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Abstract

Renormalization plays very important role in studying the dynamics
of quadratic polynomials. We generalize renormalization to polynomials
of higher degree so that many known properties still hold for the general-
ized renormalization. Furthermore, we show that the McMullen’s result
that any robust infinitely renormalizable quadratic polynomial carries no
invariant line field is also extensible.

1 Preliminaries

1.1 Dynamics of rational maps

Let f: (I:: — € be arational map of degree d > 2. The Fatou set of f is the set of
all z € € such that {f™},>o forms a normal family on some neighborhood of z.
The Julia set J(f) is the complement of the Fatou set. When f is a polynomial,
the filled Julia set K(f) is defined by: '

K(f)={z € C| {f"(2)} is bounded} .

The Julia set is equal to the boundary of K(f).
Let C(f) be the set of critical points of f. The postcritical set P(f) is the
closure of the union of the forward orbits of critical values of f, that is,

P(5)=J ().

n>0

Lemma 1.1. For every point € J(f) whose forward orbit does not intersect

P(f),
1) @) = o0
with respect to the hyperbolic metric on C\ P(f).
See [Mc, Theorem 3.6].

* Partially supported by JSPS Research Fellowship for Young Scientists.
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Lemma 1.2. Any a rational map f of degree more than one satisfies one of the
followings:

1. J(f)= € and the action of f on C is ergodic.

2. the spherical distance d(f"(z), P(f)) — 0 for almost every z in J(f) as
n — 00.

See [Mc, Theorem 3.9).

1.2 Polynomial-like maps

A polynomial-like map is a triple (f,U, V) such that f : U — V is a holomorphic
proper map between disks in C and U is a relatively compact subset of V. The
filled Julia set K(f,U, V) is defined by

K(fava) = n f_"(V)

n=1

and the Julia set is equal to the boundary of K(f,U,V). The postcritical set
P(f,U,V) is defined similarly as in the case of rational maps.

Every polynomial-like map (f,U, V') of degree d is hybrid equivalent to some
polynomial g of degree d. That is, there is a quasiconformal conjugacy ¢ from
f to g defined near their respective filled Julia set and satisfies ¢ = 0 on
K(f,UV).

For m > 0, let Polys(m) be the set of all polynomials of degree d and
all polynomial-like maps of degree d with mod(U,V) > m. We consider the
Carathéodory topology for the topology of Poly (m).

Then Poly,(m) is compact up to affine conjugacy. Namely, any sequence
(fnsUn,Va) € Polyy(m) normalized so U, D {||z|| < r} for some r > 0 and
so the Euclidean diameter of K(fn,Un,Vs) is equal to one, has a convergent
subsequence [Mc, Theorem 5.8].

Moreover, if (f,U, V) € Poly,(m) has no attracting fixed point, then

diam K (f,U,V) < C diam P(f,U, V)

for some C depends only on d and m in the Euclidean metric [Mc, Corol-
lary 5.10].
The following two lemmas are used repeatedly in the next section.

Lemma 1.3. Fori = 1,2, let (f;,Ui, Vi) be polynomial-like maps of degree d;.
Assume fi = fo = f on U = Uy NUz. Let U' be a component of U with
U'cfu)=v.

Then f:U' = V' is a polynomial-like map of degree d < max(d,, dz) and

K(f')U" V’) = K(thl»‘,l) N K(fz, U29 V2) n U,-
Moreover, if d = d;, then K(f,U',V') = K(f;,U;, V;).
See [Mc, Theorem 5.11].

Lemma 1.4. Let f be a polynomial with connected filled Julia set. For any
polynomial-like restriction (f",U,V) of degree more than one with connected
filled Julia set K,,,
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1. The Julia set of (f*,U,V) is contained in the Julia set of f.
2. For dny closed connected set L C K(f), L N K, is also connected.
See [Mc, Theorem 6.13]. ‘

2 Renormalization

2.1 Definition of renormalization

Let f be a polynomial of degree d with connected Julia set. Fix a critical point
Cp € C (f)

Definition. f" is called renormalizable about cy if there exist open disks U,V C
C satisfying the followings: '

1. ¢ liesin U.

2. (f*,U,V) is a polynomial-like map with connected filled Julia set.

3. For each c € C(f), there is at most one %, 0 < ¢ < n, such that ¢ € fi(U).
4. n>1or U 3 C(f).

A renormalization is a polynomial-like restriction (f*,U,V) as above. We
call n the period of a renormalization (f*,U,V).

Note that the degree of a renormalization of f is not greater than 2¢.

Notation. Let p = (f*,U, V) be a renormalization. For ¢ = 1,...,n (or ¢ may
be regarded as an element of Z/n),

e Letn(p)=n,U(p)=U apd Vip)=V.

e The filled Julia set of p is denoted by K (p), the Julia set by J(p), and the
postcritical set by P(p).

e The i-th small filled Julia set is denoted by K(p,i) = f*(K(p)) and the
i-th small Julia set J(p,1) = f*(J(p)).

o The ith small critical set C(p,i) = K(p,i)NC(f). Clearly, C(p,¢) may be
empty for 0 < i < n (by the definition, C(p,n) is nonempty).

e K(p) = U, K(p,s) is the union of the small filled Julia sets. Similarly,
J(p) = Uiz1 I (p,9)-
e C(p) = UL, C(p,1) is the set of critical points appeared in a renormaliza-
tion p.
o P(p) = |J 7*(C(p)) € P(£) N K(p).
k>0

o The ith small postcritical set is denoted by

P(p,1) = K(p,i) N P(p).
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e Let V(p,i) = f(U) and U(p, %) be the component of f*~*(U) contained
in V(p,i). Then (f",U(p,3),V(p,%)) is polynomial-like of same degree
as (f*,U,V). Moreover, it is also a renormalization of f if C(p,?) is
nonempty.

Let p and p' be renormalizations. Define an equivalence relation ~ by
p ~ p' ¢ n(p) = n(p’) and K(p) = K(¢').
It implies that the dynamics of p and p’ are equal. Let
R(f,co) = {renormalizations of some iterates of f about ¢} / ~ .

and for a subset Cr C C(f) containing co,

R(f,c0,Cr) = {p € R(f,c0) | C(p) = Cr}.

We confuse the elements in R(f,cp) with its representation and write like as

p=(f*UV) € R(f ).
The following three propositions are easily derived from Lemma 1.3 and
Lemma 1.4.

Proposition 2.1. Suppose two renormalizations p = (f*,U',V?) and p' =
(f*,U?,V?) of the same periods satisfy C(p,i) = C(p',t) for anyi (0 < i < n).
Then their filled Julia sets are equal.

Proposition 2.2. Let p, = (f*,Un, Vi) and p;m = (f™ U, Vin) € R(f, o).
Then there ezists p; = (f',Ui,Vi) € R(f,co) with filled Julia set K(p)) =
K (pn) N K(pm) where | is the least common multiple of n and m.

Definition. For p € R(f,co), the intersecting set I(p) is defined by

n(p)-1
I(p) = K(p)n( U K(p,z‘)) :

We say p is intersecting if I(p) is nonempty.
Although we now define intersecting “set”, it consists of at most one point.

Proposition 2.3. If p = (f*,U,V) € R(f,co) is intersecting, then I(p) con-
sists of only one point which is a repelling fized point of f".

Although small Julia sets of a renormalization can meet at a repelling peri-
odic point, the period of such point tends to infinity as the period of renormal-
ization tends to infinity.

Theorem 2.4 (High periods). For fized p > 0, there are only finitely many
p € R(f,co) such that K(p) contains a periodic point of period p.

Therefore, infinitely renormalizable polynomial f satisfies that the filled Julia
set of renormalization of period sufficiently large does not contain the fixed point
of f. It implies that K(p) is disconnected when n(p) is sufficiently large.

Since a repelling fixed point separates filled Julia set into finite number of
components, components of K(p) \ I(p) are finite. We say a renormalization is



simple if K (p)\I(p) is connected, and crossed if it is disconnected. Let SR(f, c)
be the set of all simple renormalizations in R(f,co). Similarly, SR(f,co,CR) is
the set of all p € SR(f,co) with C(p) = Ckg.

In the next section, we will show any infinitely renormalizable polynomial
has infinitely many simple renormalizations. So simple renormalizations plays
very important role in the case of infinitely renormalizable polynomials.

However, there even exist finitely renormalizable polynomials which is not
simply renormalizable. See [Mc, §7.4].

Theorem 2.5. For Cr C C(f), st(f,Cr) is totally ordered with respect to
division. Moreover, elements of SR(f,co,Cr) are uniquely determined by their
period and their filled Julia sets form a decreasing sequence.

2.2 Examples

In the last of this section, we present an example of finitely renormalizable
polynomials. An example of infinitely renormalizable polynomials are given in
§4.

Let

fz)=23 - %z— 4i.
Then C(f) = {£1/2} and +1/2 are periodic of period 2. Let Wi be the
Fatou component which contains +1/2. Each of them is superattracting basin
of period 2.

Every renormalization (f*,U, V) must satisfy U D W_ or W,. Son < 2
and by symmetry, we will consider only the case U D W_.

1. Let K be the connected component of the closure of |J,,., f~™"(W_) which
contains W_ and let U; be a small neighborhood of K.

Then p; = (f, U1, f(U1)) is a renormalization with filled Julia set K (p;) =
K which is hybrid equivalent to z ~— 22 — 1.

2. Let Uz be a small neighborhood of W_. Then p,; = (f2,Us, f2(Us)) is a
renormalization with filled Julia set K (p,1) = W_, which is hybrid equivalent
to z +— 22.

3. Let K be the connected component of | J,,o f 2" (W_ U W) which contains
W_ and let U; be a small neighborhood of K.

Then pz2 = (f2,U;, f2(U3) is a renormalization with filled Julia set K3,
which is hybrid equivalent to z — 23 — (3/v2)z.
4. Let K; be the connected component of |J,., f~2"(W_ U f(W,)) which
contains W_ and let U;’ be a small neighborhood of K.

Then py3 = (f2,Uy, f>(Uy')) is a renormalization with filled Julia set K7
and of degree 4.

Similarly, consider |J, 5o f~2*(W_U f(W_)UW,) and then we can con-
struct a polynomial-like map (f2,U, V) of degree 6. But it is not a renormal-
ization because —J is contained in both U and f(U).

Thus R(f’ —1/2) = {Pl,Pz,x,Pz,z, Pz,s} and S'R(f,—l/2) = {Pl,P2,1}-
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Figure 1: The Julia set of f.

3 Infinite renormalization

3.1 Infinite simple renormalization

For each p € R(f,co, Cr), we construct a simple renormalization near the com-
ponent of K(p) containing co by using the Yoccoz puzzle. Then the period
of new simple renormalization is equal to the number of components of X(p),
which tends to infinity. So, we have the following;:

Theorem 3.1. If f is infinitely renormalizable, then f has infinitely many sim-
ple renormalizations.

More precisely, if R(f,co,CRr) is infinite for some Cr C C(f), then there
ezists some Cy with Cr C Cy C C(f) such that SR(f, co, Cr) is also infinite.

Remark 3.2. We do not know whether C; coincide with Cg. However, when f
is Cp-robust infinitely renormalizable, then Cg must be equal to Cg.
But if f is robust, Ck must be equal to Cgr. See Proposition 3.8.

3.2 Robust infinite renormalization

Consider the following assumption for a polynomial f with connected Julia set
and a subset Cr C C(f): '

sr(f, Cr) is infinite and f(Cr) = F(C(f)). (1)

Remark 3.3. This assumption corresponds to extracting an infinitely renormal-
izable “part” from an infinitely renormalizable polynomial.

More precisely, assume # sr(f,Cr) = oco. Forany p = (f*,U,V) € SR(f, co,
let g be a polynomial hybrid equivalent to p. There exist some ¢ and Ch
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with ¢y € C C C(g) such that sr(g, C%) is infinite and each element p’ of
SR(g, ¢y, Cr) corresponds to the renormalization in SR(f,co, Cr) with period
n(p') - n. Then we obtain g(Ck) = g(C(g)) because the critical points of p is
the union of f~*(C(p,))NU for 0 <i < n.

We say a renormalization is robust infinitely renormalizable if it is hybrid
equivalent to some robust infinitely renormalizable polynomial.

For each n € sr(f, Cp), take a corresponding renormalization pn=(f"Un, Vo) €

SR(f,co,Cr). Then P(p,) = P(f) for any n € sr(f, Cr) and {K(pn)}nest(s,0n)
forms a decreasing sequence by Theorem 2.5. -

Proposition 3.4. Let f, Cr and p,, as above. Then:
1. All periodic points of f are repelling. |
2. The filled Julia set of f ‘has no interior.
3. There ezist no periodic points in ﬂ IC(p,,) ’
né&sr(f,Cr)
4. there exist no periodic points in P(f).
5. For any n € sr(f,Cg), P(f) N K(py,t) is disjoint from K(pn,j) ifi # 3.

For each n € sr(f,Cp), let §,(i) be a simple closed curve which separates
K (pn,1) from P(f)\ P(py,i). Since its homotopy class in C \ P(f) is uniquely
determined, there exists a geodesic 7, (i) homotopic to d,(i). Let v, = v(n).

These geodesics are simple and mutually disjoint. Furthermore, the hyper-
bolic length £(vn(?)) of (i) are comparable with £(v,,).

Definition. Suppose a polynomial f and Cr C C(f) satisfies the condition (1).
We say f is robust if there exists a subset Cr C C(f) such that #SR(f,Cr) =

oo, f(Cr) = f(C(f)) and

liminf ¢
"GLI:?}TIC'R) (m) <00

where £(-) is the hyperbolic length in C\ P(f).
Theorem 3.5. Suppose f is robust. Then:

1. the postcritical set P(f) is a Cantor set of measure zero.

2. lim sup diam P(p,,?) ) = 0.
el (2, G Plon)

8. f: P(f) = P(f) is topologically conjugate to o : & — ¥ where

¥ = projlim Z/n
nesr(f,Cr)

o ( (i) o ,'CR)) = (in+ 1) peur(s.0om-

Especially, f|p(s) is a homeomorphisrﬁ.
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Proof. By the collar theorem, there exists the standard collar A,(¢) about the
geodesic 7, () on the hyperbolic surface C\ P(f). Note that the collar theorem
asserts that these collars are mutually disjoint. Each annulus A,(t) separates
P(pn,i) from the rest of the postcritical set.

Consider a sequence of nested annuli {An(in)},eur(s,cp)> that is, for m < n,
An(in) lies in the bounded component of Am(im). Since mod(A,(is)) is a
decreasing function of £(v,) and liminf €(-y,) is finite, the sum

Z mod A, (3,)

nesr(f,Cr)

diverges to infinity. Note that £(n(in)) < C£(7n).

Thus the set F = [ F,, is totally disconnected and of measure zero, where
F, be the union of the bounded components of C \ (J; An()) (see [Mc, Theo-
rem 2.16]).

Clearly, F contains P(f). Furthermore, since each component of F;, inter-
sects P(f), we have F = P(f). Therefore, the postcritical set has measure
zero.

Each P(pn,i) lies in a single component of Fy,. Since F' is totally discon-
nected, the diameter of the largest component of F,, tends to zero as n tends to
infinity, and so does sup; diam P(pn,1).

For each n € sr(f,Cr), let ¢y : P(f) = Z/n be the map which sends P(px,1)
to ¢ mod n. These maps induces a continuous map ¢ : P(f) = .

It is easy to confirm that ¢ has desired properties. Since ¥ is a Cantor set,
P(f) is also a Cantor set. O

Corollary 3.6. Suppose f is robust. Then if n € sr(f, Cr) is sufficiently large,
#C(pn,t) < 1 for any ¢.

Proof. Otherwise, we may assume C(p,) = {co,...c,} for all sufficiently large
n € sr(f,Cr) (r > 1). Since diam(P(pn, 1)) tends to zero, all f(c;)’s are equal.

Let m; be the multiplicity of the critical point c;. Then the degree of the
proper map f : U = U(py,1) is equal to (3°m;) + 1, but the cardinality of
f~2(f(co)) (counted with multiplicity) is not less than 3 (m; + 1), that is a
contradiction. a

Corollary 3.7. If f is robust, then Cr C P(f).

Proof. Let n € sr(f,Cr) sufficiently large so that Corollary 3.6 holds. Then
for ¢ € Cg, we have C(pn,1) = {c} for some i. Therefore, the inverse image of
f(c) by the proper map f : U(pn,$) = f(U(pn,i)) consist only of c. Since f :
P(pn,) = P(pn,i + 1) is a homeomorphism by Theorem 3.5 and f(c) € P(f),
we have ¢ € P(f).

|

The next corollary gives an answer of Remark 3.2 in the case of robust
infinitely renormalizable case.

Corollary 3.8. Suppose a renormalization p € SR(f,co,Cr) is robust. Then
every renormalization p about co satisfies C(p) D Chr.
Especially, if R(f,co,Cy) is infinite for some C C Cr, then Cp = Cr.
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Proof. By Theorem 3.5, P(p) is a Cantor set of measure zero and the forward
orbit of ¢p is dense in P.

Therefore, for any p € R(f,¢c), K(p) must contain P(p). By Corollary 3.7,
K(p) O Ckr. a

Figure 2: The Julia set of h(z) = 22 — 1.401155189... h is infinitely renormal-
izable with sr(h, {0}) = {3"}.

Figure 3: The Julia set of g(z) = —2z® — 3¢z and f = —g, where ¢ =
0.87602957776 ... g is constructed by the intertwining surgery (see [EY]) from
two h’s. f is infinitely renormalizable and each renormalization has degree 4.

4 Robust rigidity

In the rest of the paper, we will prove the main theorem, which is the following.
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Theorem 4.1 (Robust rigidity). A robust infinitely renormalizable polyno-
mial carries no invariant line field on its Julia set.

Since hybrid equivalence preserves invariant line field on the Julia set, we
can easily apply the result to polynomials whose dynamics on its Julia set is
essentially robust infinitely renormalizable.

For example,

Corollary 4.2. Let f be a polynomial of degree d > 2. Suppose every critical
point c € C(f) satisfies one of the followings:

1. c is preperiodic.
2. the forward orbit of c tends to an attracting cycle.

3. there ezists some robust infinitely renormalizable renormalization p (see
Remark 3.3) and n > 0 such that f"(c) lies in J(p) and the forward orbit
of ¢ does not accumulate to I(p).

Then f carries no invariant line field on its Julia set.

The corollary is an easy consequence of Theorem 4.1 and the following
lemma:

Lemma 4.3. Let f be a polynomial of degree d > 2. Suppose there erist simple
renormalizations p,,...,py such that P(p;)’s are pairwise disjoint and every
critical point c € C(f) satisfies one of the followings:

1. c is preperiodic.
2. the forward orbit of c tends to an attracting cycle.

3. there ezist n > 0 and j such that f™(c) lies in K(p;) and the forward orbit
of ¢ does not accumaulate to I(p).

Then almost every z in J(f) eventually mapped onto |J K(p;) by f.

Proof. By Lemma 1.2, the Euclidean distance d(f"(z), P(f)) tends to 0 for
almost every z € J(f). Now we consider such z € J(f). Since there exist only
countably many eventually periodic points, we may assume z is not eventually
periodic.

For any € > 0, there exists N > 0 and j such that d(f¥(z), P(p;)) < € and
d(f*(z), P(f)) < € for any n > N.

When e is sufficiently small, it implies that d(f"(z), P(pj,n — N)) < € for
any n > N. Thus f¥(z) lies in K(p;). O

Proof of Theorem 4.2. By the assumption, there exists robust infinitely renor-
malizable renormalizations p,,...,ps satisfies the assumption of Lemma 4.3.
Note that by Corollary 3.8, C(p;)’s are pairwise disjoint and if P(p;) N P(p;) is
nonempty, then P(p;) = P(p;) by Theorem 3.5. So the postcritical sets are also
pairwise disjoint.

Thus

E={ U &)

i=1k>0
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has full measure in J(f).

By Theorem 4.1, f carries no invariant line field on E and so does on J(f).
O

In the rest of this section, we state the outline of the proof of Theorem 4.1.
The proof is based on the McMullen’s proof in the quadratic case [Mc].

The proof is divided into two cases, whether L = liminf £(vy,) is zero or
positive. However, both proofs goes very similarly. We. pass to a subsequence
in sr(f,Cr) so that after properly rescaling, f™ converge to some proper map
foo : U = V if we restricted f™ on some neighborhood of the small postcritical
set P(pn). (We use some proper map f" : X, — Y, constructed from p,, €
SR(f,co,Cr) to obtain good estimates. Only when the case L is sufficiently
small, they are polynomial-like.)

Now suppose f carries an invariant line field g on its Julia set. We will
construct a g-invariant univalent line field v on V. Then it is a contrad1ct10n
because U NV contains a cr1t1cal point of g.

To construct v, we will use the following two lemmas:

Lemma 4.4. Suppose holomorphic maps fr, : (Upn,un) = (Vy,vy) between disks
converge to some non-constant map f (U,u) = (V,v) in the Carathéodory
topology.

If fn-invariant line field p, converges in measure to some line field u, then
B is f-invariant.

See [Mc, Theorem 5.14].

Lemma 4.5. Suppose a measurable line field p on C is almost continuous at
a point z and |u(z)| = 1. Let (Vo,vn) = (V,v) be a convergence sequence of
pointed disks, and let h,, : V,, = C be a sequence of univalent maps. Suppose
hl(ve) = 0 and

|z — hn(vn)]
| ()|

Then there exists a subsequence such that h},(u) converges in measure to a uni-
valent line field on V.

See [Mc, Theorem 5.16].

sup < oo.

We take a point z € J(f) having good properties and for infinitely many
n € st(f,Cr), and take an inverse branch h,, of f* for some k which sends some
neighborhood of the small postcritical set univalently near z.

Then h;,(p) = p by f-invariance, so h}(u) is f™-invariant line field on Y.
We apply Lemma 4.5 and obtain a univalent line field 4 on V. By Lemma 4.4,
i is foo-invariant. '

However, since fo, has a critical point ¢ in U NV, u(c) must be equal to
zero, and it is a contradiction.

Many estimates in McMullen’s proof can be applied similarly to our case.
However, the main difficulty is to avoid critical points of f. For example, we
will construct univalent maps h, by choosing an inverse branch of iterates of
f, so we must check that the forward orbit z does not pass near critical points
outside Cg.
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5 Thin rigidity

Now we will give the proof of Theorem 4.1. For simplicity, we consider only the
case liminf £(v,) is sufficiently small. We use the same notations as in Section
3.

We say a renormalization (f",U,, V,,) is unbranched if V,, N P(f) = P,.

Lemma 5.1. There ezists some L > 0 (depends only on d) which satisfies the
followsing:

If £(vn) < L, then we can take an unbranched representation (f",U,,V,) of
Pn with mod(U,, V;) > m(€(v,)) where m(€) is a positive function which tends
to infinity as £ — 0.

Proof. Let A, be the standard collar of v, in C\ P(f) and let B, be the
component of f~"(A,) which has the same homotopy class in C \ P(f). Let
D,, (resp. E,) be the union of B, (resp. A,) and the bounded component of
C\ B,, (resp. C\ A,). Then f": D,, » E, is a proper critically compact map.

Then there exists some M > 0 such that if mod(P(p,), E,) > M then we
can take U}, C D, and V,, C E,, as follows: (f",U.,V]) is a renormalization
and mod(Uy,,V,.) > m (mod(P(pr), En)) (see [Mc, Theorem 5.12]). Since E, N
P(f) = P(pn), (f*,Uy, V) is unbranched.

Since mod(P(pn), En) = mod A,, there exists some L > 0 such that if
£(7vn) < L then we can take an unbranched renormalization (f*,U)},,V,) with
mod(Uy, Vz) > m(£(7,))- O

Therefore, we will prove the following:

Theorem 5.2 (Polynomial-like rigidity). Let f as above. Suppose there ez-
ists some m > 0 such that (f",U,,V,) is unbranched with mod(U,,V,) > m
Jor infinitely many n € sr(f,Cr).

Then f carries no invariant line field on its Julia set.

Corollary 5.3 (Thin rigidity). Let f as above. There ezists some L > 0
such that

liminf € <L
negl(lflfé'n) (%.)

Then fcarries no invariant line field on its Julia set.

Lemma 5.4. Assume an unbranched renormalization (f*,Uy,,V,,) satisfies mod(U,,

m > 0. Let E be a component of f~1(J(pn,1)) that is not J(pn,t —1).
Then in the hyperbolic metric on C\ P(f), the diameter of E is bounded in
terms of m. '

Note that E does not intersects P(f) because P(f) C Jy..

Proof. Since mod(J(pn), Va) > mod(Uy,V,) > m, mod(J(pn,1), Va(pn,?)) is
greater than m /29,

Let W be the component of f~!(V(pn,i)) which contains E. Then f : W —
V(pn,i) is a branched cover of degree less than d. Note that all critical points
of this map lie in E. Hence mod(E, W) is greater than m/(2%d).

Therefore, the diameter of E with respect to the hyperbolic metric on W is
bounded in terms of m. By the Schwarz-Pick lemma, the hyperbolic diameter
of E on C\ P(f) is also bounded. 0O
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Lemma 5.5. Suppose there ezists some m > 0 such that for infinitely many
n € st(f,CRr), (f*,Un, V5) is unbranched with mod(Uy, V,) > m.
Then f is robust and

P(H)= () JTea).

nesr(f,Cr)

Proof. For n € sr(f, Cr) with mod(Uy, V,) > m, let A, be an annulus in V,,\U,,
enclosing K (p,) with mod A, > m.

Then the hyperbolic length in A,, of the core curve of A, is less than n/m.
Since the core curve of A,, is homotopic to «, in C\ P(f), £(v,) is also less than
m/m by the Schwarz-pick lemma. Therefore, f is robust.

By Theorem 3.5, the postcritical set is a Cantor set of measure zero and
sup; diam P(py,3) — 0. Since mod(Un,V,) > m, we have diam J(pys,i) <

C diam P(py, ) for some C which depends only on m and d. Thus sup diam J(py,, ) —

0 as well. Since J(py,1) intersects P(f), the theorem follows. O

Lemma 5.6. Under the same assumption as Lemma 5.5, almost every z € J(f)
satisfies the following:

1. The forward orbit of = does not intersects P(f).

2. I(f™) (z)]] = co with respect to the hyperbolic metric on C\ P(f).

3. For each n € st(f,Cr), there exists some k > 0 such that f*(z) € J(p,).
4. For each k > 0, there ezists some n € st(f,Cg) such that f¥(z) & T (p,).

Proof. Since P(f) is measure zero, so is |J f ~*(P(f)), which implies 1.

2. follows from Lemma 1.1.

By Lemma 1.2, d(f"(:c) P(f)) — 0 for almost every z € J(f). Since P(f)=
UP(pn,1), if f"(z) is sufficiently close to P, (i), then f*+(z) must be close to
P(pn,i + 1) (note that P(f) N I(pn) = 0).

Therefore, f¥*"i~(z) lies in U, for all j > 0. However, this means that
fE"=i(z) € J(pn), so we proved 3.

By Lemma 5.5, area(J(pn)) tends to zero. Therefore, (N, f~*(J (pn)) is
measure zero for any k and we have now proved 4. ‘a

We now prove Theorem 5.2.

Proof of Theorem 5.2. Let
usr(f, Cr,m) = {n € st(f,Cgr) | pn is unbranched and mod(Uy,V,) > m}.

Suppose # usr(f,Cr,m) = oo and there exists an f-invariant line field sup-
ported on E C J(f) of positive Lebesgue measure.

Fix a point £ € E which satisfies the conditions in Lemma 5.6 and where
p is almost continuous. For each n € usr(f,Cgr,m), let k(r) > 0 be the
smallest number which satisfies f¥(™+1(z) € J(p,) and assume f*"+1(z) ¢
J(pn,i(n) + 1). Note that k(n) — oo.

Let ng = min usr(f, Cr,m). Consider sufficiently large n € usr(f,Cr,m) so
that k(n) > k(no). Especially, k(n) is positive so f¥(") (z) does not lie in J (py,).

75



76

Therefore, f*(™) (z) lies in a component E of f~1(J(pn,i(n) + 1)), which is
not equal to J(pn,i(n)). But since k(n) > k(no), we have f¥(™(z) € J(pn, )
Hence E lies in J(pn,) and does not contain any critical points.

By Lemma 5.4, the hyperbolic diameter of E in C\ P(f) is bounded in terms
of m. Moreover, there exists a univalent branch h, of f ~*(")=! on V(p,,,i(n)+1)
which sends f*("+1(z) to z.

Take j(n) so that i(n) < j(n) < n, C(pn, j(n)) is nonempty, and there exists
a univalent inverse branch

V(pnri(7)) L5 V(om, i(n) = 1) 25 - L5V (pn,i(n) + 1),

Let h,, be thg com_position of the map above and 71,,. Namely, h,, is a univalent
branch of f—J(m+i(m)—k(n) on V(p,;,j(ﬂ)) which sends fi(™) —i(m)+k(n) () to .
Let J; = hn(J(pn,j(n))). Then f¥)(J%) = E. Since ||(f*)'(z)|| tends to
infinity, ,
diamJ,; = 0

with respect to the hyperbolic metric on C\ P(f) by Koebe distortion theorem.
There exists some ¢ € Cg, such that for infinitely many n € usr(f, Cgr,m),
c lies in J(pp, j(n)). Furthermore,

(™, Un(i(n)), Va(i(n)))
is also unbranched and satisfies
mod (Un (§(n)), Va (i (n))) > m/2°.

Hence by replacing ¢, m, U, and V, with ¢, m/29, U,(j(n)) and V,(j(n))
respectively, we may suppose j(n) = n for infinitely many n € usr(f, Cr,m).
For such n, let

z—co
4:(2) = Zam(I(on))

gn = Ay o_f"oA;1
Yn = An(h;‘(z))-
Then

(gn’ An(Un)1 Aﬂ(vﬂ)))

is a polynomial-like map with diam(J(g.)) = 1 and mod(A,(Uy), An(Vn)) > m.
After passing to a subsequence, g, converges to some polynomial-like map (or
polynomial) (g, U, V) with mod(U,V) > m in the Carathéodory topology.

Let k, = hp0A;! defined on A,(V;,). Then k,(ys) = z and vy, = k(1) is gn-
invariant line field on A, (V). Since diam(J(gn)) = 1, while diam(kn(J(g5))) =
diam(J;) = 0, k/,(yn) — 0 by Koebe distortion theorem.

Yn, lies in J(g,) and J(g,) is surrounded by an annulus of definite modulus.
Hence after passing to a further subsequence, y, converges to some y € V.

By Lemma 4.5, there exists a further subsequence such that u, converges to
a univalent line field 4 on V.

The critical point 0 lies in J(g) C U NV. However, it contradicts the fact
that the univalent line field 4 i8 g-invariant by Lemma 4.4.

Therefore, f carries no invariant line field on its Julia set. O



References

[Bu] P. Buser, Geometry and Spectra of Compact Riemann Surfaces,
Birkhauser Boston, 1992.

[DH] A. Douady and J. Hubbard, On the dynamics of polynomial-like map-
pings, Ann. sci. Ec. Norm. Sup., 18 (1985) 287-343.

[EY] A. Epstein and M. Yampolsky, Geography of the cubic connectedness lo-
cus I: Intertwining surgery, SUNY at Stony Brook IMS preprint 1996/10.

[Hu] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three
theorems of J.-C. Yoccoz, Topological Methods in Modern Mathematics
(Stony Brook, NY, 1991), 467-511, Publish or Perish, Houston, TX, 1993.

[Mc] C. McMullen, Complex Dynamics and Renormalization, Annals of Math
Studies, vol. 135, 1994.

[MS] C. McMullen and D. Sullivan. Quasiconformal homeomorphisms and dy-
namics III: The Teichmiiller space of a holomorphic dynamical system,
Adv. Math. 135 (1998) 351-395.

[Mi1] J. Milnor, Remarks on Iterated Cubic Maps, SUNY at Stony Brook IMS
preprint 1990/6.

[Mi2] J. Milnor,. Local Connectivity of Julia Sets: Ezpository Lectures, SUNY
at Stony Brook IMS preprint 1992/11.

[Mi3] J. Milnor, Dynamics in One Complez Variable, Friedr. Vieweg & Sohn,
Braunschweig, 1999.

[St] N. Steinmetz, Rational Iteration, de Gruyter, 1993.

7



