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1. Introduction

The notion of variable, or unknown, first appeared in the works of the Greak math-
ematician Diophantus, who lived probably during the third century $\mathrm{a}.\mathrm{d}$ . He considered
polynomial equations with integral or rational coefficients, and was searching for an inte-
gral or rational solution. The most popular example is the equation $x^{2}+y^{2}=z^{2}$ , whose
integral solutions give us the lengths of the sides of Pythagorean triangles. At that time
(and most probably since ever afew centuries), these were perfectly known.

Nowadays, we call Diophantine equation any polynomial equation with integer coef-
ficients and whose unknowns are supposed to be rational integers. This definition is often
extended to exponential equations, like Fermat’s equation $x^{n}+y^{n}=z^{n}$ , where $x$ , $y$ , $z$

and $n\geq 3$ are unknown, however these are also sometimes called exponential Diophantine
equations.

The natural question is the following: an equation being given, determine the set of
its integral solutions. In most of the cases, this is far from being easy, and often this is
even quite difficult to prove whether this set is finite or not. In the case of finiteness of the
number of solutions, the second natural step is to try to compute an upper bound for their
absolute values, or at least for their number. Iemphasize that these two informations are
absolutely not equivalent. Indeed, if we know that an equation has at most ten solutions,
nothing ensures us that it has exactly ten solutions and while we have not found ten
solutions we cannot be sure that we have completely solved the equation. However, if we
manage to prove that all the solutions have at most, say, ten billions of digits, then, by
enumerating all the possible solutions, we can, at least in principle $(!)$ , solve completely
our equation. In the latter case, we know when we can stop our enumeration process,
which is not the case when our informations only deal with the number of solutions.

Keeping in mind this essential feature of the Diophantine problems, we give in the
sequel ashort (and far from being complete) overview of the main achievements appeared
during the twentieth century. For more informations, the reader is directed to the books
[14, 15, 16, 18].

2. Ineffective methods

Apart ffom a result of Runge [12] dealing with arestricted family of Diophantine
equations of the shape $F(x,y)=0$ , where $F\in \mathrm{Z}[X, \mathrm{Y}]$ is apolynomial, we knew at the
beginning of the twentieth century no general statement on the resolution of Diophantine
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equations. In 1909, the Norwegian mathematician Axel Thue [20] succeeded in proving
that, for any homogeneous, irreducible polynomial $F\in \mathrm{Z}[X, \mathrm{Y}]$ of degree at least 3, the
equation (now called Thue equation)

$F(x,y)=m$, (1)

where $m$ is agiven non-zero integer, has only finitely many solutions $(x,y)\in \mathrm{Z}^{2}$ . The
method of the proof allows us to compute an explicit bound for the number of solutions,
but unfortunately not for their size. In the usual terminology, we say that Thue’s result is
ineffective, which means that it does not yield an effectively computable upper bound for
the size of the solutions. One can further observe that the assumption on the degree of $F$

is necessary, since Pellian equations may have infinitely many solutions.
Thue’s result was completed in 1929 by awork of Siegel [17], who proved that, given

apolynomial $F\in \mathrm{Z}[X,\mathrm{Y}]$ such that the curve $F(x,y)=0$ has genus one, the Diophantine
equation $F(x,y)=0$ has only finitely many solutions in integers $x$ and $y$ . As acorollary,
the superelliptic equation

$f(x)=y^{m}$ , (2)

where $f\in \mathrm{Z}[X]$ is apolynomial of degree at least 2and $m\geq 3$ is an integer, has only
finitely many solutions $(x,y)\in \mathrm{Z}^{2}$ . Like Thue’s theorem, Siegel’s result is ineffective. And
all the extensions of their works, obtained notably by (among others) Mahler [11], suffer
from the same inconvenience: the finiteness results are proved by ineffective methods...
And we had to wait until the end of the sixties to see the development of anew and very
powerful theory.

3. Baker’s theory

In the fourties, Gelfond (see e.g. [9]) has obtained non-trivial explicit lower bounds
for non-zero expressions of the shape

$\mathrm{A}=|b_{1}\log a_{1}+b_{2}\log a_{2}|$ ,

where $a_{1}$ , a2, $b_{1}$ and $b_{2}$ are non-zero algebraic numbers, which can be used to get explicit
upper bounds for the solutions of certain Thue equations of degree 3. He also pointed
out that ageneralization of his result to linear forms in $m\geq 3$ logarithms would yield an
effective upper bound for the size of the solutions of any Thue equation of degree arbitrarily
large.

Such ageneralization has been proved by Alan Baker [1] in 1966 and refined in several
subsequent works (see [4] for references). This enabled Baker to compute $[2, 3]$ , for the
first time, explicit (huge) upper bounds for the size the solutions of (1) and (2), and
also, jointly with Coates [5], to give an explicit version of Siegel’s theorem quoted above.

Apart from this aspect, the theory of linear forms in logarithms appears to be much
more powerful than the methods developed by Thue and Siegel. Indeed, it also applies to
certain families of exponential Diophantine equations (recal that this terminology means
that one or several exponents are unknown), like for instance

$f(x)=y^{q}$ , (3)
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where $f\in \mathrm{Z}[X]$ is a given irreducible polynomial of degree at least 3and $x$ , $y$ and $q\geq 2$

axe unknown integers. Baker’s theory enables us to compute an explicit upper bound for
the size of the largest solution of (3), while $\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{e}-\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{F}\mathrm{s}$ method appears to be useless.

The most spectacular achievement, maybe, was obtained by Tijdeman [21] in 1976.
He proved that Catalan’s equation

$x^{m}-y^{n}=1$ , (4)
in integers $x$ , $y$ , $m$ and $n$ at least equal to 2, has only finitely many solutions, whose size
can be explicitely bounded. Indeed, following Tijdeman’s proof and using the estimates
for linear forms in logarithms available at that time, Langevin has computed that for any
solution $(x, y, m, n)$ of (4) one has

$\max\{x,y, m, n\}\leq\exp\exp\exp\exp 730$ .
Roughly speaking, the situation twenty years ago was the following :we were able to

compute explicit upper bounds, but these were far too huge in order to solve completely
the equations considered.

4. Nowadays

These last years, numerous spectacular results have been proved, which seemed, even
ten years ago, to be far beyond our possibilities. There are two main explanations. The
first one concerns atheoretical improvement: the size of the numerical constants.appear-
ing in the estimates for linear forms in logarithms has been substantially reduced and is
now (at least in the case of two logarithms) rather satisfactory. The second one is the
development of the algorithmic number theory, one of the most dynamic branches of the
current mathematics.

For instance, we have now at our disposal efficient algorithms which enable us to
solve any Thue equation of small degree, say of degree less than twenty, and with small
coefficients. Further, there are examples of equations of high degree which are completely
solved. The following one, due to Hanrot [10], is quite impressive.
Theorem 1. The Diophantine equations

$\prod_{1<k<2000}(\mathrm{Y}-2\cos(\frac{2\pi k}{4001})X)=\pm 1,$ $\pm 4001$ (5)
-

have no non-trivial integral solutions.
Ishould however point out that this absolutely does not mean that we are now able

to solve any Thue equation of degree less than two thousand! One should be aware that
(5) has avery particular shape: the right-hand side is indeed acyclotomic polynomial.

In 1976, Shorey&Tijdeman (see for instance Chapter 12 of [16]) proved in an effective
way that only finitely many integers greater than 2of the form 11. . . 11, i.e. with only
the digit 1, can be pure powers. This was the first step towards aproof of alongstanding
conjecture claiming that none of these numbers is apure power, which has recently been
settled by Bugeaud&Mignotte [7]
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Theorem 2. Excepted 1, no integer with only the digit 1in base ten can be apure power.

The original proof uses sharp estimates for linear forms in two non-Archimedean
logarithms, as well of agreat amount of computer calculations. Some of them could be

avoided by application of the beautiful Theorem 3(due to Bennett [6]) below... which,

however, also requires a lot of computer calculations (but not the same ones!).

Theorem 3. Let $a>b\geq 1$ and $n\geq 3$ be integers. Then the Diophantine equation

$|ax^{n}-by^{n}|=1$

has at most one solution in positive integers x and y.

5. Results from arithmetic geometry

Acommon feature of all the results mentioned above is that they belong to the area
usualy called “Diophantine approximation”. Motivated in part by Fermat’s conjecture,

another branch of mathematics, sometimes named arithmetic geometry, appeared in the

middle of the twentieth century. Many mathematicians have contributed to its develop-

ment, and here are (only) two of their main achievements.
The first one is due to Faltings [8], who proved in 1983 that there are only finitely many

rational points on every curve of genus at least two defined over the rationals. Notice that

Falting’s result deals not only with integral points but also with rational ones. It solves a
conjecture of Mordell and provides a generalization of the raeult of Siegel quoted in Section

2. However, there is at present time no effective version of Faltings’ theorem, while, as

mentioned in Section 3, Baker &Coates proved effectively that there are only finitely

many integral points on a curve of genus one defined over the rationals. Falting’s proof

uses deep tools of arithmetic geometry and algebraic geometry, however, alternative proofs,

depending more on classical methods in Diophantine approximation, have been given by

Vojta and Bombieri.
The second spectacular achievement is of course Wiles’ theorem $[19, 22]$ that there

is no solution in positive integers $x$ , $y$ , $z$ and $n\geq 3$ to the equation $x^{n}+y^{n}=z^{n}$ . The

proof is very difficult and extremely ingenious. Later, similar ideas have been used to solve

completely several equations of the shape $x^{n}+y^{n}=cz^{n}$ , where $c$ is afixed positive integer.

However, it seems that when one wants to find all the solutions of agiven Diophantine

equation, methods arising from Diophantine approximation are, very often, much more
efficient than methods from arithmetic geometry...

6. One (big) omission

Iwill only point out one of the many applications of Schmidt’s Subspace Theorem

and its recent versions. The main raison for which Ihave omitted such apowerful tool is

that this yields, at present time, only ineffective results and does not help for the complete

resolution of Diophantine equations. Let $S$ denote the set of integers whose prime factor$\mathrm{s}$
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belong to {2, 3, 5}. Let n $\geq 2$ be an integer, and consider the equation

$u_{1}+\ldots+u_{n}=1$ , (6)

in unknowns $u_{i}\in S$ . The subspace theorem tells us (see for instance [15], Chapter V)
that (6) has only finitely many solutions $(u_{1}, \ldots,u_{n})$ such that no subsum $u_{\dot{l}_{1}}+\ldots+u$:
vanishes. Further, we are able to state explicitely an upper bound for the number of
solutions of (6), but unfortunately not for their size (excepted however when $n=2$ , where
Baker’s theory can be applied).

7. One open problem

Many interesting open problems remain, but Ichoose to quote only one of them,
namely aquestion appeared in awork of Schinzel&Tijdeman [13].

Problem. Let $f\in \mathrm{Z}[X]$ be an irreducible polynomial of degree at least 2. Do the $Di\sigma-$

phantine equation
$f(x)=y^{2}z^{3}$

have only finitely many solutions in non-zero integers $x$ , $y$ and $z$ ?

It is very likely that completely new ideas are required to give an (even partial) answer
to that question.

Acknowledgement: Iwould like to express my deep thanks to Leo Murata and Isao
Wakabayashi. The conference was perfectly organized and its atmosphere was very friendly.
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