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ABSTRACT. We present atopological approach to the problem of the existence of unsta-
ble periodic solutions for 2-dimensional, time periodic ordinary differential equations.
This approach makes use of the braid invariant, which is one of the topological invari-
ants for periodic solutions exploiting aconcept in the low-dimensional topology. Using
the braid invariant, an equivalence relation on the set of periodic solutions is defined.
We prove that any equivalence class consisting of at least two solutions must contain
an unstable one, except one particular equivalence class. Also, it is shown that more
than half of the equivalence classes contain unstable solutions.

1. INTRODUCTION

Consider a2-dimensional ordinary differential equation of the form:

$\frac{dx}{dt}=f(x, t)$ , (1)

where $f$ : $\mathrm{R}^{2}\cross \mathrm{R}arrow \mathrm{R}^{2}$ is aCarath\’eodory map (i.e., $f$ is continuous in $x$ for almost aU $t$

and is measurable in $t$ for each $x$ ) which is periodic with respect to $t$ with period $\omega$ $>0$ .
Assume that there exists aunique solution $x(t)$ of the initial-value problem $x(0)=x_{0}$ for
each point $x_{0}\in \mathrm{R}^{2}$ and this solution is defined on an interval containing $[0, \omega]$ . We shall
study the problem of the existence of unstable periodic solutions of (1). The traditional
approach to this problem is to make the linear analysis of the related variational equation,
and it is known that in some sense, the linear analysis in the instability case is easier
than that in the stability case (see e.g. [1], [2]). In this paper, we present apurely
topological approach to the problem. This approach makes use of the braid invariant,
which is one of the topological invariants for periodic solutions exploiting aconcept in
the low-dimensional topology (see [4], [9] for asurvey). We shall only treat periodic
solutions having period $\omega$ in order to make the argument simpler.

The detailed version of this paper will appear in Topological Methods in Nonlinear
Analysis Vol. 14
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2. BRAIDS OF pERIODIC SOLUTIONS

Here we shall define abraid for agiven set of $\omega$-periodic solutions. For general refer-
ences on braid theory, see, e.g., [3], [6]. Let $n$ be apositive integer. We call asubset $B$

of the product $\mathrm{R}^{2}\cross[0, \omega]$ an $n$-braid if the following conditions hold:

(i) $B$ is aunion of mutually disjoint $n$ simple arcs,

(ii) Each arc joins apoint $(x, \mathrm{O})\in S\cross\{0\}$ to $(\tau(x), \omega)\in S\cross\{\omega\}$ , where $S$ is aset of
$n$ distinct points on the plane $\mathrm{R}^{2}$ and $\tau$ is apermutation defined on $S$ .

(iii) Each arc intersects every plane $\mathrm{R}^{2}\cross\{t\}$ , $0\leq t\leq\omega$ , exactly once.

These axes are called the strings in $B$ .
For an $\omega$-periodic solution 4of (1), let $\mathrm{s}\mathrm{t}\mathrm{r}(\xi)$ denote the simple arc in $\mathrm{R}^{2}\cross[0, \omega]$

defined by
$\mathrm{s}\mathrm{t}\mathrm{r}(\xi)=\{(\xi(t),t)|0\leq t\leq\omega\}$ .

We call this arc the string corresponding to 4.
In this paper, we shall always assume that the equation (1) has only finitely many

$\omega$-periodic solutions.

Definition 1. Let $P$ be aset of $\omega$-periodic solutions of (1), and $n$ the cardinality of $P$ .
Since the strings corresponding to the solutions in $P$ are mutually disjoint, the union
$\bigcup_{\xi\in \mathcal{P}}\mathrm{s}\mathrm{t}\mathrm{r}(\xi)$ of these strings forms an $n$-braid denoted by $b(P)$ . We call it the braid of $P$ .

3. AN EQUIVALENCE RELATION ON PERIODIC SOLUTIONS

Definition 2. Let $B$ be abraid. Aunion $B_{0}$ of strings in $B$ is called ablock in $B$ if
there is asubset $T$ of $\mathrm{R}^{2}\cross[0, \omega]$ such that

(i) $T$ is the image of some embedding $\mathrm{A}:D\cross[0,\omega]arrow \mathrm{R}^{2}\cross[0,\omega]$ , where $D$ is aclosed
disk, with $\Lambda(D\cross\{t\})\subset \mathrm{R}^{2}\cross\{t\}$ for each $t$ .

(ii) If we denote by $T_{t}$ the $t$-slice of $T$, i.e. the set $\{x\in \mathrm{R}^{2}|(x,t)\in T\}$ , then we have
$T_{0}=T_{\omega}$ .

(iii) $B_{0}=B\cap T$ .
We call $T$ an isolating tube for $B_{0}$ with respect to $B$ .

Example 1. It is clear that $B$ is ablock in itself, and any string in $B$ is also ablock in
$B$ . We give non-trivial examples in Figure 1and Figure 2. Let $B$ be the braid consisting
of three strings $s_{1}$ , $s_{2}$ , $s_{3}$ as in Figure 1. Then the union $B_{0}=s_{1}\cup s_{2}$ is ablock in $B$ ,

and the set $T$ drawn here gives an isolating tube for $B\circ\cdot$ On the other hand, $s_{1}\cup s_{3}$ is
not ablock, Indeed, if it were ablock, then the string $s_{2}$ winds around $s_{1}$ and $s_{3}$ in the
same number of times. However, these winding numbers are 1and 0respectively, and
hence we get acontradiction. Consider next the braid $B$ as in Figure 2. Then $s_{1}\cup s_{2}$ and
$s_{4}\cup s_{5}$ axe blocks in $B$ with isolating tubes $T$, $T’$ respectively. Also, $s_{3}\cup s_{4}\cup s_{5}$ is clearly
ablock. Furthermore, we can find an isolating block for the union $s_{2}\cup s_{3}\cup s_{4}\cup s_{5}$ , and
so this union is ablock.
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Let $P_{\omega}$ denote the set of $\omega$-periodic solutions.
Definition 3. Two $\omega$-periodic solutions $\xi_{1}$ and $\xi_{2}$ are said to be equivalent if the braid
$b(\{\xi_{1}, \xi_{2}\})=\mathrm{s}\mathrm{t}\mathrm{r}(\xi_{1})\cup \mathrm{s}\mathrm{t}\mathrm{r}(\xi_{2})$ forms ablock in $\mathrm{b}(\mathrm{V}\mathrm{J})$ .

The choice of the term “equivalent”in this definition is reasonable as the following
proposition shows:
Proposition 1. The relation on $P_{\omega}$ defined above is an equivalence relation.
Example 2. (a) Suppose the equation (1) has three $\omega$-periodic solutions $\xi_{\dot{1}}$ , $i=1,2,3$
and the braid $b(P_{\omega})$ is as in Figure 1, where $s_{i}=\mathrm{s}\mathrm{t}\mathrm{r}(\xi_{\dot{1}})$ . Then $\xi_{1}$ and $\xi_{2}$ are equivalent,
since $b(\{\xi_{1}, \xi_{2}\})=s_{1}\cup s_{2}$ is a block in $B=b(P_{aJ})$ . However, $\xi_{3}$ is not equivalent to $\xi_{1}$ ,
since $s_{1}\cup s_{3}$ is not ablock. Thus, there are two equivalence classes $\{\xi_{1},\xi_{2}\}$ , $\{\xi_{3}\}$ .

(b) Secondly, suppose (1) has five $\omega$-periodic solutions $\xi_{i}$ , $i=1$ , $\ldots$ , 5, with the braid
$b(P_{\omega})=s_{1}\cup\cdots\cup s_{5}$ as in Figure 2, where $s:=\mathrm{s}\mathrm{t}\mathrm{r}(\xi_{i})$ . Then, considering winding
numbers also in this case, we see easily that there are three equivalence classes $\{\xi_{1},\xi_{2}\}$ ,
$\{\xi_{3}\}$ , and $\{\xi_{4}, \xi_{5}\}$ .

It should be noted that there is one exceptional equivalence class for which our main
results, which will be stated in the next section, are not valid. This is the equivalence
class consisting of the $” \mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}" \mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ defined below:
Definition 4. An $\omega$-periodic solution $\xi$ is said to be peripheral if one of the following
conditions holds:

(i) $P_{\omega}=\{\xi\}$ , i.e., there are no other $\omega$-periodic solutions.
(ii) There are at least two $\omega$-periodic solutions and $b(P_{\omega}-\{\xi\})$ is ablock in $b(P_{v}‘)$ .

Proposition 2. The set of peripheral solutions for$ms$ an equivalence class.
We call this class consisting of all the peripheral solutions the peripheral equivalence

class, and any other equivalence class anon-peripheral equivalence class. The equation
(1) may not have any peripheral solution. In this case, the peripheral equivalence class
is an empty set.
Example 3. If $P_{\omega}$ is as in Example 2(a), then $\xi_{3}$ is peripheral, since $b(P_{\omega}-\{\xi_{3}\})=$

$s_{1}\cup s_{2}$ is ablock. Therefore, $\{\xi_{3}\}$ is the peripheral equivalence class. Also, if $P_{\omega}$ is as
in Example 2(b), then $\{\xi_{1}, \xi_{2}\}$ is the peripheral equivalence class, since $b(P_{\omega}-\{\xi_{1}\})=$

$s_{2}\cup s_{3}\cup s_{4}\cup s_{5}$ is ablock and this means that $\xi_{1}$ is peripheral,
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4. EXISTENCE OF UNSTABLE SOLUTIONS

Definition 5. (cf. [7]) Asolution $x_{0}$ of (1) defined for $0\leq t<\infty$ is stable (or Ljapunov
stable) if for any $\epsilon>0$ , there is a $\delta$ $>0$ such that every solution $x(t)$ with $|x(0)-x_{0}(0)|<$

$\delta$ is defined for all $0\leq t<\infty$ and satisfies $|x(t)-x_{0}(t)|<\epsilon$ for any $t$ . Otherwise, $x_{0}$ is
said to be unstable.

Theorem 1. Any non-peripheral equivalence class consisting of at least two u-periodic
solutions contains an unstable one.

In the case of an equivalence class with only one element, the following proposition
provides asufficient condition for its instability:

Proposition 3. Suppose an $\omega$ -periodic solution $\xi_{0}$ is not peripheral and is a unique
element in its equivalence class. Assume that there is a subset $P$ of $P_{\omega}$ containing 40
such that $b(P)$ and $b(P-\{\xi_{0}\})$ are blocks in $b(P_{\omega})$ . Then 40 is unstable.

Theorem 1and Poroposition 3would suggest that not afew equivalence classes have
an unstable solution. In fact, the following theorem holds:

Theorem 2. More than half of the non-peripheral equivalence classes contain an unsta-
ble $\omega$ -periodic solution.

Example 4. (a) Suppose $P_{\omega}$ has the braid as in Figure 3. Then $\{\xi_{4}\}$ is the peripheral
equivalence class, and the non-peripheral equivalence classes are $E_{1}=\{\xi_{1}, \xi_{2}\}$ and $E_{2}=$

$\{\xi_{3}\}$ . Since $E_{1}$ has two solutions, by Theorem 1, at least one of these solutions is
unstable. Also, $\xi_{3}$ satisfies the assumption of Proposition 3with $P$ $=\{\xi_{1},\xi_{2},\xi_{3}\}$ . Hence
$\xi_{3}$ is unstable. Thus, both $E_{1}$ and $B\infty \mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}$ an unstable solution.

(b) We show that the estimate of the number of equivalence classes with unstable
solutions given in Theorem 2is the best possible one, by constructing an example.
Consider the quotient space $X$ obtained from the torus $T^{2}=\mathrm{R}^{2}/\mathrm{Z}^{2}$ by identifying each
point $x\in T^{2}$ with $-x$ . Apoint of $X$ represented by $x\mathrm{w}\mathrm{i}\mathrm{U}$ be denoted by the same
symbol $x$ . It is easy to see that $X$ is homeomorphic to asphere $S^{2}$ . Let $A$ be the

matrix $(\begin{array}{ll}5 22 1\end{array})$ . Then $A$ induces ahomeomorphism on $X$ denoted by $g_{A}$ . $g_{A}$ has six

fixed points, $s_{0}$ $=(0,0)$ , $s_{1}=(1/4, -1/4)$ , $s_{2}=(1/2,0)$ , $s_{3}=(1/2,1/2)$ , $s_{4}=(0,1/2)$ ,
and $s_{5}=(1/4,1/4)$ . Since $s_{2}$ , $s_{3}$ , $s_{4}$ are degenerate fixed points, they are unstable. Since
$s_{1}$ and $s_{5}$ are twisted saddles, one can alter these fixed points to stable ones by alocal
modification of $g_{A}$ near these points without adding new fixed points. Identify $X-s_{0}$

with the plane $\mathrm{R}^{2}$ . Then the restriction of $g_{A}$ to $X-s_{0}$ gives an orientation-preserving
homeomorphism $g$ : $\mathrm{R}^{2}arrow \mathrm{R}^{2}$ . We can choose an isotopy from id to $g$ , and so we get
avector field on $\mathrm{R}^{2}\cross[0,\omega]$ which induces atime-periodic equation (1). This equation
has five $\omega$-periodic solutions $\xi_{1}$ , $\ldots$ , $\xi_{5}$ which correspond to $s_{1}$ , $\ldots$ , $s_{5}$ respectively. We
see that the braid $b(P_{\omega})$ is as in Figure 4. Therefore each $\omega$-solution is non-peripheral
and is the unique element in its equivalence class. Thus, there are five non-peripheral
equivalence classes. Since $\xi_{1}$ , $\xi_{5}$ are stable and the other three are unstable, exactly three
of them consist of unstable solutions

126



$\mathrm{F}_{\mathrm{I}\mathrm{G}\mathrm{U}\mathrm{R}\mathrm{E}}3$
$\mathrm{F}^{\backslash }\mathrm{I}\mathrm{G}\mathrm{U}\mathrm{R}\mathrm{E}3$ FIGURE 4

The results of this paper are proved by using acombination of the Nielsen fixed point
theory and the Nielsen-Thurston classification theory of surface maps up to isotopy.
Remark . The content of this paper is closely related to that of aprevious paper [8] of
the author. It considers an orientation-preserving embedding of the 2-dimensional closed
disk into itself, and includes some results on the existence of unstable fixed points for
such embeddings. Consider the case where the initial-values of the $\omega$-periodic solutions
of (1) are contained in adisk $D$ which is mapped into itself under the Poincare operator
$U$ : $\mathrm{R}^{2}arrow \mathrm{R}^{2}$ associated with (1). Then we can apply the results in [8] to the embedding
$U$ : $Darrow D$, and we obtain several results on the existence of unstable $\omega$-periodic
solutions of (1). These results are slightly stronger than those given here, since they are
valid for all equivalence classes including the peripheral one. In this sense, the present
paper can be regarded as a generalization of [8] to the general case where $U$ may not
have an invariant disk.
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