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ABSTRACT. We present a topological approach to the problem of the existence of unsta-
ble periodic solutions for 2-dimensional, time-periodic ordinary differential equations.
This approach makes use of the braid invariant, which is one of the topological invari-
ants for periodic solutions exploiting a concept in the low-dimensional topology. Using
the braid invariant, an equivalence relation on the set of periodic solutions is defined.
We prove that any equivalence class consisting of at least two solutions must contain
an unstable one, except one particular equivalence class. Also, it is shown that more
than half of the equivalence classes contain unstable solutions.

1. INTRODUCTION

Consider a 2-dimensional ordinary differential equation of the form:

dz
E :f(.'L',t), (1)

where f : R® x R — R? is a Carathéodory map (i.e., f is continuous in z for almost all ¢
and is measurable in ¢ for each z) which is periodic with respect to ¢ with period w > 0.
Assume that there exists a unique solution z(t) of the initial-value problem z(0) = z, for
each point 7o € R? and this solution is defined on an interval containing [0, w]. We shall
study the problem of the existence of unstable periodic solutions of (1). The traditional
approach to this problem is to make the linear analysis of the related variational equation,
and it is known that in some sense, the linear analysis in the instability case is easier
than that in the stability case (see e.g. [1], [2]). In this paper, we present a purely
topological approach to the problem. This approach makes use of the braid invariant,
which is one of the topological invariants for periodic solutions exploiting a concept in
the low-dimensional topology (see (4], [9] for a survey). We shall only treat periodic
solutions having period w in order to make the argument simpler.

The detailed version of this paper will appear in Topological Methods in Nonlinear
Analysis Vol. 14.
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2. BRAIDS OF PERIODIC SOLUTIONS

Here we shall define a braid for a given set of w-periodic solutions. For general refer-
ences on braid theory, see, e.g., [3], [6]. Let n be a positive integer. We call a subset B
of the product R? x [0,w] an n-braid if the following conditions hold:

(i) B is a union of mutually disjoint n simple arcs.
(ii) Each arc joins a point (z,0) € S x {0} to (7(z),w) € S x {w}, where S is a set of
n distinct points on the plane R? and 7 is a permutation defined on S.
(iii) Each arc intersects every plane R? x {t}, 0 <t < w, exactly once.

These arcs are called the strings in B.
For an w-periodic solution £ of (1), let str(¢) denote the simple arc in R? x [0, w]
defined by

str(§) = {(§(£),¢) [0 <t <w}.

We call this arc the string corresponding to &.
In this paper, we shall always assume that the equation (1) has only finitely many
w-periodic solutions.

Definition 1. Let P be a set of w-periodic solutions of (1), and n the cardinality of P.
Since the strings corresponding to the solutions in P are mutually disjoint, the union
Ugep str(€) of these strings forms an n-braid denoted by b(P). We call it the braid of P.

3. AN EQUIVALENCE RELATION ON PERIODIC SOLUTIONS

Definition 2. Let B be a braid. A union By of strings in B is called a block in B if
there is a subset T of R? x [0, w] such that :

(i) T is the image of some embedding A : D x [0,w] — R? x [0,w], where D is a closed
disk, with A(D x {t}) C R? x {t} for each .
(ii) If we denote by T; the t-slice of T, i.e. the set {x € R?|(z,t) € T}, then we have
To = T.. '
(i) Bo=BnNT.

We call T an isolating tube for By with respect to B.

Example 1. It is clear that B is a block in itself, and any string in B is also a block in
B. We give non-trivial examples in Figure 1 and Figure 2. Let B be the braid consisting
of three strings s;, s2, 83 as in Figure 1. Then the union By = s; U sz is a block in B,
and the set T drawn here gives an isolating tube for By. On the other hand, s; U s3 is
not a block, Indeed, if it were a block, then the string s; winds around s; and s3 in the
same number of times. However, these winding numbers are 1 and 0 respectively, and
hence we get a contradiction. Consider next the braid B as in Figure 2. Then s;Us; and
s4 U s5 are blocks in B with isolating tubes T, T" respectively. Also, s3Us4U ss is clearly
a block. Furthermore, we can find an isolating block for the union s; U s3U s4 U s5, and
so this union is a block. ‘
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Let P,, denote the set of w-periodic solutions.

Definition 3. Two w-periodic solutions & and &, are said to be ’éqm'vdlent if the braid
b({&1,62}) = str(&) Ustr(&;) forms a block in b(P.,).

The choice of the term “equivalent”in this deﬁnition is reasonable as the following
proposition shows: : : _

Proposition 1. The relation on P,, defined above is an equivalence relation.

Example 2. (a) Suppose the equation (1) has three w-periodic solutions &,1=1,2,3
and the braid b(P,) is as in Figure 1, where s; = str(&). Then &, and &, are equivalent,
since b({£1,£2}) = 51 U s, is a block in B = b(P,,). However, &3 is not equivalent to &,
since s; U s3 is not a block. Thus, there are two equivalence classes {6, &}, {&}-

(b) Secondly, suppose (1) has five w-periodic solutions &,1=1,...,5, with the braid
b(P.) = s1U---Uss as in Figure 2, where s; = str(§). Then, considering winding
numbers also in this case, we see easily that there are three equivalence classes {£,&2},

{&3}, and {&, &}

It should be noted that there is one exceptional,equivalence class for which our main
results, which will be stated in the next section, are not valid. This is the equivalence
class consisting of the “peripheral”solutions defined below:

Definition 4. An w-periodic solution £ is said to be peripheral if one of the following
conditions holds:

(i) P, = {¢}, i.e., there are no other w-periodic solutions.

(ii) There are at least two w-periodic solutions and b(P,, — {¢}) is a block in b(P,,).

Proposition 2. The set of peripheral solutions forms an equivalence class.

We call this class consisting of all the peripheral solutions the peripheral equivalence
class, and any other equivalence class a non-peripheral equivalence class. The equation
(1) may not have any peripheral solution. In this case, the peripheral equivalence class
1s an empty set.

Example 3. If P, is as in Example 2 (a), then & is peripheral, since (P, — {&)) =
$1U sy is a block. Therefore, {£3} is the peripheral equivalence class. Also, if P, is as
in Example 2 (b), then {£, &} is the peripheral equivalence class, since (P, — {&}) =
§2 U s3Usq U ss is a block and this means that & is peripheral. :
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4. EXISTENCE OF UNSTABLE SOLUTIONS

Definition 5. (cf. [7]) A solution z, of (1) defined for 0 < ¢ < oo is stable (or Ljapunov
stable) if for any € > 0, there is a § > 0 such that every solution z(t) with |z(0) —zo(0)| <
8 is defined for all 0 < t < oo and satisfies |z(t) — zo(t)| < € for any t. Otherwise, zg is
said to be unstable.

Theorem 1. Any non-peripheral equivalence class consisting of at least two w-periodic
solutions contains an unstable one.

In the case of an equivalence class with only one element, the following proposition
provides a sufficient condition for its instability:

Proposition 3. Suppose an w-periodic solution & is not peripheral and is a unique
element in its equivalence class. Assume that there is a subset P of P, containing &
such that b(P) and b(P — {£o}) are blocks in b(P,,). Then & is unstable.

Theorem 1 and Poroposition 3 would suggest that not a few equivalence classes have
an unstable solution. In fact, the following theorem holds:

Theorem 2. More than half of the non-peripheral equivalence classes contain an unsta-
ble w-periodic solution.

Example 4. (a) Suppose P, has the braid as in Figure 3. Then {£,} is the peripheral
equivalence class, and the non-peripheral equivalence classes are By = {{1, &2} and Ep =
{&}. Since E; has two solutions, by Theorem 1, at least one of these solutions is
unstable. Also, &; satisfies the assumption of Proposition 3 with P = {£;,£2,£3}. Hence
&3 is unstable. Thus, both E; and E, contain an unstable solution.

(b) We show that the estimate of the number of equivalence classes with unstable
solutions given in Theorem 2 is the best possible one, by constructing an example.
Consider the quotient space X obtained from the torus T2 = R?/Z? by identifying each
point z € T? with —z. A point of X represented by z will be denoted by the same
symbol z. It is easy to see that X is homeomorphic to a sphere S%. Let A be the
g 1) Then A induces a homeomorphism on X denoted by g4. ga has six
fixed points, so = (07 O)’ = (1/4) _1/4)’ S2 = (1/2a0)1 83 = (1/2, 1/2)1 sq = (0, 1/2),
and ss = (1/4,1/4). Since sy, s3, 34 are degenerate fixed points, they are unstable. Since
s, and ss are twisted saddles, one can alter these fixed points to stable ones by a local
modification of g4 near these points without adding new fixed points. Identify X — so
with the plane R2. Then the restriction of g4 to X — sq gives an orientation-preserving
homeomorphism g : R? — R2. We can choose an isotopy from id to g, and so we get
a vector field on R? x [0,w] which induces a time-periodic equation (1). This equation
has five w-periodic solutions &y, . .. ,&s which correspond to sy,... ,ss respectively. We
see that the braid b(P,) is as in Figure 4. Therefore each w-solution is non-peripheral
and is the unique element in its equivalence class. Thus, there are five non-peripheral
equivalence classes. Since &;, &5 are stable and the other three are unstable, exactly three
of them consist of unstable solutions.

matrix
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The results of this paper are proved by using a combination of the Nielsen fixed point
theory and the Nielsen-Thurston classification theory of surface maps up to isotopy.

Remark . The content of this paper is closely related to that of a previous paper [8] of
the author. It considers an orientation-preserving embedding of the 2-dimensional closed
disk into itself, and includes some results on the existence of unstable fixed points for
such embeddings. Consider the case where the initial-values of the w-periodic solutions
of (1) are contained in a disk D which is mapped into itself under the Poincaré operator
U : R? — R? associated with (1). Then we can apply the results in 8] to the embedding
U : D — D, and we obtain several results on the existence of unstable w-periodic
solutions of (1). These results are slightly stronger than those given here, since they are
valid for all equivalence classes including the peripheral one. In this sense, the present
paper can be regarded as a generalization of [8] to the general case where U may not
have an invariant disk.
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