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1. Introduction

This paper is based upon atalk that Igave at the conference on Number The-
ory held in Kyoto, October 23-27, 2000. Ithank the organizers, Murata, Leo and
Wakabayashi, Isao, for their kind invitation. Ithank the organisers and Motohashi,
Yoichi for their financial support. Moreover, Ithank Fujiwara, Masahiko, MotO-
hashi, Yoichi and Murata, Leo and all the other participants of the meeting for
their hospitality and for their kindness to me and my family.

Since the aim of the meeting was to look forward into the next century as well
as back into the twentieth, Ichose to illustrate the mathematical influence of ideas of
probability in number theory as manifest in the study of additive and multiplicative
functions. The theory of probability was not axiomatised until the nineteen thirties,
so its influence could hardly have been formalised before the twentieth century. In
this sharp sense the aesthetic that it brings is relatively new.

As abackground Ibegin with anotion already to be found in the work of
Euler.

2. The method of Dirichlet series

To each sequence of complex numbers an, $n=1,2$ , $\ldots$ , one may attach the
Dirichlet series

$g(s)= \sum_{n=1}^{\infty}a_{n}n^{-s}$ , $s=\sigma+i\tau$ , $\sigma={\rm Re}(s)$ .

If the series converges at some point, then it does so absolutely in ahalf-plane, and
defines there an analytic function of $s$ . If, further, the members of the sequence
are the values of amultiplicative function, i.e. satisfy $a_{mn}=a_{m}a_{n}$ whenever
$(m, n)=1$ , then the series possesses an Euler product. The paradigm is given by
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$a_{n}$ identically 1, and the resulting Riemann zeta function has arepresentation

$\zeta(s)=\prod(1-p^{-s})^{-1}$ , $\sigma>1$ ,

the product taken over the primes.

Formally, the $a_{n}$ may be recovered from aknowledge of the function $g(s)$

by means of Fourier analysis in the complex plane or, more accurately, on the

multiplicative group of positive reals:

$\sum_{n\leq x}a_{n}=\frac{1}{2\pi i}\int_{\mathrm{c}-\dot{l}\infty}^{\mathrm{c}\dagger\dot{l}\infty}g(s)\frac{x^{\theta}}{s}ds$ , $c>0$ ,

where $x$ is not an integer. Astandard procedure is to analytically continue $g(s)$ , say

by an integral representation, choose $c$ sufficiently large and move the line ${\rm Re}(s)=c$

to the left, passing over or around the various singularities of $g(s)$ .

This procedure, begun by Riemann in the 19th century, is still vital, the ana-

lytic continuation of $g(s)$ perhaps achieved using the resolvent operator of aLapla-

cian rather than with an integral representation. However, it is easy to give $\mathrm{e}$-xam-
ples of Dirichlet series absolutely convergent in the half-plane $\sigma>1$ and possessing

an Euler product there, but for which the line ${\rm Re}(s)=1$ is anatural boundary.

Indeed, afew irregularly large $|a_{n}|$ may spoil all hope even of the convergence of

the attached Dirichlet series.

3. The discipline of Probabilistic Number Theory

Although in this paper Iam concerned with the ramifications of Probabilistic

Number Theory, it seems appropriate to give asimplified, three step description of

the birth of the discipline.

In 1917, Hardy and Ramanujan proved that $\omega(n)$ , the number of distinct prime

divisors of the integer $n$ , has normal order loglogn, i.e. if $\nu N(n$ ; $\ldots$
$)$ denotes the

number of positive integers in the interval $[1, N]$ that possess the property . . . ’ then

for each $\epsilon$ $>0$

$\lim_{Narrow\infty}\nu_{N}(n;|\omega(n)-\log\log n|>\epsilon\log\log n)=0$.
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Their argument was elementary and largely combinatorial in nature, [22].

Additive arithmetic functions, such as $\omega(n)$ , are real valued and satisfy $f(ab)=$

$f(a)+f(b)$ whenever the integers $a$ and $b$ are mutually prime. They are completely

additive if we may omit the condition $(a, b)=1$ .

The well-known theorem of $\mathrm{E}\mathrm{r}\mathrm{d}’6\mathrm{s}$ and Wintner, [20] 1939, asserts that for
an additive function $f$ there is a distribution function $F(z)$ towards which the ffe-
quencies $\nu_{N}(n;f(n)\leq z)_{f}N=1,2$ , $\ldots$ , converge (weakly) if and only if the three

series

$\sum_{|f(p)|>1}\frac{1}{p}$ , $\sum_{|f(p)|\leq 1}\frac{f(p)^{2}}{p}$ , $\sum_{|f(p)|\leq 1}\frac{f(p)}{p}$ ,

$t$ hen over the prime number, converge.

That the convergence of the three series is sufficient Erdos had established

with an elementary and largely combinatorial argument. For its necessity $\mathrm{E}\mathrm{r}\mathrm{d}\acute{\acute{\mathrm{o}}}\mathrm{s}$

and Wintner appeal to the celebrated $\mathrm{E}\mathrm{r}\mathrm{d}\acute{\acute{\mathrm{o}}}\mathrm{s}$-Kac theorem, [19]: If the additive

function $f$ satisfies $f(p^{m})=f(p)$ , $m=1,2$ , $\ldots$ ,

$B(N)=( \sum_{p\leq N}f(p)^{2}p^{-1})1/2arrow\infty$ , $Narrow\infty$ ,

and we define
$A(N)= \sum_{p\leq N}f(p)p^{-1}$

,

then
$\nu_{N}(n;f(n)-A(N)\leq zB(N))arrow\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{z}e^{-u^{2}/2}du$, $Narrow\infty$ .

Here the weak convergence of measures asserts that the limiting relation holds for

all $z$ , since the normal law towards which the frequencies converge is everywhere

continuous.

It is interesting to observe the development of the new aesthetic. In their 1917

paper Hardy and Ramanujan wished to draw attention to the relative infrequency

of those integers $n$ for which $\omega(n)$ is appreciably large or rather small, and such

integers exist. At that time the theory of Probability lacked asound foundation

and Hardy, who had worked hard to introduce clarity and rigour into the teach-

ing of mathematics in England, no doubt viewed the ideas of Probability theory
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with suspicion. Hardy and Ramanujan express their result in terms of asymptotic

density, anotion familiar ffom Analytic Number Theory and the study of primes.

By the nineteen thirties, in the work of Erdos and others, the parameter $z$

has been introduced and the weak convergence of the measures induced by the

frequencies $\nu_{N}(n;f(n)\leq z)$ is being studied. It should be mentioned that in his

work on additive functions Erdos arranged that the limit law would be continuous,

and the weak convergence became convergence for each fixed value of $z$ . Implicitly

these results may still be viewed in terms of asymptotic density.

The form of the $\mathrm{E}\mathrm{r}\mathrm{d}\acute{\acute{\mathrm{o}}}\mathrm{s}$-Kac theorem is determined by Kac’ appeal to aversion

of the Central Limit Theorem from the theory of probability proper. The additive

function $f$ is modelled by asum of independent random variables $X_{p}$ , one for

each prime $p$ , where $X_{p}$ assumes the value $f(p)$ with probability $1/p$ , zero with

probability $1-1/p$. Erdos implements Kac’ idea that divisibility by differing primes

be viewed as independent events; he uses the sophisticated elementary sieve of Brun.

It was possible to employ the once ill-defined notions of independence and random

variables because in 1933 asatisfactory axiomatisation of the theory of probability

had been given by A. N. Kolmogorov. The ‘renormalising constants’ $A(N)$ , $B(N)$

in the frequencies

$\nu_{N}(n;f(n)-A(N)\leq zB(N)).$’ $N=1,2$ , $\ldots$ ,

depend upon the parameter $N$;asymptotic density has been supplanted by the

(weak) convergence of distribution functions.

In this new aesthetic very large but reasonably rare members of areal number

sequence $6n$ , $n=1,2$ , $\ldots$ , hardly affect the limiting behaviour of the frequencies

$\nu_{N}(n;b_{n}\leq z)$ , $N=1,2$ , $\ldots$ . The same may be said concerning short sequences
$\mathrm{h}\mathrm{n}(\mathrm{N})$ , $n=1$ , $\ldots$ , $N$ , and the weak convergence of the associated frequencies

$\nu_{N}(n;hn\{N)\leq z)$ , $N=1,2$ , $\ldots$ . The Erdos Kac theorem corresponds to the

case $h_{n}(N)=B(N)^{-1}(f(n)-A(N))$ , $n=1$ , $\ldots,N$ .
Before the axiomatisation of probability there were two well-developed meth-

ods for establishing the convergence of adistribution function to the normal or to

some other law, and these methods continued to be vital following the acceptance
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of Kolmogorov’s axioms. The second method, developed by Liapounov at the be-
ginning of the twentieth century, required the asymptotic estimation of the Fourier
transform of the relevant function, here the mean-value

$N^{-1} \sum_{n=1}^{N}\exp(ith_{n}(N))$ , $t$ real

with $N=1,2$, $\ldots$ . Note that each term in atypical sum lies in the complex unit
circle. The first and earlier method was introduced by Chebyshev in the second
half of the nineteenth century: estimate asymptotically the moments

$N^{-1} \sum_{n=1}^{N}h_{n}(N)^{k}$

for each positive integer $k$ . There are further requirements in each method but
these Iomit.

Three examples of what might be viewed as an influence of this nexus of ideas
now follow. That Erdos, Pal plays arole in each of them may not surprise.

4. Afirst example: character sums

The reduced residue class group to aprime modulus is cyclic: An estimate for
the least positive representative of agenerator for the group that is anywhere near
the estimate guaranteed by the Riemann hypothesis for Dirichlet $L$-series seems
very far away.

In fact an old conjecture of I. M. Vinogradov that $n_{2}(p)$ , the least positive

integer that is not asquare $(\mathrm{m}\mathrm{o}\mathrm{d} p)$ is $O(p^{\epsilon})$ for each fixed $\epsilon$ $>0$ and all odd primes

$p$ seems hardly nearer. In 1919, $\mathrm{P}6\mathrm{l}\mathrm{y}\mathrm{a}$ and Vinogradov independently established
the inequality

$| \sum_{n\leq y}\chi(n)|\leq cq^{1/2}\log q$

for some constant $c$ , valid uniformly for all real $y$ and all non-principal Dirichlet
characters $(\mathrm{m}\mathrm{o}\mathrm{d} q)$ . The $\mathrm{P}6\mathrm{l}\mathrm{y}\mathrm{a}$-Vinogradov inequality may be employed to establish
Vinogradov’s 1919 bound $n_{2}(p)<<p^{1/(2\sqrt{e})}(\log p)^{2}$ and, indeed, slightly better
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With the uniformities given, apart from areplacement of clog $q$ by aconstant

multiple of $\log$ $\log$ $q$ , the bound of the $\mathrm{P}6\mathrm{l}\mathrm{y}\mathrm{a}$-Vinogradov inequality cannot be im-

proved. Nevertheless, it seems likely that there is much cancellation between the

values of Dirichlet characters even over an interval short compared to $q^{1/2}$ . As a

consequence, $n_{2}(p)<<(\log p)^{1+\epsilon}$ for each fixed $\epsilon>0$ may be valid.

In astudy of quadratic and power residues Davenport and $\mathrm{E}\mathrm{r}\mathrm{d}\acute{\acute{\mathrm{o}}}\mathrm{s}$, [5] 1952,

considered the value distribution of the sums

$S_{h}(x)$ $= \sum_{n=x+1}^{x+h}(\frac{n}{p})$ ,

where $( \frac{n}{p})$ is the Legendre symbol and $p$ is aprime. They proved that if $harrow\infty$ ,

$\log h/\log parrow \mathrm{O}$ as $parrow\infty$ , then for each $\hslash ed$ A

$\frac{1}{p}$

$S_{h}(x) \leq\lambda’ h^{1/2}\sum_{x=0}^{p-1}1arrow\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\lambda}e^{-u^{2}/2}du$

.

Their argument employs the

Lemma. If $0<h<p$ , and r is a fixed positive integer, then

$\sum_{x=1}^{p}(S_{n}(x))^{2r}=1.3\cdots(2r-1)(p-\theta r)(h-\theta’r)^{r}+O(h^{2r}p^{\alpha_{r}})$,

and
$\sum_{x=1}^{p}(S_{h}(x))^{2r-1}=O(h^{2r}p^{\alpha_{r}})$ ,

where $\alpha_{r}$ depends only upon $r$ , $0<\alpha_{r}<1,0\leq\theta\leq 1,0\leq\theta’\leq 1$ .

They mention that the work of Weil would allow asmaller $\alpha_{r}$ . It would be of

no advantage to them.

Under their hypotheses on $h$ and the prime moduli $p$ ,

$p^{-1} \sum_{x=1}^{p}(h^{-1/2}S_{h}(x))^{k}arrow c_{k}$ , k $=1,$ 2, \ldots ,

where $c_{k}$ is the kth moment of the normal distribution with mean zero and variance
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By the time of this paper, Erdos had founded Probabilistic Number Theory

with Kac and Wintner had launched the invariance principle in probability proper

with Kac, had refined the law of the iterated logarithm and had worked with Dvoret-

ski and Kakutani in Brownian motion. Moreover, if $s$ is real’ and $s>3/4$ , then in

1951, in joint paper with Chowla, [4], Erdos had established the existence of acon-
tinuous limiting distribution for the frequencies amongst the integers $d$ , not squares

but satisfying $d\equiv 0$ or $1(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ , of those for which the series $L_{d}(s)= \sum_{n=1}^{\infty}n^{-s}(d/n)$

formed with the Kronecker symbol $(d/n)$ satisfies $L_{d}(s)<z$ . It therefore seems
likely that Erdos provided the aesthetic for this result with Davenport.

It should be mentioned that whilst establishing the convergence of arithmeti-

cally defined ffequencies to the normal law by adopting the procedure of Chebyshev

and estimating asymptotically their moments may seem natural, in the period when

Davenport and Erdos were writing their paper such an approach perhaps did not

automatically suggest itself. On page 355 of volume one of his Collected Works

[26], A. Selberg states that in 1946 he did not know that asymptotic estimates that

he had obtained for the moments of aquantity connected with the distribution of
the zeros of the Riemann zeta function guaranteed convergence of corresponding

frequencies to the normal distribution function.

Irecall that at atea before anumber theory seminar in Cambridge in the

early nineteen sixties, Davenport was discussing the above joint paper with Erdos.

. . . “We got”, here Davenport paused, cocked his head on one side and with atwinkle

in his eye continued: “precisely nowhere.” So Ithink it would have been Davenport

who added to their theorem on $S_{h}(x)$ the comment: ‘It does not seem to throw any
light on the problem of the magnitude of the least quadratic non-residu\’e.

Davenport gave to his student David Burgess the problem of improving these

results and David did. By 1963, [3], David had established that

I $\chi(n)<<H^{1-1/r}p^{(r+1)/(4r^{2})}\log p$ , r $=1,$ 2, \ldots ,

$A<n\leq A+H$

Uniform in $A$ , $H$ and non-principal characters $(\mathrm{m}\mathrm{o}\mathrm{d} p)$ . In particular,

$n_{2}(p)<<(p^{1/4}p^{1/4r}(\log p)^{r})^{1/\sqrt{e}}$, $r=1,2$ , $\ldots$ .
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To establish his character sum estimate Burgess sets out ffom a version of the

Davenport-Erdos lemma sharpened by the use of acomplete character sum estimate

of A. Weil. On the way Burgess adds ideas not appearing in the paper of Davenport

and Er do $\mathrm{s}$ . $\mathrm{W}\mathrm{e}\mathrm{U}$ might Davenport smile.

The consideration of sums

$\sum_{x=1}^{p}|\sum_{n=x}^{x+h}\chi(n)|^{2r}$

$\Psi$ Biargess is surely an outcome of the adoption of explicitly amethod and implic-

iltly an aesthetic from the theory of probability. In spite of Davenport’s assessment,

his work with Erdos partly turned interest away from the Fourier analytic meth-

ods employed by P\’olya and Vinogradov, methods that seemed not to offer the

opportunity of further advance.

The character sum estimate of Burgess has hardly been improved in forty

years. Is this particular application of the ideas of probability to the estimation of

an individual character sum in number theory isolated?

5. Asecond example: products of rationals

In the first example adoption of an approach from the theory of probability lead

to progress in an existing problem. In the second example aresult in probabilistic

number theory appears to catalyze anew discipline: the arithmetical study of

denumerably infinite abelian groups.

If $r_{1}$ , $r_{2}$ , $\ldots$ is asequence of positive rationals, not necessarily distinct, we

define $Q^{*}$ to be the multiplicative group of positive rationals, $\Gamma$ , the subgroup of

$Q^{*}$ generated by the $r$”
$G$ the quotient group $Q^{*}/\Gamma$ . Since $Q^{*}$ is free on the prime

numbers, we may regard $G$ as presented by the primes as generators, with relations

$r_{1}=1$ , $r_{2}=1$ , $\ldots$ , and so on. We may realise every denumerable abelian group in

this manner.
Aserious difficulty appears at once: there can be no recursive algorithm to

decide whether an arbitrary positive rational is generated in $\Gamma$ . The structure of

$G$ may not be generally discerned by computation; particular properties of the

sequence $r_{j}$ must come into play. What might these properties be?
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From anumber theoretical point of view it would be most interesting if the
properties involved the arithmetic nature of the $r_{j}$ . For example, let $h(x)$ be a
rational function with rational number coefficients. For apositive integer $k$ , define
the $r_{i}$ to be the values $|h(n)|$ , $n=k+1$ , $k+2$ , $\ldots$ . For $k$ large enough they will
be defined. What is the form of $G$?If, further, the $r$:are taken to be the sequence
of values $|h(p)|$ , where $p$ runs through the primes exceeding $k$ , what then is $G$?In
general, questions of this type appear difficult.

Consider the case $h(x)=x+1$ . Every positive integer $m$ has arepresentation

$(k+1)m(k+1)^{-1}$ , and the group $G$ is trivial. If we specialize $x$ to prime values,
then the group is almost certainly again trivial. Indeed, it would follow from an old
conjecture of Dickson that every positive rational had infinitely many representa-

tions of the form $(p+1)(q+1)^{-1}$ with $p$ , $q$ prime. Currently the best that is known
is that $G$ then has order at most 3, Elliott [13].

Consider next the case $h(x)=(ax+b)(Ax+B)^{-1}$ with integers $a>0$ , $b$ ,
$A>0$ , $B$ for which $aB\neq Ab$ , so that $h$ is not aconstant. For $x$ confined to integer
values it is known that the quotient group $G$ is finitely generated, Elliott [12]. It is
not difficult to show that the torsion group of $G$ may have arbitrarily large order.

When $x$ is confined to prime values nothing is known.

As afurther example, set $h(x)=x^{2}+1$ , $r_{n}=n^{2}+1$ . An elementary argument

by induction shows $G$ to be freely generated by the primes of the form $4m+3$ .
When $r_{j}=p_{j}^{2}+1$ , with $p_{j}$ the $j\mathrm{t}\mathrm{h}$ prime, nothing is known of $G$ beyond the

obvious fact that if the (prime) generators $q\equiv 3(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ of $Q^{*}$ remain ffee under

the map $Q^{*}arrow Q^{*}/\Gamma$ .

What have such questions to do with the probabilistic theory of numbers? In a
1946 paper [18], Erdos proved that an additive function satisfies (what aprobabilist

would call the concentration function estimate)

$\lim\sup\sup_{kNarrow\infty\in \mathrm{Z}}N^{-1}\sum_{(k<f^{n=1}n)\leq k+1}^{N}1>0$
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if and only if for some constant $c$ the series

$\sum_{1f(p)-c\log p|>1}\frac{1}{p}$ , $\sum_{|f(p)-c\log p|\leq 1}\frac{(f(p)-c\log p)^{2}}{p}$ ,

taken over the prime numbers, converge. Such additive functions he called finitely

distributed. As one of his corollaries he proved that the only (real-valued) additive

functions $f$ for which $f(n+1)-f(n)arrow 0$ as $narrow \mathrm{o}\mathrm{o}$ are those of the form

$\mathrm{J}(\mathrm{n})=c\log n$ . In the same paper Erdos made several conjectures, one of which

was that any additive function for which $f(n+1)-f(n)$ is uniformly bounded

above must have the form $c\log n+O(1)$ .

In aseries of four papers at the end of the nineteen sixties, [23], [24], [25], [26],

Katai widened the scope of this and related problems raised by Erdos. In the third

paper of this series Kdtai asked for acharacterization of those additive functions $f$

which satisfy

$f(an+b)-f(An+B)arrow c$ as n $arrow\infty$ ,

where the integers $a>0$ , $b$ , $A>0$ , $B$ satisfy $aB\neq Ab$ .
$\dot{\mathrm{E}}\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{d}\dot{\mathrm{W}}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$ settled Er do $\mathrm{s}$’conjecture in the affirmative in 1968 [29]. Using

adifferent method, Isolved K&tai’s problem in 1980 [10], [11]: on the integers prime

to $aA$ , $f$ is aconstant multiple of the logarithmic function.

In the first of his four papers K&tai had defined asequence of positive integers

to be aset of uniqueness if every completely additive functions which vanished

at each member of the sequence vanished identically. In his second paper Katai

proved that adjoining finitely many integers to the set of shifted primes $p+1$ gave

aset of uniqueness. His conjecture that the set of shifted primes alone is aset of

uniqueness Iestablished in 1974 [8]. Ibegan by proving that integers of the form

$(p+1)(q+1)^{-1}$ , with $p$ , $q$ prime, have positive logarithmic density and showed that

as aconsequence any additive function vanishing on the shifted primes must be

finitely distributed.

All these results may be viewed as an outcome of probabilistic number theory,

induced consequences of Erdos’ interest in the value distribution of additive func-

tions. They were given large added value in 1978 when Dress and Volkmann [7]
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and Wolke [30], showed that asequence $a_{n}$ can be aset of uniqueness if and only
if every positive integer $m$ has arepresentation

$m^{h}= \prod_{j=1}^{k}a_{j}^{d_{\mathrm{j}}}$

with $h$ and the $d_{j}$ integers. If $\Gamma$ is the subgroup of $Q^{*}$ generated by the an, then
acompletely additive function which vanishes on the $a_{n}$ is ahomomorphism from
$Q^{*}/\Gamma$ into the additive reals. In establishing K\’atai’s conjecture Ihad given a
harmonic proof that every positive integer $m$ had arepresentation of the form

$m^{h}= \prod_{p\leq P}(p+1)^{d_{\mathrm{p}}}$
,

with $p$ prime. Probabilistic number theory began to bear upon the algebraic struc-
ture of denumerably infinite abelian groups.

My two volume book on probabilistic number theory [9], may be viewed as
atreatment of additive and multiplicative functions informed by the theory of
probability. My subsequent book on arithmetic functions and integer products

[12], in the same series and in which Iobtain results that settle the problem of

Katai and generalize and deepen the theorem of Wirsing, may be viewed as a
treatment of additive and multiplicative functions informed by the algebraic study
of denumerable abelian groups.

To give direction to this section Isummarise with acentral question. Let $F_{i}(x)$ ,
$i=1$ , $\ldots$ , $k$ , be rational functions with rational coefficients. Let $N$ be apositive

integer and let $\Gamma_{i}$ be the subgroup of $Q^{*}$ generated by the $|F_{i}(n)|$ , $n=N$, $N+1$ , $\ldots$ .
It is assumed that $N$ is large enough for the $F_{i}(n)$ to be defined and non-zero. What
is the direct product group

$\otimes^{k}Q^{*}/\Gamma_{i}?i=1$

Acomplex-valued multiplicative function satisfies $g(ab)=g(a)g(b)$ whenever
$a$ and $b$ are mutually prime. If it is completely multiplicative, then we may omit
the condition (a,$b)=1$ .
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An equivalent question is then: describe those completely multiplicative func-
tions $g_{j}$ , $j=1$ , $\ldots$ , $k$ with values in the group of roots of unity, that satisfy

$g_{1}(|F_{1}(n)|)\cdots g_{k}(|F_{k}(n)|)=1$

for all integers $n\geq N$ .

This question is related to, but possibly easier than, that of deciding when do

the limits

$\lim_{xarrow\infty}x^{-1}\sum_{n\leq x}g_{1}(|F_{1}(n)|)\cdots g_{k}(|F_{k}(n)|)$

eist, particularly when are they zero? To follow tradition it would be more natural

in this (harder) question to allow the $g_{j}$ to assume values in the complex unit disc.

We may ask similar questions with the integers $n$ replaced by primes $p$ . In this

case the weight $x^{-1}$ in the limit would be replaced by $\pi(x)^{-1}$ , where $\pi(x)$ counts

the number of primes not exceeding $x$ .
Answers to these questions may satisfy agroup theorist, but as anumber the-

orist Ihave further, particular interests. For simplicity of exposition, Irevert to the

case of asingle group $G$ , generated by the values of asingle rational function $h(x)$ .

Can one give a reasonably explicit upper bound for a set of coset representatives for
$G$?

This question bears upon related question of independent interest: How many

terms does one need to effect $a$ (multiplicative) representation of a given rational

by values of $h(x)$ at the integers, and is there a number $s$ so that no more than $s$

terms are ever needed?

It should be mentioned that there need not be auniversal $s$ . According to

Theorem (19.2) of Elliott, [12], if the positive integers $m_{1}$ and $m_{2}$ satisfy $m_{1}\equiv$

$m_{2}\equiv 1,4$ or 7(m0d9), then there is asimultaneous representation

$m_{1}= \prod_{\dot{|}=1}^{k}(3n:-17)^{e:}$ , $m_{2}=. \cdot\prod_{=1}^{k}(3n:+19)^{\epsilon:}$ ,

with integers n: $\geq 7$ , $\epsilon:=\mathrm{i}1$ . Apositive integer m $\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d}$9) hence has a

representation

m $= \prod_{\dot{|}=1}^{k}(\frac{3n.-17}{3n_{\dot{l}}+19}.)^{e:}$
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Since the absolute value of atypical term in the product does not exceed 10, the
number of terms needed to so represent $m$ satisfies $k\gg\log m$ . Argument given in
the earlier part of that same reference, particularly that in Chapter 4, shows that
there is such arepresentation with $k<<(\log m)^{\alpha}$ , the implied constant depending
upon $\alpha$ , for each (fixed) value of $\alpha>(\log 4/3)^{-1}\log 3$ .

The properties of $h(x)$ needed to guarantee the existence of auniversal $s$ are
quite unclear.

Let $S_{k}$ denote the set of rationals that can be generated using agroup product

of at most $k$ elements taken from asequence $r_{1},r_{2}$ ,–Pedro Berrizbeitia and I
proved that in order for the corresponding group $Q^{*}/\Gamma$ to be finite and for there
to exist auniversal $s$ of the above type in this case, it is necessary and sufficient
that the lower asymptotic density of the integers in the set $m^{-1}S_{k}$ be bounded
below (and away ffom zero) for some $k$ and all positive integers $m$ , [2]. Moreover,
if avalue is known for the bound, then avalue can be given for $s$ . Here $m^{-1}S_{k}$ is
formed ffom $S_{k}$ by dividing each member of $S_{k}$ by $m$ .

When the $f_{j}$ are given by the shifted primes $p+1$ Ihad established the existence
of auniversal $s$ for which Icould not give avalue, [13]. Pedro and Icould later
prove that $s=19$ is permissible, [2], abound which Isubsequently reduced to
$s=9$ , [15]. Of course, $s$ should be 2.

In these cases no method is given to provide agroup product representation

for agiven rational. The same is true for the following result with which Iend this
section.

Let $w(x)$ be apolynomial with integer coefficients, leading coefficient positive.

Suppose that $w(n)$ is positive for all $n\geq N$ . Then the group $G_{N}=Q^{*}/\Gamma$ , with $\Gamma$

generated by the ratios $(p+1)w(q)^{-1}$ with $p$, $q$ prime, $p$ , $q\geq N$ , has order at most
4.

If $M\geq N$ , then $\Gamma_{M}$ is subgroup of $\Gamma_{N;}G_{M}$ may be mapped homomorphicaUy
onto $G_{N}$ and $G_{M}/(\Gamma_{N}/\Gamma_{M})\simeq G_{N}$ . In particular,

$|G_{M}|=|G_{N}| \prod_{\dot{|}=1}^{M-N}|\Gamma_{M-:}/\Gamma_{M-:+1}|$
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where each term in the product is an integer. It follows from the uniformity of the

bound $|G_{N}|\leq 4$ with respect to $N$ that for all $N$ sufficiently large the groups $G_{N}$

are isomorphic. Ithink that asimilar phenomenon holds for many arithmetically

defined groups. Let $g$ be the order of the limiting group. Then every positive

rational $r$ has infinitely many representations

$r^{g}= \prod_{j=1}^{d}(\frac{p_{j}+1}{w(q_{j})})^{\epsilon_{j}}$ , $\epsilon_{j}=\pm 1$ ,

with $p_{j}$ , $q_{j}$ prime and $d\leq 11$ .
It seems to me that this area contains challenging questions and offers many

interesting possibilities. General references may be found in my volume [12], men-

tioned above. Idraw attention, also, to my paper in Acta Arithmetica [14], in

which Idiscuss the possibility of obtaining (grouP) product representations using

numbers of the form $q+1$ or $N-p$ with $q,p$ prime, $p<N$ , by employing integration

with respect to the Haar measure on the group dual to $Q^{*}$ .

6. Athird example: the distribution of primes

In my Kyoto lecture Iran out of time and concerning this third topic Icould

only make afew remarks. In this paper Ihave much overrun my allotted space and

must do likewise, postponing afuller account to another occasion.

Following the approach of Liapounov, to establish the weak convergence of the

frequencies $\nu_{N}(n;f(n)\leq z)$ for an additive function $f$ is to establish the uniform

convergence, on compact sets of real $t$ values, of the characteristic functions

$N^{-1} \sum_{n=1}^{N}\exp(itf(n))$ , $N=1,2$ , $\ldots$

For each $t$ the function $n\mapsto\exp(itf(n))$ is multiplicative. Atreatment of the

Erdos-Winter theorem along these lines was given by Delange [6], and had there

beeu no pther reason this would have sufficed to promote the investigation of the

mean-values of multiplicative functions with values in the complex unit disc.

In the event, the breakthough work of Wirsing, [28], was clearly influenced by

the elementary proof of the prime number theorem given by Er do $\mathrm{s}$ and Selberg in
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1948. In turn, Wirsing’s studies catalyzed the now well-known theorem of Halasz

that achieved acomplete taxonomy of multiplicative functions $g$ , with values in the

complex unit disc, for which

$\lim_{Narrow\infty}N^{-1}\sum_{n=1}^{N}g(n)$

exists, and in terms of their behaviour on the primes, [21]. Although the proof

applies the theory of complex variables to study the Dirichlet series $\sum_{n=1}^{\infty}g(n)n^{-}’$ ,

there is no appeal to an analytic continuation of the sum function of this series

which may, indeed, not have one. The influence of Halasz’ argument on probabilistic

number theory may be seen in my two volume work [9], and is touched upon in my

plenary address to the conference in memory of Erdos, held in Budapest in July,

1999, [16].

Suffice it to say that combining ideas of Halasz and Wirsing with other argu-

ments, in particular using sieves, Iwas able in 2000 to give anew proof of Linnik’s

theorem that there is auniversal $c$ so that each reduced residue class (mod $D$)

contains aprime not exceeding $D^{c}$ . Moreover, the proof makes no use of the zeros
of $L$-series in the so called ‘critical strip’ $0<{\rm Re}(s)<1$ ;there is no appeal to

the Deuring-Heilbronn phenomenon, or to estimates for the density of the zeros of
$L$-series, or even to zer0-free regions of those series beyond their non-vanishing at

the point $s=1$ , [17].

Perhaps acompletely elementary proof of Linnik’s theorem may be given.

Besides the explicit application of probability to number theory, there is the

implicit influence of the field of probabilistic number theory itself. Ithink the ideas

associated with this field are very far from exhausted.
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