) Z Z exp(t151(A) + tap2(X) + tapa(A) +--- )]
etl=q,ta=t3=

b

Jj=1

= exp(¢m(D’ D2’ ceey D‘m)X) exp(Et,ﬁ(—J))V(q, ta,t3,. .. )]
to=tg=--=0

= ¢"/*[exp(¢m(D +£(-1), D2 + £(-2),- .., Dm + E(-m)) X)V (g, t2,t3, - - )]tyty=..0 -
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Here we have used (4) for the third equality and the last equality follows from the Leibniz rule.

Then,
(9)

n(q)Z(q, X)

= nl(q)g *Z(q,X)
= 1() [exp(ém(D + £(~1), Dy + £(=2), ..., Dy + EmNX)V (@, 12,5, Npptymrmo

to=tg=--=0

. . K
n(q) [eXP(¢m(D +£(-1),D2 +£(-2),..., D + £(-m)X) Y AK(‘I)%
= !

The coefficient of X? on the right-hand side of (9) is equal to the quantity
tK

55 2 1(6) [8n(D+ (1), Da +€(-2), ..., D + E(-0)*Axc(a) ] .
"R Jity=tg=--=

This is a finite sum and belongs to QM,(SL(2,Z)), by Lemma 8. Then the right-hand side of
(9) is a formal power series in X with coefficients in QM, (SL(2,Z)). Hence by (1), we have

> Fiim-1)/2(0) X°/b! = log (n(g) Z(g, X)) = Y _(n(g) Z(g, X) — 1) (-1}~ /j.
b>1 =1
This shows that Fy(q) € QM,(SL(2,Z)).

The special case m = 2 of our theorem has been considered by Dijkgraaf [3].

4 Concluding remarks
HARRDRIZDNTN 20Xy b EfFITMA%5. 10 AOKERBLIC 1 AOMILOERT
DERNBEIZR-T-. BH LV,

1. SIS R OME¥ b & covering DBIFR C DFEE g 1L 29— 2= (m —1)b DEFRIZH . KRR
B, g b bBRFFICHIFH TS AL I RNEEL ZENH DM, g & b XML Tk

KEIZEDBERIZHDBDETS. HlzxiX Z(g, X) DEEX (page 4) X

Z(q,X) =exp (E Fg(q)X"/b!)

9>1
EESCERRTV. 2, gD bDELLLRBEIIRLRVEEIX, FOHRIZO0 THDHE

KRB,
2. base & 72 HHi E DR 1 TRV L X3 covering D #i# C ORI R DEE b DFH
ROTREA IZHEFT S (see page 3). T L X TIXBBEBOEY FTLEHTR.
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. RER Py,...,Py € E D% ZEE L TH m-simple branched coverings DFREDESR

Xgq REDEAMTEEE Ny g 1ZEDL 22V, KOBEZEM £ D smooth 72 family (272 57>
LTHD. #-T, BEK Fi(q) 2525 L EiIMEROMBEEZRIZLAR TR, (see
page 3)

§2.4 TOBRARYEELZHNTHLO»N Y R0T V., $EETESIT O 7R ER 2
CERABRINTHWTENASTWS. Frobenius notation ¢, P IZENESOPETE
BASTWEEFTE2 Q FANPEEDATENRA->TVWARWEFEZEDT. A=0 Tibb
P=Q=0 2EERELRT, TORENSORE \ 2B (5 | k=1,2,...} THI-T
V5. infinite wedge representation & DR Z DT HIZIXZ DEHEMBELER.

. Proposition 4 iX cycle type 231 2DH¥ A Z A ERSTVSD (m, 19°™) OO EEDO L =
DHLDTHHH, DFA TOXRERIZHLTH I DX S RARNH S LRy
VI OBRBIZENS _HXOERK TCto=t3=---=0 L LEEHD
H (1+ z¢?)(1 + 27 1¢?)
pEL+Z50
tX Jacobi triple product identity (Z & ¥
q1/24n(q)—-1 z znqn2/2
neZ
IZHF LW, kORI fermion (2 K 2HENETR, TORIX boson IZ L BEEORTRTHS.
COWMIDMUMBRE VL Z L TRRS ¢
| R OREUE | counting function DRE M
m = 2 || Kaneko-Zagier Dijkgraaf
m 2 3 || Block-Okounkov O-.
. Vg, t2,...) ORBMEDHERKIX Virasoro algebra L3k L 7= Wi, algebra DEH ([2]) TH

BT ENLEPNTNEERLGNS. FX TV counting function Fy BRBMELFHZ &
X, TOV LBREDITHZLTHAINDS. ZhBZ ORI DEER (Theorem 9, page
12) ThH5. L L, REEOHES (BK) Fbot0LZAIHBITTHA. EBE
m=2 D&%, Fy(q) MERMERESZ LhD, B ¢ HERAEM TR H/SL2,Z)
KEKREFOILIIRY, ZOZLN'HIEERT 1 REOPBEDIT—AFMELRDLT
VB L BT EHRTES [3].

m =2 OBRAIZ Z BEIERMEET (0 20 ORE) TEFTEH, m >3 0B ENLD
RFTRIIRV. ¢ PR TRV ENRBER/LTWAS. T, om B m >3 OBEEIFEK
THRVOT F, iX quasi-modular form Tit72<, (£72% K D)quasi-modular form D
ARATRLENTVS. EREOBRIVBMERRT M, HDHWVIX—2OKRKERY 1T
EIT X g ZRBTHRLENI LN TEDZINE I DTN LR,

Fy i3 B3 E,Eg DBBEXL LT (—&KIZ) FITHIWIEALER, TOEHEXOEEFIL
LhroTHRWY. [7] Tirm =2 OBEAIZ, E CHRTAIREROKEEESXTVS. Z0
Bt m >3 CHHBTEAAREENHS. 2B, FORIL TiX next term b FAEAYIZIT
RO FEEZBET D Z & A3 T& 233 EIT2HIZ unmanageable (2725 L DERARDH 5.
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