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Abstract

This article is asurvey on dynamics of fibered rational maps, semi-
groups generated by rational or entire semigroups and random hol0-
morphic dynamics.

1Introduction
The modern theory of iteration of rational functions has been started in
early $80’ \mathrm{s}$ . Since then, so many articles concerning this field has been pub-
lished. Some mathematicians pointed out that there are alarge amount of
similarities between the field of iteration of rational functions and that of
Kleinian groups.

In early $90’ \mathrm{s}$ , A.Hinkkanen and G.Martin discovered that the moduli
space of discrete groups free on two generators (of given but fixed $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$) is a
one-complex-dimensional space which is modelled by the complement of the
filled-in Julia set of some semigroup generated by (infinitely many)poly-
nomials. After that, they started the research on dynamics of semigroups
generatd by rational functions. ([HM1], [HM2], [HM3]). Of course, the field
of ‘semigroups generated by rational functions’ contains iteration of rational
functions, that of Kleinian groups and iterated function systems generated
by some elements of Aut(C). Prom the early $90’ \mathrm{s}$ F.Ren’s group in China
has studied the same subject and has obtained the same results. ([GR]).

In recent several years some articles on the dynamics of semigroups gen-
erated by rational functions which had some results on completely invariant
sets ([Stl], [St2]), uniformly perfectness of Julia sets ([St3]) by R.Stankewitz,
Teichmiiller theory for semigroups ([Ha2]) by T.Harada, invariant measures
and entropy ([Bol], [S5]) by D.Boyd, H.Sumi, (semi)-hyperbolic dynamics
and HausdorfT dimension of Julia sets ([SI], [S2], [S4], [S7]) by H.Sumi have
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been written. Sometimes the idea in iterated function systems (for exam-
ple, [MUI],[MU2] $)$ can be used. Difficult points are: that the Julia set of a
rational semigroup may not be forward invariant and that the Julia set of
sequence of words may not depend continuously on the sequence.

Since the middle of $90’ \mathrm{s}$ S.Heinemann has studied the dynamics of skew
product polynomials i$\mathrm{n}$

$\mathbb{C}^{2}$ . ([Hel], [He2]). M.Jonsson followed the subject.([Jl]).
They discussed about decomposition ofmaximal entropy measures into fiber-
wise measures and hyperbolicity. They used the potential theory and current
theory.

In 1997 O.Sester started the research on dynamics of skew product poly-
nomials ofwhich base spaces are arbitrary compact metric spaces.([Sel],[Se2]).
He obtained many results especially on quadratic fibered polynomials. In
[Sel] he constructed acompact connected configuration space which gives a
combinatorial model of asubset of the parameter space. Then he explained
how an abstract configuration can be realized by aquadratic fibered polyn0-
mial. In [S2] he discussed about hyperbolicity and generalized some results
in [J1].

In [S4] that result on hyperbolicity by O.Sester was generalized to the
case of semi-hyperbolic dynamics on fibered rational maps. This was akey to
obtain uniformly perfectness of fiberwise Julia set, Johnness of the fiberwise
attracting basins of semi-hyperbolic fibered rational maps and the upper
estimate of Hausdorff dimension of Julia sets of semi-hyperbolic semigroups
generated by rational functions.([S4], [S6]).

In [J2], [S5] and [S6], the entropy of fibered rational maps and the unique-
ness of maximizing measures were discussed.

There is another context that is called random holomorphic dynamics.
In 1991, J.E.Fornaess and N.Sibony showed that if $f_{c}$ is arandom polynomial
map where $c$ is taken over small polydisc, then for almost surely sequence,
the Julia set has Lebesgue measure zero.([FS]). Developing the idea in
this article, R.Briick, M.Biiger and S.Reitz investigated the case of random
quadratic polynomials in detail. They studied the Lebesgue measure and
connectedness of random Julia sets and density of random orbits.([BBR],
[Br], [Bui], [Bu2] $)$ .

There are some works in which higher dimensional random complex dy-
namics or holomorphic semigroups are discussed. $([\mathrm{Z}\mathrm{R}],[\mathrm{F}\mathrm{W}],[\mathrm{M}\mathrm{a}\mathrm{e}])$.

2Fibered rational maps

In this section we consider the fiber-preserving complex dynamics on fiber
bundles. This setting sometimes gives us an integrated point of view among
the field of skew product polynomials in higher dimensional comlex dynam
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ics, dynamics of semigroups generated by rational functions ahd random
complex dynamics.

Definition 2.1. ([J2]) Atriplet $(\pi, \mathrm{Y}, X)$ is called a” $\overline{\mathbb{C}}$-bundle”if

1. $\mathrm{Y}$ and $X$ are compact metric spaces,

2. $\pi$ : $\mathrm{Y}arrow X$ is acontinuous and surjective map,

3. There exists an open covering $\{U_{i}\}$ of $X$ such that for each $i$ there ex-
ists ahomeomorphism $\Phi_{i}$ : $U_{i}\cross\overline{\mathbb{C}}arrow\pi^{-1}(U_{i})$ satisfying that $\Phi_{i}(\{x\}\cross$

$\overline{\mathbb{C}})=\pi^{-1}(x)$ and $\Phi_{j}^{-1}\circ\Phi_{i}$ : $(U_{i}\cap Uj)\mathrm{x}\overline{\mathbb{C}}arrow(U_{i}\cap Uj)\mathrm{x}\overline{\mathbb{C}}$ is aMobius
map for each $x\in U_{i}\cap U_{j}$ .

Remark 1. By the condition 3, each fiber $\mathrm{Y}_{x}:=\pi^{-1}(x)$ has acomplex
structure. We also have that given $x_{0}\in X$ we may find acontinuous family
$i_{x}$ : $\overline{\mathbb{C}}arrow \mathrm{Y}_{x}$ of homeomorphisms for $x$ close to x$. Such afamily $\{i_{x}\}$ will be
called a“lacal parameterization.” Since $X$ is compact, we may assume that
there exists acompact subset $M_{0}$ of the set of Mobius transformations of $\overline{\mathbb{C}}$

such that $i_{x}\circ j_{x}^{-1}\in M\circ$ for any two local parametrizatios $\{i_{x}\}$ and $\{j_{x}\}$ . In
this paper we always assume that.

Definition 2.2. ([J2]) We say that a $\overline{\mathbb{C}}$-bundle $(\pi, \mathrm{Y}, X)$ satisfies the “con-
tinuous forms condition” if for each $x\in X$ there exists asmooth $(1, 1)$-form
$\omega_{x}>0$ inducing the metric on $\mathrm{Y}_{x}$ and $x\vdasharrow\omega_{x}$ is continuous. That is, if
$\{i_{x}\}$ is alocal parametrization, then the pull back $i_{x}^{*}\omega_{x}$ is apositive smooth
forms on $\overline{\mathbb{C}}$ depending continuously on $x$ .

Definition 2.3. Let $(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ and $g:Xarrow$
$X$ be continuous maps. We say that $f$ is arational map fibered over $g$ if

1. $\pi\circ f=g\circ\pi$

2. $f|_{\mathrm{Y}_{x}}$ : $\mathrm{Y}_{x}arrow \mathrm{Y}_{g(x)}$ is arational map for any $x\in X$ . That is, $(i_{g_{x}})^{-1}\circ f\circ i_{x}$

is arational map from $\overline{\mathbb{C}}$ to itself for any local parametrization $i_{x}$ at
$x\in X$ and $i_{g(x)}$ at $g(x)$ .

Notation: If $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is arational map fibered over $g$ : $Xarrow X$,
then we put $f_{x}^{n}=f^{n}|_{\mathrm{Y}_{x}}$ for any $x\in X$ and $n\in \mathrm{N}$ . Furthermore we put
$d_{n}(x)=\deg(f_{x}^{n})$ and $d(x)=d_{1}(x)$ for any $x\in X$ and $n\in \mathrm{N}$ .

Definition 2.4. Let $(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is arational
map fibered over $g:Xarrow X$. Then for any $x\in X$ we denote by $F_{x}$ the set of
points $y\in \mathrm{Y}_{x}$ which has aneighborhood $U$ in $\mathrm{Y}_{x}$ satisfying that $\{f_{x}^{n}\}_{n\in \mathrm{N}}$ is a
normal family in $U$, that is, $y\in F_{x}$ if and only if the family $Q_{x}^{n}=i_{x_{n}}^{-1}\circ f_{x}^{n}\circ i_{x}$

of rational maps on $\overline{\mathbb{C}}$ ( $x_{n}$ denotes $g^{n}(x)$ ) is normal near $i_{x}^{-1}(y)$ :note that
by Remark 1, this does not depend on the choices local parametrizations at $x$

and $x_{n}$ . Still equivalently, $F_{x}$ is the open subset of $\mathrm{Y}_{x}$ where the family $\{f_{x}^{n}\}$
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of mappings from $\mathrm{Y}_{x}$ into Y is local equicontinuous. We put $J_{x}\ovalbox{\tt\small REJECT}$ $\mathrm{Y}_{x}\ovalbox{\tt\small REJECT}_{\mathrm{s}_{\ovalbox{\tt\small REJECT}}}F_{x}$ .
Furthermore, we put

$\tilde{J}(f)=\overline{\cup J_{x}x\in X}’\tilde{F}(f)=\mathrm{Y}\backslash \tilde{J}(f)$ .

Remark 2. There exists afibered rational map f : Y $arrow \mathrm{Y}$ satysfying that
$\bigcup_{x\in X}J_{x}$ is NOT compact.

Remark 3. In [D] it was shown that if $M$ is aruled surface and $f$ : $Marrow M$

is anon-constant holomorphic map, then $f$ is actually afibered rational map
on the $\overline{\mathbb{C}}$-bundle $M$.

We can construct afibered rational map on trivial bundle from agener-
ator system of asemigroup generated by rational functions. To investigate
the dynamics of semigroups, we sometimes study the fibered rational maps.

2.1 Potential Theory and Measure Theory

We need some notations from [J2] and [S4], concerning potential theoritic as-
pects. Let $(\pi, \mathrm{Y}, X)$ be $\mathrm{a}\overline{\mathbb{C}}$-bundle satisfying the continuous forms condition
with afamily $\{\omega_{x}\}_{x\in X}$ of positive $(1, 1)$ forms Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be arational
map fibered over $g$ : $Xarrow X$. Let $x\in X$ be apoint. We set $x_{n}=g^{n}(x)$

for each $n\in \mathrm{N}$ . The form $\omega_{x}$ on $\mathrm{Y}_{x}$ induces ameasure which is also called
$\omega_{x}$ on $\mathrm{Y}_{x}$ or even on Y. As measures on $\mathrm{Y}$ we have that $x\succ\rangle$ $\omega_{x}$ is weakly
continuous. For each continuous function $\varphi$ on $\mathrm{Y}_{x}$ let $(f_{x}^{n})_{*}\varphi$ be the contin-
uous function on $YXn$ defined by

$((f_{x}^{n})_{*} \varphi)(z)=\sum_{f_{x}^{n}(w)=z}\varphi(w)$
for each $n\in \mathrm{N}$.

We define pullbacks of measures by duality: $\langle(f_{x}^{n})^{*}\nu, \varphi\rangle=(\nu, (f_{x}^{n})_{*}\varphi\rangle$ . Let
$\mu_{x,n}$ be the probability measure on $\mathrm{Y}_{x}$ defined by $\mu_{x,n}=\frac{1}{d_{n}(x)}(f_{x}^{n})^{*}\omega_{x_{n}}$ .

We $\mathrm{w}\mathrm{i}\mathrm{U}$ lift $f_{x}$ : $\mathrm{Y}_{x}arrow \mathrm{Y}_{x_{1}}$ to self maps of $\overline{\mathbb{C}}$ and $\mathbb{C}_{*}^{2}:=\mathbb{C}^{2}\backslash \{0\}$ . Let $i_{x}$

and $i_{x_{1}}$ be local parametrizations near $x$ and $x_{1}$ . Define $Q_{x}$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ to be a
rational map and $R_{x}$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ to be ahomogeneous polynomial map, both
of degree $d(x)$ , such that

$\sup\{|R_{x}(z,w)| : |(z, w)|=1\}=1$

and such that
$f_{x}\circ i_{x}=i_{x_{1}}\mathrm{o}Q_{x}$ , $Q_{x}\mathrm{o}\pi’=\pi’\mathrm{o}R_{x}$,

where we denote by $\pi’$ the projection from $\mathbb{C}_{*}^{2}$ to C. Given the local parametriza-
tions $i_{x}$ and $i_{x_{1}}$ these properties determine $Q_{x}$ uniquely, and $R_{x}$ uniquely
up to multiplication by acomplex number of $\mathrm{u}\overline{\dot{\mathrm{m}}}\mathrm{t}$ modulus.

Now consider and orbit $(xj)j\in \mathrm{N}$ in $X$ , select parametrizations at each
point $x_{j}$ and let $R_{x_{\mathrm{j}}}$ be the corresponding homogeneous selfmaps of $\mathbb{C}_{*}^{2}$ . Let
$R_{x}^{n}$ be the composition $RXn\circ\cdots\circ R_{x}$ . Then $R_{x}^{n}$ is ahomogeneous poly-
nomial mapping of $\mathbb{C}_{*}^{2}$ of degree $d_{n}(x)$ . Notice that $R_{x}^{n}$ is determined, up
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to multiplication of by acomplex number of unit modulus, by the local
parametrizations at $x$ and $x_{n}$ .

Given alocal parametrization $i_{x}$ : $\overline{\mathbb{C}}arrow \mathrm{Y}_{x}$ there exists asmooth potential
$G_{x,0}$ for $\omega_{x}$ in the sense that $\omega_{x}=dd^{c}(G_{x,0}\circ s\circ i_{x}^{-1})$ , where $s$ is any local
section of $\pi’$ and $d^{c}= \frac{1}{2\pi}$

.
$(\overline{\partial}-\partial)$ .

Define the plurisubharmonic function $G_{x,n}$ on $\mathbb{C}_{*}^{2}$ by

$G_{x,n}= \frac{1}{d_{n}(x)}G_{x,0}\circ R_{x}^{n}$ .

If we change the local parametrizations at $x_{n}$ and the potential $G_{x,0}$ , then
the modified plurisubharmonic function $\tilde{G}_{x,n}$ satisfies that there exists a
constant $C>0$ such that

$|G_{x,n}(z, w)- \tilde{G}_{x}^{n}(z, w)|\leq\frac{C}{d_{n}(x)}$ , (1)

for all x $\in X$ , (z, w) and n $\in \mathrm{N}$ . By (1) and the arguments in [J2] and [S4],
we get the following.

Proposition 2.5. Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle satisfying the continuous
forms condition with a family $\{\omega_{x}\}_{x\in X}$ of positive $(1, 1)$ forms Let $f$ :
$\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g:Xarrow X$. Assume that $d(x)\geq 2$ for
each $x\in X$ . Then we have the following.

1. $\mu_{x,n}$ converges to a probability measure $\mu_{x}$ on $\mathrm{Y}_{x}$ weakly as $narrow\infty$ for
each $x\in X$ .

2. GXin converges to a continuous plurisubharmonic function $G_{x}$ locally
uniformly on $\mathbb{C}_{*}^{2}$ as $narrow\infty$ for each $x\in X$. This function does not de-
pend on the choice of local parametrizations at $xj,j\geq 1$ and potentials
$G_{x,0}$ .

3. $\mu_{x}=(i_{x}^{-1})_{*}(dd^{c}(G_{x}\circ s))$ where $s$ is a local section of $\pi’$ : $\mathbb{C}_{*}^{2}arrow\overline{\mathbb{C}}$. Fur-
ther $Gx(z,w)\leq\log|(z,w)|+O(1)$ as $|(z, w)|arrow\circ \mathrm{p}$ and $G_{x}$ ( $\mathrm{z}$ , Arp) $=$

$G_{x}(z, w)+\log$ Afor each A6 $\mathbb{C}$ , for each $x\in X$ .

4. $G_{x_{1}}\mathrm{o}R_{x}=d(x)\cdot$ $G_{x}$ for each $x\in X$ .

5. if x $arrow x’$ then $G_{x}arrow G_{x’}$ uniformly on $\mathbb{C}_{*}^{2}$ .
6. $(f_{x})_{*}\mu_{x}=\mu_{x_{1}}$ , $(f_{x})^{*}\mu_{x_{1}}=d(x_{1})\cdot$

$\mu_{x}$ for each $x\in X$ .

7. $\mu_{x}$ puts no mass on polar subsets of $\mathrm{Y}_{x}$ for each x $\in X$.
8. x $\vdash*\mu_{x}$ is continuous with respect to the weak topology of measures in

Y.

9. $supp(\mu_{x})=J_{x}$ for each x $\in X$ .
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10. $J_{x}$ has no isolated points for each x $\in X$ .

11. $x\vdash*J_{x}$ is lower semicontinuous with respect to the Hausdorff metric
in the space of non-empty compact subsets of Y. That is, if $x$ , $x^{n}\in$

$X,x^{n}arrow x$ as $narrow\infty$ and $y\in \mathrm{Y}_{x}$ , then there exists a sequence $(y_{n})$ of
points in $\mathrm{Y}$ with $y_{n}\in \mathrm{Y}_{x^{n}}$ for each $n\in \mathrm{N}$ such that $y_{n}arrow y$ as $narrow\infty$ .

2.2 Entropy

Now we show some results on entropy of rational maps on $\overline{\mathbb{C}}$-bundles using
the arguments in [J2].

Notation: Let $(\mathrm{Y}, d)$ be ametric space. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be acontinuous
mapping. For any compact subset $Z$ of $\mathrm{Y}$ we denote by $h(f, Z)$ the entropy
of $f$ on $Z$. We set $h(f)=h(f, \mathrm{Y})$ . For any $f$-invariant probability measure
$\nu$ on $\mathrm{Y}$ we denote by $h_{\nu}(f)$ the metric entropy of $f$ with respect to $\nu$ . If
$g$ : $Xarrow X$ is acontinuous mapping on acompact metric space $X$ and
$\pi$ : $\mathrm{Y}arrow X$ is acontinuous mapping such that $g\circ\pi=\pi\circ f$, then we denote
by $h_{\nu}(f|g)$ the metric entropy of $f$ relative to $g$ with respect to $\nu$. See [J2]
for these notations and definitions.

Theorem 2.6 ([J2],[S6]). Let $(\pi, \mathrm{Y},X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be
a rational map fibered over $g:Xarrow X$. Then the following holds.

1. $h(f, \mathrm{Y}_{x})\leq\lim\sup_{narrow\infty}\frac{1}{n}\sum_{j=1}^{n-1}\log d(x_{n})$ for any $x\in X$ . If the function
$d(x)$ is constant, then $h(f,\mathrm{Y}_{x})=\log d$ .

2. If $\mu$ is an $f$ -invariant probability measure on Y, then we have

$h_{\mu}(f|g) \leq\int_{X}\log d(x)d(\pi_{*}\mu)(x)$ .

3. $h(f) \leq\sup\{h_{\pi_{\mathrm{r}}\mu}(g)+\int_{X}\log d(x)d(\pi_{*}\mu)(x))\}$, where the supremum is
taken over all $f$ -invariant probability measure$s$ $\mu$ on Y. If the function
$d(x)$ is constant, then we have $h(f)=h(g)+\log d$.

Theorem 2.7 ([J2],[S6]). Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle satisfying the con-
tinuous forms condition eryith a family $(\omega_{x})_{x\in X}$ of positive $(1, 1)$ forms Let
$f:\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g:Xarrow X$. Assume that $d(x)\geq 2$

for any $x\in X$ . Let $\mu’$ be a $g$ -invariant Borel probability measure on $X$ .
Define the measure $\mu$ on $\mathrm{Y}$ by:

$\langle\mu, \varphi\rangle=\int_{X}(\int_{\mathrm{Y}_{l}}\varphi(y)d\mu_{x}(y))d\mu’(x)$

for continuous funcitions $\varphi$ on $\mathrm{Y}$, where $\mu_{x}$ is the measure in Proposi-
tion 2.5. Then eve have the following
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1. $\mu$ is f-invariant
2. if $\mu’$ is ergodic, then so is $\mu$ .

3. if $\mu’$ is (strongly)mixing, then so is $\mu$ .

4. $h_{\mu}(f|g)= \sup h_{\nu}(f|g)=\int_{X}\log d(x)d\mu’(x)$ , where the supremum is
$\nu$

taken over all $f$ -invariant probability measures $\nu$ satisfying $\pi_{*}\nu=\mu’$ .

Problem. The interesting problems concerning the above result are:

1. the uniqueness of the measure $\mu$ with $\pi_{*}\mu=\mu’$ which gives us the
equality in Therein 2.7.4.

2. the uniqueness of the maximal entropy measure of the fibered rational
maps.

Here are some results concerning these problems.

Theorem 2.8 ([J2]). Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle satisfying the continuous
forms condition with a family $(\omega_{x})_{x\in X}$ of positive $(1, 1)$ forms Let $f$ : $\mathrm{Y}arrow$

$\mathrm{Y}$ be a rational map fibered over $g$ : $Xarrow X$. Assume that there exist $a$

constant integer $d\geq 2$ such that $d(x)=d$ for each $x\in X$ . Let $\mu’$ be $a$

$g$ -invariant Borel probability measure on X. Define the measure $\mu$ on $\mathrm{Y}$ as
in Theorem 2.7 Let $\nu$ be another invariant Borel probability measure for $f$

such that $\pi_{*}\nu=\mu’$ . Then the following holds.

1. If $h_{\nu}(f|g)=\log d$, then $\nu=\mu$ .

2. If $h_{\nu}(f)=\mathrm{h}\mathrm{u}(\mathrm{J})$ , then $\nu=\mu$ .

Further, if $g$ has a unique measure $\mu$’of maximal entropy, then $\mu$ , defined
as in Theorem 2.7 is the unique measure of maximal entropy for $f$ .

Now we consider the case of skew product maps associated with finitely
generated semigroups of rational functions. Let $\{f1, \ldots, f_{m}\}$ be finitely
many rational functions. We set $\Sigma_{m}=\{1, \ldots, m\}^{\mathrm{N}}$ and let $\sigma$ : $\Sigma_{m}arrow\Sigma_{m}$

be the shift map. Let $\tilde{f}$ : $\Sigma_{m}\cross\overline{\mathbb{C}}arrow\Sigma_{m}\cross\overline{\mathbb{C}}$ be the skew product map
$\mathrm{c}$ efined by: $f\sim((x, y))=(\sigma(x), f_{x_{1}}(y))$ , where $x=(x_{1}, x_{2}\ldots)$ . We call this
$\tilde{f}$ the skew product map associated with the generator system $\{f_{1}\ldots, f_{m}\}$ .

Let $\tilde{K}$ be acompact subset of $\Sigma_{m}\cross\overline{\mathbb{C}}$ which is backward invariant under
$\tilde{f}$ . We define an operator $\tilde{B}_{a}$ on the space of complex valued continuous
functions $C(\tilde{K})$ as follows. For each element $\tilde{\varphi}\in C(\tilde{K})$ we set

$(\tilde{B}_{a}\tilde{\varphi})(z)=\Sigma_{\zeta\in\tilde{f}^{-1}(z)}\tilde{\varphi}(\zeta)\tilde{\psi}_{a}(\zeta)$

where $\tilde{\psi}_{a}(\zeta)=\frac{a_{w_{1}}}{d_{w_{1}}}$ if $\pi_{1}(()=(w_{1}, w_{2}, \ldots)$ .
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$\tilde{B}_{a}$ is abounded operator on $C(\tilde{K})$ .
Notation: If $G$ is asemigroup generated by non-constant rational func-

tions on $\overline{\mathbb{C}}$ with the semigroup operation being the composition of maps,
then $G$ is called arational semigroup. For any rational semigroup $G$ ,
we denote by $F(G)$ the Fatou set for Gri.e. the set of points $z$ which has
aneighborhood where $G$ is normal. We set $J(G)=\overline{\mathbb{C}}\backslash F(G)$ and this is
called the Julia set for $G$ . Further we set $B(G)= \{z|\# \bigcup_{g\in G}g^{-1}(z)<\infty\}$

and this is called the exceptional set for $G$ . For more details, see the section
of rational semigroups.

Theorem 2.9 ([S5]). Let $Gbe$ a rational semigroup generated by finitely
many non-constant rational functions ( $f_{1}$ , $\ldots$ , $f_{m}\rangle$ . Assume that there exists
an element $g0\in G$ of degree at least two, the exceptional set $B(G)$ for $G$

is included in $F(G)$ and $F(H)\supset J(G)$ where $H$ is a rational semigroup
defined by $H=\{h^{-1}|h\in Aut(\overline{\mathbb{C}})\cap G\}.$ ( if $H$ is empty, put $F(H)=\overline{\mathbb{C}}.$)
Let $\tilde{f}$ : $\Sigma_{m}\cross\overline{\mathbb{C}}arrow\Sigma_{m}\cross\overline{\mathbb{C}}$ be the skew product map associated with the
generator system $\{f_{1}, \ldots, f_{m}\}$ . Then all of the following hold.

1. For each weight $a=$ $(a_{1}, \ldots, a_{m})$ with $\sum_{j=1}^{m}a_{j}=1$ and $a_{j}>0$ ,
there eists a unique regular Borel probability measure $\tilde{\mu}_{a}$ on $\Sigma_{m}\cross\overline{\mathbb{C}}$

for each compact set $\tilde{K}$ which is included in $\Sigma_{m}\cross(\overline{\mathbb{C}}\backslash B(G))$ and
backward invariant under $\tilde{f}$, we have

$||\tilde{B}_{a}^{n}(\tilde{\varphi})-\tilde{\mu}_{a}(\tilde{\varphi})1||_{\tilde{K}}arrow 0$, as n $arrow\infty$

for any continuous function $\tilde{\varphi}$ on $\tilde{K}$ where ||. $||_{\tilde{K}}$ denotes the supremum
norm on $\tilde{K}$ and 1denotes the constant function taking its value 1.

2. $\tilde{B}_{a}^{*}(\tilde{\mu}_{a})=\tilde{\mu}_{a}$ and $\tilde{\mu}_{a}$ is $\tilde{f}$-invariant. The projection of $\tilde{\mu}_{a}$ onto $\Sigma_{m}$ is
the Be rnoulli measure with respect to the weight a.

3. The support of $\tilde{\mu}_{a}$ is equal to the “Julia set” $J\sim of$ $\tilde{f}$ .

4. $(\tilde{f},\tilde{\mu}_{a})$ is exact.

5. Let $\nu_{a}$ be the Bernoulli measure on $\Sigma_{m}$ corresponding to the weight
$a=$ $(a_{1}, \ldots,a_{m})$ . Then

$\sup_{\rho\in E(\tilde{[},\nu_{a})}h_{\rho}(\tilde{f}|\sigma)=\sum_{j=1}^{m}a_{j}\log\deg(f_{j})$ ,

where $E(T, \nu_{a})$ denotes the set of all ergodic $\tilde{f}$ invariant probability
measures $\rho$ on $\Sigma_{m}\cross\overline{\mathbb{C}}$ satisfying $(\pi_{1})_{*}(\rho)=\nu_{a}$ and $h_{\rho}(\tilde{f}|\sigma)$ denotes
the “relative metric entropy” of $\tilde{f}$ with respect to $\rho$ .
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6. The relative metric entropy of $\tilde{f}$ with respect to $\tilde{\mu}_{a}$ is:

$h_{\tilde{\mu}_{a}}( \tilde{f}|\sigma)=\sum_{\mathrm{j}=1}^{m}a_{j}\log\deg(f_{j})$

and $\tilde{\mu}_{a}$ is the unique element of $E(\tilde{f}, \nu_{a})$ satisfying the above.

7. Let $\tilde{\mu}$ be the measure for the weight

$\sum_{j=1}\deg(f_{j})$

$\tilde{a}=$
$( \frac{\deg(f_{1})}{m}$ , .. . ’

$\frac{\deg(f_{m})}{\sum_{j=1}^{m}\deg(f_{j})})$

.

Then $\tilde{\mu}$ is the unique maximal entropy measure and we have

$h( \tilde{f})=h_{\tilde{\mu}}(\tilde{f})=\log(\sum_{j=1}^{m}\deg(f_{j}))$ .

In particular, the projection of maximal entropy measure of $\tilde{f}$ onto the
base space $\Sigma_{m}$ is equal to the Bernoulli measure corresponding to the
above $w$ eight $\tilde{a}$ .

Remark 4. $\bullet$ David Boyd’s invariant measure([Bo is the projection
of $\tilde{\mu}$ to C. To show the convergence of $\tilde{\mu}_{a}^{n}$ we developed the method
in [Bol]. Considering the projection of $\tilde{\mu}_{a}$ to $\overline{\mathbb{C}}$ , the above result can
be regarded as ageneralization of the result on uniqueness of usual
“self-similar measures” of iterated function systems generated by some
similitudes.

$\bullet$ One of the motivations for the above result is to estimate the ‘entropy
of semigroup actions’. If $G$ is afinitely generated semigroup acting
on acompact metric space and $S=\{f_{1}, \ldots, f_{m}\}$ is afixed generator
system of $G$ , then we can define the entropy $h(G, S)$ of $G$ with respect
to $S$ in the same way as that of the entropy of any group action with
respect to afixed generator system of the group. By definition, we
have $h(G,S)\leq h(\tilde{f})$ , where $\tilde{f}$ is the skew product associated with the
generator system $S$ .

2.3 Skew product polynomials on $\mathbb{C}^{2}$

In this subsection we introduce the works of S.Heinemann and MJonsson
on skew product polynomials o$\mathrm{n}$

$\mathbb{C}^{2}$ . ([Hel],[He2],[J1]). The first research
on polynomial skew product on higher dimensional space was given by
S.Heinemann. ([Hel],[He2]).
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Definition 2.10. Apolynomial skew product on $\mathbb{C}^{2}$ of degree $d$ is amap of
the form $f(z, w)=(p(z), q(z, w))$ , where $p$ and $q$ are polynomials of degree
$d$ and where $p(z)=z^{d}+O(z^{d-1})$ and $q(z,w)=w^{d}+O(w^{d-1})$ .

Remark 5. If $f(z,w)=(p(z), q(z, w))$ is apolynomial skew product on $\mathbb{C}^{2}$ ,
then $f$ can be extended to aholomorphic map on $\mathrm{P}^{2}$ . Also we can consider a
fibered rational map $f$ : $J(p)\cross\overline{\mathbb{C}}arrow J(p)\cross\overline{\mathbb{C}}$ fibered over $p:J(p)arrow J(p)$ .

Theorem 2.11 ([J1]). Let $f(z, w)=$ ($p(z),$ $q(z$ , to)) be a polynomial skew
product map on $\mathbb{C}^{2}$ of degree $d\geq 2$ . Regarding $f$ as a map on $\mathbb{C}^{2}$ (or $\mathrm{P}^{2}$),
we associate a Green function $G$ , measuring the rate of escape to infinity,
a positive closed current $T= \frac{1}{2\pi}dd^{c}G$ and an invariant probability measure
$\mu=T\wedge T$. Let $\mu’$ be the maximal entropy measure for $p$ : $J(p)arrow J(p)$ .
Let $\{\mu_{x}\}_{x\in J(p)}$ be the family of probability measures in Proposition 2.5 con-
structed by the fibered rational map $f$ : $J(p)\cross\overline{\mathbb{C}}arrow J(p)$

$\cross\overline{\mathbb{C}}$ over $p:J(p)arrow$

$J(p)$ . Then we have
$\mu=\int_{J(p)}\mu_{x}d\mu’(x)$ .

In particular, the second Julia set $J_{2}$ for $f$ : $\mathrm{P}^{2}arrow \mathrm{P}^{2}$ , which is defined as
the support of $\mu$ , satisfies the following:

$J_{2}=\tilde{J}(f)$ ,

where $\tilde{J}(f)$ is the set defined in Definition 2.4 for the fibered rational rnap
$f$ : $J(p)\cross\overline{\mathbb{C}}arrow \mathrm{J}(\mathrm{p})\cross\overline{\mathbb{C}}$ over $p:J(p)arrow J(p)$ . Moreover, $J_{2}$ is the closure
of the repelling periodic points of $f:\mathbb{C}^{2}arrow \mathbb{C}^{2}$ .
Remark 6. Concerning Theorem 2.11, see aho Theorem 2.8. By Theo
rem 2.8, the map $f$ on $\mathbb{C}^{2}$ (or $\mathrm{P}^{2}$ ) in Theorem 2.11 has the unique maximal
entropy measure $\mu$ .

Let $f(z, w)=(p(z), q(z, w))$ be apolynomial skew product map on $\mathbb{C}^{2}$ of
degree $d\geq 2$ . Let $\mu$ be the maximal entropy measure for $f$ in Theorem 2.11.
We now investigate the Lyapunove exponent $\lambda_{1}$ , $\lambda_{2}$ with $\lambda_{1}\geq\lambda_{2}$ for $f$ with
respect to the measure $\mu$ . Let $\lambda(p)$ be the Lyapunov exponent for $p$ . Then
by Przytycki([P]), we know that

$\lambda(p)=\log d+\int G_{p}\mu_{c,p}$ ,

where $G_{p}$ is the Green function for $p$ and $\mu_{c,p}$ is acritical measure defined
by:

$\mu_{c,p}=$ $\sum\delta_{c}$ . (2)
$p(c)=0$
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Define $H=\log|\partial q/\partial y|$ . Define also anew critical measure $\mu_{c,q}$ by:

$\mu_{c,q}=(\frac{1}{2\pi})^{2}dd_{y}^{c}H\wedge dd_{x}^{c}G_{p}$ . (3)

Under these notations, we have the following result.

Theorem 2.12 ([J1]). Under the above, we have the followin$gs$ .

7. $\lambda_{1}=\log d+\int G_{p}\mu_{c,p}$ ,

2. $\lambda_{2}=\log d+\int G\mu_{c,q}$ .

Some types of polynomial skew products in $\mathbb{C}^{2}$ were investigated in [Hel]
and [He2] by S.Heinemann.

2.4 Quadratic fibered polynomials

In 1997 O.Sester investigated quadratic fibered polynomial maps in detail.
([Sel], [Se3]). Let

$f_{c}$ : $X\cross\overline{\mathbb{C}}arrow X\cross\overline{\mathbb{C}}$ , $f_{c}(x,y)=(g(x),y^{2}+c(x))$

be afibered polynomial map, where $X$ is acompact space, $g$ is acontinuous
map on $X$ and $c$ is acontinuous complex-valued function on $X$ considered
as aparameter. He constructed acompact connected configuration space
which gives acombinatorial model of asubset of the parameter space. Then
he explained how an abstract configuration can be realized by aquadratic
fibered polynomial. He defined the fiber equipotential curves and ex-
ternal rays for fibered polynomial maps. Then he used the idea of ‘Yoccoz
puzzle’ for quadratic fibered polynomial maps.

2.5 Semi-hyperbolicity

Notation :

$\bullet$ Let $Z_{1}$ and $Z_{2}$ be two topological spaces and $g$ : $Z_{1}arrow Z_{2}$ be amap.
For any subset $A$ of Z2, we denote by $c(g, A)$ the set of all connected
components of $g^{-1}(A)$ .

$\bullet$ for any $y\in\overline{\mathbb{C}}$ and $\delta>0$ , we put $B(y, \delta)=\{y’\in\overline{\mathbb{C}}|d(y, y’)<\delta\}$ ,
where $d$ is the spherical metric. Similarly, for any $y\in \mathbb{C}$ and $\delta>0$ we
put $D(y, \delta)=\{y’\in \mathbb{C}||y -y’|<\delta\}$ .

Now we will define the (semi-)hyperbolicity of fibered rational maps.
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Definition 2.13. Let $f$ be afibered rational map on a $\overline{\mathbb{C}}$-bundle. with
continuous forms $\{\omega_{x}\}$ . We say that $f$ is expanding along fibers if there
exists apositive constant $C$ and aconstant Awith $\lambda>1$ such that for each
$n\in \mathrm{N}$, we have

$\inf_{-}||(\tilde{f}^{n})’(z)||\geq C\lambda^{n}$,
$z\in\overline{J}(f)$

where we denote by $||\cdot$ $||$ the norm of the derivative with respect to the
metrics on fibers induced by $\{\omega_{x}\}$ .

Definition 2.14. (semi-hyperbolicity) Let $(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let
$f$ : $\mathrm{Y}arrow \mathrm{Y}$ be arational map fibered over $g$ : $Xarrow X$ . Let $N\in \mathrm{N}$ .
We say that apoint $z\in \mathrm{Y}$ belongs to $SH_{N}(f)$ if there exists apositive
number ($, aneighborhood $U$ of $\pi(z)$ and alocal parametrization $\{i_{x}\}$ in
$U$ such that for any $x\in U$, any $n\in \mathrm{N}$ , any $x_{n}\in g^{-1}(x)$ and any $V\in$

$c(i_{x}(B(i_{\pi(z)}^{-1}(z), \delta))$ , $f_{x}^{n})$ , we have

$\deg(f_{x}^{n}$: V $arrow i_{x}(B(i_{\pi(z)}^{-1}(z), \delta)))\leq N$ .

We set
$UH(f)=\mathrm{Y}\backslash \cup SH_{N}(f)N\in \mathrm{N}^{\cdot}$

We say that $f$ is semi-hyperbolic (along fibers) if for any point $z\in \mathrm{Y}$ there
exists apositive integer $N\in \mathrm{N}$ satisfying that $z\in SH_{N}(f)$ .

The result of the following lemma is abeauty deduced from semi-hyperbolicity.

Lemma 2.15 ([S4]). Let $V$ be a domain in $\overline{\mathbb{C}}$, $K$ a continuum in $\overline{\mathbb{C}}$ with
diamsK $=a$. Assume $V\subset\overline{\mathbb{C}}\backslash K$. Let $f$ : $Varrow D(0,1)$ be a proper holO-
morphic map of degree N. Then there exists a constant $r(N, a)$ depending
only on $N$ and $a$ such that for each $r$ with $0<r\leq r(N,a)$ , there eists $a$

constant $C=C(N,r)$ depending only on $N$ and $r$ satisfying that for each
connected component $U$ of $f^{-1}(D(0,r))$ ,

diams sU $\leq C$,

where we denote by diams the spherical diameter. Also we have $C(N, r)arrow \mathrm{O}$

as r $arrow \mathrm{O}$ .

We need some technical conditions.

Definition 2.16 (Condition(Cl)). Let $(\pi,\mathrm{Y},X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ :
$\mathrm{Y}arrow \mathrm{Y}$ be arational fibered over $g$ : $Xarrow X$. We say that $f$ satisfies the
condition (C1) if there exists afamily $\{D_{x}\}_{x\in X}$ of topological discs with
$D_{x}\subset \mathrm{Y}_{x}$ , $x\in X$ such that the folowing three conditions are satisfied:

1. $\overline{\bigcup_{n\geq 0}f_{x}^{n}(D_{x})}\subset\tilde{F}(f)$ for each x $\in X$ .
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2. for any x $\in X$ , we have that $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{\mathrm{Y}}(f_{x}^{(n)}(D_{x}))arrow 0$, as n $arrow\infty$ .

3. $\inf_{x\in X}$ diam $\mathrm{Y}(D_{x})>0$ .

Definition 2.17 (Condition(C2)). Let $(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ :
$\mathrm{Y}arrow \mathrm{Y}$ be arational map fibered over $g:Xarrow X$. We say that $f$ satisfies
the condition (C2) if for each $x_{0}\in X$ there exists an open neighborhood $O$

of $x_{0}$ and afamily $\{D_{x}\}_{x\in O}$ of topological discs with $D_{x}\subset \mathrm{Y}_{x},x\in O$ such
that the following three conditions are satisfied:

1. $\overline{\bigcup_{n\geq 0}f_{x}^{n}(D_{x})}\subset\tilde{F}(f)$ for each x $\in O$ .

2. for any x $\in O$ , we have that $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{\mathrm{Y}}(f_{x}^{(n)}(D_{x}))arrow 0$, as n $arrow\infty$ .
3. x $-tD_{x}$ is continuous in 0.

The following results(Theorem 2.18,2.19) are the key to investigate the
dynamics of semi-hyperbolic fibered rational maps. The most important
thing is the continuity of the map $x\mapsto*J_{x}$ with respect to the Hausdorff
topology. Note that there exists afibered rational map such that $x\vdasharrow J_{x}$ is
not continuous. The following results are also keys to get an upper estimate
of Hausdorff dimension of semi-hyperbolic rational semigroups.

Theorem 2.18 ([S4]). Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be $a$

rational rnap fibered over $g:Xarrow X$ . Assume $f$ satisfies the condition (Cl).
Let $z\in \mathrm{Y}$ be a point with $z\in F_{\pi(z)}$ . Let $(i_{x})$ be a local parametrization.
Let $U$ be a connected open neighborhood of $i_{\pi(z)}^{-1}(z)$ in C. Suppose that there
exists a sequence (nj) of $\mathrm{N}$ such that $R_{j}:=i_{\pi f^{n_{\mathrm{j}}}(z)}^{-1}\circ f_{\pi(z)}^{n_{\mathrm{j}}}\circ i_{\pi(z)}$ converges to
a non-constant map $\phi$ uniformly on $U$ as $jarrow\infty$ . fbrther suppose $f_{\pi(z)}^{n_{j}}(z)$

converges to a point $z_{0}\in \mathrm{Y}$. Let $S_{i,j}=f_{g^{n}\cdot\pi(z)}^{n_{\mathrm{j}}-n}.\cdot$.for $1\leq i\leq j$ . We set

V $=\{a\in \mathrm{Y}_{\pi(z_{0})}|\exists\epsilon>0,$ $\lim\sup$ $\sup$ $d\{Sij\circ\varphi(\xi), \xi)=0\}$ ,
$iarrow\infty j>id(\xi,y)\leq\epsilon,\xi\in \mathrm{Y}_{\pi(z_{0})}$

where $\varphi$ is a map from $\mathrm{Y}_{\pi(z_{0})}$ onto $\mathrm{Y}_{g^{n}:\pi(z)}$ defined by the local triviality of
$\mathrm{Y}$ around $z_{0}$ . Then $V$ is a non-empty open proper subset of $\mathrm{Y}_{\pi(z\mathrm{o})}$ and we
have that

$\partial V\subset\tilde{J}(f)\cap UH(f)$ .

Remark 7. We call this domain V the rotation domain.

Theorem 2.19 ([S4],[S6]). (Key theorem; Let $(\pi, \mathrm{Y}, X)$ be a C-bundle.
Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g:Xarrow X$. Assume $f$ is semi-
hyperbolic along fibers and satisfies the condition (Cl). Then the following
hold.
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1. Let z cE Y be any point with zE $\mathrm{f}^{\mathrm{f}}.(z)$ . Then for any local parametriza-
$\ovalbox{\tt\small REJECT}_{-)}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$

$\ovalbox{\tt\small REJECT}$

than $(i_{x})$ and any open connected neighborhood U of $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{\mathrm{C}}’\ovalbox{\tt\small REJECT}_{)}(\mathrm{s})\ovalbox{\tt\small REJECT} n\mathrm{C}$ ,
$\mathrm{j}_{-1}$

there exists no subsequence of $C’\ovalbox{\tt\small REJECT}_{n}\ovalbox{\tt\small REJECT}(z)\circ f_{t}\ovalbox{\tt\small REJECT}_{(z)}\ovalbox{\tt\small REJECT}_{7\mathrm{i}(z)})_{\mathrm{n}}$ converging to $a$
$r_{t}f^{n}(z)\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}^{\ovalbox{\tt\small REJECT}_{rr(Z)}}$

non-constant map locally unifor mly on U.

2.
$\tilde{J}(f)=\cup J_{x}x\in X^{\cdot}$

3. Suppose the condition (C2) is satisfied. Then there exist positive con-
alon $g$

$\delta$, $L$ and $\lambda(0<\lambda<1)$ such that for any $n\in \mathrm{N}$,

$\sup\{diam\mathrm{Y}U|U\in c(\tilde{B}(z,\delta), f_{x_{n}}^{n}), z\in\tilde{J}(f), x_{n}\in g^{-n}(\pi(z))\}\leq L\lambda^{n}$ ,

where we denote by $\tilde{B}(z, \delta)$ the ball in $\mathrm{Y}_{\pi(z)}$ with the center $z$ and the
radius $\delta$ with respect to the metric in $\mathrm{Y}_{\pi(z)}$ induced by the metric of Y.

4. Assume that $(\pi, \mathrm{Y}, X)$ satisfies the continuous forms condition and that
$d(x)\geq 2$ for each $x\in X$ . Then we have that $x\vdash*J_{x}$ is continuous
with respect to the Hausdorff metric in the space of compact subsets of
Y.

5. Assume that $(\pi, \mathrm{Y}, X)$ satisfies the continuous forms condition with $a$

family $(\omega_{x})$ of positive $(1, 1)$ -forms and that $d(x)\geq 2$ for each $x\in X$ .
Then for any compact subset $K$ of $\tilde{F}(f)$ , we have that $\overline{\bigcup_{n\geq}\mathrm{o}f^{n}(K)}\subset$

$\tilde{F}(f)$ and there exist constants $C>0$ and $\tau<1$ such that for each
$n$ , $\sup||(f^{n})’(z)||\leq \mathrm{C}\mathrm{r}\mathrm{n}$ , where we denote by $||(f^{n})’(z)||$ the no$rm$

$z\in K$

of the derivative measured from $\omega_{\pi(z)}$ to $\omega_{g^{n}(\pi(z))}$ . In particular, the
condition (C2) is satisfied.

Theorem 2.20 ([S6]). (measure zero) Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let
$f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g$ : $Xarrow X$. Suppose $f$ is semi-
hyperbolic along fibers and satisfies the condition (C2). Then for each $x\in$

$X$ , the 2-dimensional Lebesgue measure of $J_{x}$ is equal to zero.

Definition 2.21. Let $C$ be apositive number. Let $K$ be aclosed subset
of C. We say that $K$ is $C$-uniformly perfect if for any doubly connected
domain $A$ in $\overline{\mathbb{C}}$ satisfying that both two connected components of $\overline{\mathbb{C}}\backslash A$ have
non-empty intersection with $K$, the modulus of $A$ is less than $C$.

Theorem 2.22 ([S6]). (uniform perfectnessj Let $(\pi, \mathrm{Y}.X)$ be a C-bundle
with continuous forms condition. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered
over $g$ : $Xarrow X$ with $d(x)\geq 2$ for any $x\in X$ . Suppose that $f$ is semi-
hyperbolic along fiberes and satisfies the condition (Cl). Then there exists
a positive constant $C$ such that $J_{x}$ is $C$-unifomly perfect for any $x\in X$ .

15

92



Notation: Let yE C and bc. C be two distinct points. Let E be a
curve in C joining y to b satisfying that $E^{\ovalbox{\tt\small REJECT}}’$ {b}C C. For any c $\ovalbox{\tt\small REJECT}$ 1 we set

car (E, c, y,$b)= \cup D(zz\in E\backslash \{y,b\}’\frac{|y-z|}{c})$ .

This is called the $c$-carrot with core E and vertex y joining y to b.

Definition 2.23. Let $V$ be asubdomain of C. Let $c\geq 1$ be anumber.
We say that $V$ is a $c$-John domain if there exists apoint $y0\in\overline{V}$ satisfying
that for any $y\in V$ $\langle$ $\{y0\}$ there exists acurve $E$ joining $y0$ to $y$ such that
$E\backslash \{y_{0}\}\subset \mathbb{C}$ and

car $(E, c, y, y\mathrm{o})\subset V$.
In the above the point $y_{0}$ is called the center of John domain V.

Remark 8. Johnness implies many good properties ([NV], [Jone]).For ex-
ample, if V is aJohn domain, then the following facts hold.. If $\infty\in\overline{V}$, then the center of V is $\infty$ .. Let $a\in\partial V\backslash \{\infty\}$ and $b\in V$. Then there exists acurve $E$ joining $a$

to $b$ and aconstant $c$ such that car $(E, c, a, b)\subset V$. In particular, $a$ is
accessible from $b$ .. $V$ is finitely connected at any point in $\partial V$ : that is, if $y\in\partial V$, then
there exists an arbitrary small open neighborhood $U$ of $y$ in $\overline{\mathbb{C}}$ such
that $U\cap V$ has only finitely many connected components.. If V is simply connected and $\partial V\subset \mathbb{C}$ , then we have that $\partial V$ is locally
connected.. If $\partial V\subset \mathbb{C}$ then $\partial V$ is holomorphic removable: that is, if $\varphi$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ is a
homeomorphim and is holomorphic on $\overline{\mathbb{C}}\backslash \partial V$, then $\varphi$ is holomorphic
on C. From this fact, we can deduce that the 2-dimensional Lebesgue
measure of $\partial V$ is equal to zero.

Theorem 2.24 ([S6]). (Johnness; Let $(\pi, \mathrm{Y}=X\cross\overline{\mathbb{C}}, X)$ be a trivial
$\overline{\mathbb{C}}$ -buundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational rnap fibered over $g$ : $Xarrow X$

satisfying that $f_{x}$ is a polynomial with $d(x)\geq 2$ for any $x\in X$ . Then there
exists a positive constant $c$ such that for any $x\in X$ the basin of infinity
$A_{x}:=\{y\in \mathrm{Y}_{x}|f_{x}^{n}(y)arrow\infty, narrow\infty\}$ in $\mathrm{Y}_{x}$ (here we identify $f_{x}^{n}$ with $a$

usual polynomial) satisfies that it is a $c$-John domain.

Remark 9. In the Theorem 2.24 ifX is aset consisting of one point, then $f$

is semi-hyperbolic if and only if the basin of infinity is aJohn domain([CJY]).
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3Rational semigroups

For aRiemann surface $S$ , let End(5) denote the set of all holomorphic
endomorphisms of $S$ . It is asemigroup with the semigroup operation being
composition of maps. Arational semigroup is asubsemigroup of End(C)
without any constant elements. We say that arational semigroup $G$ is a
polynomial semigroup if each element of $G$ is apolynomial.

Definition 3.1. Let $G$ be arational semigroup. We set

$F(G)=$ {z $\in\overline{\mathbb{C}}|G$ is normal in aneighborhood of z}, $J(G)=\overline{\mathbb{C}}\backslash F(G)$ .

$F(G)$ is called the Fatou set for $G$ and $J(G)$ is called the Julia set for $G$ .
The backward orbit $G^{-}(z)$ of $z$ and the set of exceptional points $E(G)$ are
defined by: $G^{-}(z)$ $= \bigcup_{g\in G}g^{-1}(z)$ and $E(G)=\{z\in\overline{\mathbb{C}}|\# G^{-}(z)\leq 2\}$ .

Definition 3.2. Asubsemigroup $H$ of asemigroup $G$ is said to be of finite
index if there is afinite collection of elements $\{g_{1},g_{2}, \ldots,g_{n}\}$ of $G$ such that
$G= \bigcup_{\dot{\iota}=1\mathit{9}:}^{n}H$. Similarly we say that asubsemigroup $H$ of $G$ has cofinite
index if there is afinite collection of elements $\{g_{1},g_{2}, \ldots,g_{n}\}$ of $G$ such
that for every $g\in G$ there exists a $j\in\{1,2, \ldots, n\}$ such that $\mathit{9}jg$

$\in H$.

Next results were shown in [HM1]. F.Ren’s group in China has shown
almost the same results(dealing with all meromorphic semigroups).

Theorem 3.3 $([\mathrm{H}\mathrm{M}1],[\mathrm{G}\mathrm{R}])$ . Let G be a rational semigroup.

1. For each f $\in G$ , we have $f(F(G))\subset F(G)$ and $f^{-1}(J(G))\subset J(G)$ .
Note that we do not have that the equality holds in general.

B. If a subsemigroup $H$ of $G$ is of finite or cofinite index, then $J(H)=$
$J(G)$ . In particular, when $G$ is a rational semigroup generated by finite
elements $\{f_{1}, f_{2}, \ldots f_{n}\}$ and $m$ is an integer, if we set

$H_{m}=$ {g $=f_{j_{1}}\cdots$ $fj_{k}\in G|m$ divides k},

$I_{m}=$ {g $\in G$ |g is a product of some elements of word length m}

then $J(G)=J(H_{m})=\mathrm{J}(/\mathrm{m})$ . Here we say an element f $\in G$ is of
word length m if m is the minimum integer such that f $=fj_{1}\ldots$ $fj_{m}$ .

3. If $J(G)$ contains at least three points, then $J(G)$ is a perfect set.

4. If $J(G)$ contains at least three points, then $\# E(G)\leq 2$ .
5. If a point $z$ is not in $E(G)$ , then for every $x\in J(G)$ , $x$ belongs

to $\overline{G^{-}(z)}$ . In particular if a point $z$ belongs to $J(G)\backslash E(G)$ , then
$G^{-}(z)$ $=J(G)$ .
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6. If $J(G)$ contains at least three points, then $J(G)$ is the smallest closed
backward invariant set containing at least three points. Here we say
that a set A is backward invariant under G $i\ovalbox{\tt\small REJECT}$ for each gE $(^{1}\ovalbox{\tt\small REJECT},$7 $[](A)\mathrm{C}$

A.

7. If $J(G)$ contains at least three points, then

$J(G)=\overline{\{z\in\overline{\mathbb{C}}|z}$isa repellingfixed point ofsomeg $\in G$}

If G is generated by acompact subset of End(C), then $J(G)$ has the
backward self-similarity. That is,

Lemma 3.4 ([S4]). Let $G$ be a rational semigroup and assume $G$ is gen-
erated by a precompact subset Aof End(C). Then

$J(G)=\cup f^{-1}(J(G))=\cup h^{-1}(J(G))f\in\Lambda h\in\overline{\Lambda}$
.

In particular if Ais compact then we have $J(G)= \bigcup_{f\in\Lambda}f^{-1}(J(G))$ .
We call this property the backward self-similarity of the Julia set.

3.1 Completely invariant sets

The Julia set of arational semigroup may not be forward invariant. For
example, $J(\langle z^{2},2z\rangle)=\{|z|\leq 1.\}$ . Hence anatural question is; what is
the smallest compact subset of $\overline{\mathbb{C}}$ which is completely invariant under each
element of the semigroup?

Definition 3.5 ([Stl],[St2]). We say that aset $\mathrm{Y}$ is completely invariant
under amap $f$ if $f^{-1}(\mathrm{Y})\subset \mathrm{Y}$ and $f(\mathrm{Y})\subset \mathrm{Y}$. For any rational semigroup
$G$ , we denote by CI(G) the smallest compact subset of $\overline{\mathbb{C}}$ which has at least
three points and is completely invariant under each element of $G$ . Actually
this set exists. This set CI(G) is called the completely invariant $\mathrm{J}$ set for
$G$ . Furthermore we set $W(G)=\overline{\mathbb{C}}\backslash CI(G)$ .

Theorem 3.6 ([Stl]). For polynomials $f$ and $g$ of degree at least two,
$J(f)\neq J(g)$ implies CI$(\langle f,g\rangle)=\mathbb{C}$.

To show this result, the Green’s function in the component of $W(G)$

which contains the infinity is used. Further for ‘rational’ semigroup, we
have

Theorem 3.7 ([St2]). Let $G$ be a rational semigroup of which any element
is of degree at least rruo. Then $W(G)$ can have only 0, 1, 2or infinitely many
components.

Here is aconjecture concerning the above problem.
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Conjecture 3.8 (St2). Let G be a rational semigroup of which any ele-
ment is of degree at least two. Suppose there exist two maps f and g in $G$

such that $J(f)I^{-}J(g)$ . Then $Cl(G)$ 7 C implies that $Cl(G)$ is a simple
closed curve in C.

Remark 10. It is not known that if the Fatou set $F(G)$ must have only
0, 1, 2, or infinitely many components when $G$ is afinitely generated ratio
nal semigroup. However, for each positive $n$ , an example of an infinitely
generated polynomial semigroup $G$ can be constructed with the property
that $F(G)$ has exactly $n$ components. These examples were constructed by
David Boyd in [B02]

3.2 Uniformly perfectness

Uniformly perfectness is an important notion in the complex analysis, as we
discussed in the section of semi-hyperbolicity of fibered rational maps. In
[HM2] it was shown that the Julia set of finitely generated rational semigroup
of which any element is of degree at least two is uniformly perfect. This
result was generalized in [St3] as follows. The proof of the paper is more
staight-forwaxd than that in [HM2] and this result by Stankewitz is valid for
Klenian groups, iteration of rational functions and iterated function systems.
In fact, the result was given for awide class of rational semigroups.

Theorem 3.9 ([St3]). Let $G=\langle g: : i\in I\rangle$ be a rational semigroup gen-
erated by the maps $\{g_{\dot{*}} : i\in I\}$ such that the supremum of the Lipschitz
constants of $gi$ with respect to the spherical metric in $\overline{\mathbb{C}}$ is bounded. Assume
that $\# J(G)\geq 3$ . Then the Julia set $J(G)$ is unifomly perfect.

Now we consider the uniformly perfectness of attractors of semigroups.

Definition 3.10 ([St4]). Let $U$ be asubdomain of $\mathbb{C}$ and $K$ acompact
subset of $U$. Let $\{g: : i\in I\}$ be afamily of non-constant maps from $U$ to $K$

such that there exists $0<s<1$ and ametric $d$ on $K$ which is compatible
with the induced topology ffom $\mathbb{C}$ satisfying that $d(g:(z),g:(w))\leq sd(z, w)$

for all $z,w\in K$ and aU $i\in I$ . Then We say that the semigroup $G$ generated
by $\{g: : i\in I\}$ is aCIFS(Contracting Iterated Function System) on $(U, K)$ .
For aCIFS on $(U, K)$ we set $A’(G)=\overline{\{z\in K|\exists g\in G,g(z)=z\}}$ (the c10
sure is taken in the topology of $K.$ ) and this set is called the attractor (in
the sense of this subsection). If $G$ is aCIFS on $(U, K)$ and each element of
$G$ is analytic on $U$ , then $G$ is called an analytic CIFS.

Theorem 3.11 ([St4]). Let $G=\langle g: : i\in I\rangle$ be an analytic CIFS on
$(U, K)$ . Let $A’$ be the attractor. Suppose there exist $0<\delta<$ diam(A)
and $C>0$ such that we have the following:

1. if a $\in A’$ and i $\in I$ , then $g_{i}$ is one-tO-One on $D(a, \delta)$
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2. $i\ovalbox{\tt\small REJECT}$ a cE $A’$ and $g_{\mathrm{i}}(a)\ovalbox{\tt\small REJECT}$ $a’$ then the branch $h_{\ovalbox{\tt\small REJECT}}$ of \yen such that $7^{\ovalbox{\tt\small REJECT}}\mathrm{i}\ovalbox{\tt\small REJECT}(a’)\ovalbox{\tt\small REJECT}$ $a$

is defined on $D(a’,$15),

3. if $a\in A’$ and $g_{\dot{*}}(a)=a’$ , then the branch $h_{i}$ of $g_{\dot{1}}^{-1}$ such that $h_{:}(a’)=a$

satisfies
$|h_{i}(z)-h:(a’)|\leq C|z-a’|$

for all $z\in\overline{D(a’,\delta/10)}$.

Then, if the attractor set $A’$ has infinitely many points, then $A’$ is uniformly
perfect. Note that in the assumption we take the Euclidian metric.

Corollary 3.12 ([St4]). Let $G=\langle g_{i} : i\in I\rangle$ be an analytic CIFS on
$(U, K)$ . Let $A’$ be the attractor. Suppose that there exists y7 $>0$ where
$|g_{i}’(a)|\geq\eta$ for all $a\in A’$ and all $i\in I$ . If $A’$ has infinitely many points, then
$A’$ is uniformly perfect.

If the attractor set has acritical point of an element of G, then the
attractor set may not be uniformly perfect. In fact,

Example 3.13 (St4). Let $G=\langle z^{23}, (z-1/2)^{2}+1/2\rangle$ . Then $G$ is actually
an analytic CIFS on some $(U, K)$ and the attractor set is NOT uniformly
perfect.

3.3 Normality of inverse branches

We introduce aresult by A.Hinkkanen and G.Martin.

Theorem 3.14 ([HM3]). Let $G$ be a rational semigroup whose every el-
ement has degree at least 2. Suppose that any seqence in $G$ contains $a$

subsequence, say $f_{j}$ , such that each $f_{j}$ can be factorized as $f_{j}=g_{J}\circ\varphi$ for
rational functions $gj$ and $\varphi$ that need not be elements of $G$ , where $\varphi$ is in-
dependent of $j$ and has degree at least 2. Let $D\subset\overline{\mathbb{C}}$ be a domain. Let $\mathcal{F}$ be
a family of single-valued mermorphic functions in $D$ such that each element
$f$ of $\mathcal{F}$ is a branch of the inverse of some element of $G$ in D. Then $\mathcal{F}$ is $a$

normal family.

Remark 11. Theorem 3.14 was used in [Bol] and [S5] to show the conver-
gence of the iteration of the operators $\tilde{B}_{a}$ . (See Theorem 2.9). K.Maegawa
investigated the normality of inverse branches of fibered rational maps in
higher dimension.([Mae]).

3.4 Wandering or no wandering domains

Next we define stable basin, type of the basins and wandering domains.

Definition 3.15. Let $G$ be arational semigroup and $U$ aconnected com-
point of $F(G)$ .
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$*\mathrm{F}\mathrm{o}\mathrm{r}$ each gEG, we denote by U, the connected component of $F(G)$

containing $g(U)$ .
\bullet U is called awandering domain if there exist infinitely many distinct

components Uj of $F(G)$ and elements gj of G such that $gj(U)\subset U_{j}$ .

\bullet We say that U is astable basin if there is an element g $\in G\backslash \mathrm{A}\mathrm{u}\mathrm{t}\overline{\mathbb{C}}$

such that $g(U)\subset U$. And we set

$G_{U}=$ {g$\in G|g(U)\subset U\}\mathrm{d}\mathrm{e}\mathrm{f}$ .

\bullet Given a stable basin U for G we say that it is

1. attracting if $U$ is asubdomain of an attracting basin of each
$g\in G_{U}$ of degree at least two;

2. superattracting if $U$ is asubdomain of asuperattracting basin
of each $g\in Gu$ of degree at least two;

3. parabolic if $U$ is subdomain of aparabolic basin of each $g\in G_{U}$

of degree at least two;

4. Siegel if $U$ is asubdomain of aSiegel disk of each $g\in G_{U}$ of
degree at least two;

5. Herman if $U$ is asubdomain of aHerman ring of each $g\in G_{U}$

of degree at least two.

Definition 3.16 ([HM1]). Let $G$ be arational semigroup containing an
element $g$ with $\deg(g)\geq 2$ . We say that $G$ is nearly abelian if there is a
compact family of Mobius (or linear ffactional) transformations $\Phi=\{\varphi\}$

with the following properties.

\bullet $\varphi(F(G))=F(G)$ for all $\varphi\in\Phi$

\bullet for all f, g $\in G$ there is a $\varphi\in$ ( such that fg $=\varphi gf$

Theorem 3.17 ([HM1]). Let $G$ be a nearly abelian rational semigroup
with an element in of degree at least two. Then for each $g\in G$ of degree at
least two, we have $J(G)=J(g)$ .
Theorem 3.18 ([HM1]). Let $G$ be a nearly abelian rational semigroup
with an element in of degree at least two. Then $G$ has no wandering d0-
mains.

There is an important example.

Theorem 3.19 ([HM1]). There exists an infinitely generated polynomial
semigroup which has a wandering domain.

But here is aconjecture.
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Conjecture 3.20 ([HM1]). IfG is a finitely generated rational semigroup,
then there exists no wandering domain for the dynamics of G.

Theorem 3.21 ([HM1]). Let $G$ be a rational semigroup with an element
in of degree at least two. Suppose $G$ has no wandering domains. Let $U$

be any component of $F(G)$ . Then the forward orbit of $U$ under $G$ , that is,
$\{U_{g}\}_{g\in G}$ , contains a stable basin $W$ satisfying that $Gw$ is a cofineit index
subsemigroup of $G$ .

Theorem 3.22 ([HM1]). Let $G$ be a nearly abelian rational semigroup
with an element in of degree at least two. Let $U$ be a stable basin. Then
$U$ is either attracting, superattracting, parabolic, Siegel or He rman. In the
Siegel case the basin $U$ contains a single cycle fixed by each element of $Gu$ .
If $U$ is of Siegel or Heman type, then $Gu$ is abelian.

One of conjectures in [HM1] was solved in [Hal] by T.Harada.

Theorem 3.23 ([Hal]). If $G$ is a nearly abelian polynomial semigroup and
$G$ contains some polynomials of degree at least two, then there exists a neigh-
borhood of $\infty$ on which $G$ is analytically conjugate into $\langle$ $z\daggerarrow az^{n}$ : $|a|=$
$1$ , $n=1,2,3$, $\ldots\rangle$ .

3.5 Teichmiiller theory for rational semigroups

In this subsection we introduce the Teichmiiller theory for rational semi-
groups in [Ha2] by T.Harada. The following definitions are due to the paper
[MS].

Definition 3.24. Let $X$ be aRiemann surface and $G$ be asubsemigroup
of End(X). We denote by $D(X, G)$ the set of triplets $\{(\varphi, \mathrm{Y}, H)\}$ where $\mathrm{Y}$

is aRiemann surface, $H$ is asubsemigroup of End(F), $\varphi$ : $Xarrow \mathrm{Y}$ is a
quasi-conformal map, and they satisfy that $\varphi\circ G\circ\varphi^{-1}=H$ . Two elements
$(\varphi_{1}, \mathrm{Y}_{1}, H_{1})$ and ( $\varphi_{2}$ , Y2, $H_{2}$ ) of $D(X, G)$ are said to be equivalent if there
exists abiholomorphic map $h:\mathrm{Y}_{1}arrow \mathrm{Y}$ such that $h\circ\varphi_{1}=\varphi_{2}$ . We denote by
Def(X, $G$) the equivalence classes and this is called the deformation space
for $(X, G)$ . Further let $M(X, G)$ be aspace of all measurable Beltrami dif-
ferentials which is invariant under the action of $G$ . It is aBanach space with
the $\sup$ norm. We denote by $M_{1}(X, G)$ the open unit ball centered at zero
in $M(X, G)$ . For ameasurable set $E$ included in $X$, we denote by $M_{1}(E, G)$

the subspace of $M_{1}(X, G)$ that consists of all elements whose supports are
included in $E$ .

Lemma 3.25. The map

$Def(X, G)\ni(\varphi, \mathrm{Y}, H)\vdasharrow\mu_{\varphi}\in M_{1}(X, G)$

is bijective, where $\mu_{\varphi}$ is the Beltrami differential of $\varphi$ .
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Definition 3.26. We define the q.c. automorphism group $QC(X.G)$ as the
set of all quasi-conformal maps tJ from X to itself which satisfies woGoti 1

$\ovalbox{\tt\small REJECT}$

G. This group acts on Def(X, G) as

w : $(\varphi,$Y,$H)\vdasharrow(\varphi\circ\omega^{-1},$Y, H)

for $\omega$ $\in QC(X, G)$ . Its normal subgroup $QC_{0}(X, G)$ is defined as the group of
all $\omega_{0}$ admitting auniformly quasiconformal isotopy $\omega_{t}$ Tel the ideal bound-
ary of $X$, such that $\omega_{1}=id_{X}$ and

$\omega_{t}\circ G\circ\omega_{t}^{-1}=G$, $(0\leq t\leq 1)$ .

The Teichmuller space Teich(X, $G$ ) for $(X, G)$ is defined as: Def(X, $G$ ) $/QC_{0}(X, G)$ .
The modular transformation group Mod(X, $G$ ) is defined as aquotient group:
$QC(X, G)/QC_{0}(X, G)$ .

Definition 3.27. Let $G$ be acountable rational semigroup. We denote by
$C(G)$ the set of critical points of some element of $G$ . We denote by $B(G)$

the set of fixed points of grand orbit relation of $G$ . We denote by $\hat{J}_{0}(G)$ the
grand orbit of $C(G)\cup B(G)$ under $G$ . We denote by $\hat{J}(G)$ the closure of
$\hat{J}_{0}(G)$ . We set $\hat{\Omega}(G)=\overline{\mathbb{C}}\backslash \hat{J}(G)$ . We resolve $\hat{\Omega}(G)$ to two parts. We define
$\Omega^{d:s}(G)$ as all points which have the discrete grand orbit and $\Omega^{fo1}(G)$ as a
complement of $\Omega^{d:s}(G)$ . Sometimes (G) is omitted.

Theorem 3.28 ([Ha2]). Let $G$ be a countable rational semigroup of which
Julia set has at least three points. Then

$Teich(\overline{\mathbb{C}}, G)\cong M_{1}(\hat{J}, G)\cross Teich(\Omega^{fol}, G)\cross Teich(\Omega^{d:s}/G, \emptyset)$ ,

uther $\Omega^{d:s}/G$ is a Riemann surface and the isomorphism is the one as com-
plex Banace manifolds. And Teich(C, $G$) has the unique complex structure
which makes the canonical projection

$Def(X, G)$ $arrow Teich(\mathbb{C},G)$

is holomorphic.

Theorem 3.29 ([Ha2]). Let $G$ be a finitely generated rational semigroup

of which Julia set has at least three points. Then Teich(C, $G$ ) is a finite
dimensional complex manifold.
Theorem 3.30 ([Ha2]). Let $G$ be a finitely generated rational semigroup

of which Julia set has at least three points. Suppose $G\cap Aut(\overline{\mathbb{C}})=\emptyset$ . Then
the action of Mod(C, $G$ ) to Teich(C, $G$) is properly discontinuous.

Remark 12. Most hope that there exists anearly abelian finitely generated
rational semigroup $G$ (not generated by one map) such that $\Omega^{d:s}(G)$ is not
empty.
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From the point of view ofTheorem 3.6, some may think that the following
conjecture is true.

Conjecture 3.31. Let $f$ and $g$ be two rational maps of degree at least two.

Suppose $J(f)\neq J(g)$ and $J(\langle f,g\rangle)=\mathbb{C}$ . Let $\mu$ be a Beltrami differential on
$\overline{\mathbb{C}}$ with the norm less than one. Suppose $\mu$ is invariant under both $f$ and $g$ .
Then $\mu=0$ .

Remark 13. From Theorem 3.29, we at least know that the space of Bel-
trami differentials on $\overline{\mathbb{C}}$ with the norms less than one which are invariant
under both $f$ and $g$ is afinite-dimensional ball.

3.6 Sub, Semi-hyperbolicity

Definition 3.32. Let $G$ be arational semigroup. We set

$P(G)=\cup$ {
$g\in G$

critical values of $g$ }.

We call $P(G)$ the post critical set of $G$ . We say that $G$ is hyperbolic if
$P(G)\subset F(G)$ . Also we say that $G$ is sub-hyperbolic if $\#\{P(G)\cap J(G)\}<\infty$

and $P(G)\cap F(G)$ is acompact set.

We denote by $B(x, \epsilon)$ aball of center $x$ and radius $\epsilon$ in the spherical
metric. We denote by $D(x, \epsilon)$ aball of center $x\in \mathbb{C}$ and radius $\epsilon$ in the
Euclidean metric. Also for any hyperbolic manifold $M$ we denote by $H(x, \epsilon)$

aball of center $x\in M$ and radius $\epsilon$ in the hyperbolic metric. For any rational
map $g$ , we denote by $B_{g}(x, \epsilon)$ aconnected component of $g^{-1}(B(x, \epsilon))$ . For
each open set $U$ in $\overline{\mathbb{C}}$ and each rational map $g$ , we denote by $c(U, g)$ the set
of all connected components of $g^{-1}(U)$ . Note that if $g$ is apolynomial and
$U=D(x, r)$ then any element of $c(U,g)$ is simply connected by the maximal
principle.

For each set $A$ in $\overline{\mathbb{C}}$ , we denote by $A^{i}$ the set of all interior points of $A$ .

Definition 3.33. Let $G$ be arational semigroup and $N$ apositive integer.
We set

$SH_{N}(G)$

$=$ $\{x\in\overline{\mathbb{C}}|\exists\delta(x)>0, \forall g\in G, \forall B_{g}(x, \delta(x)), \deg(g : B_{g}(x, \delta)arrow B(x, !))\leq N\}$

and $UH(G)=\overline{\mathbb{C}}\backslash (\cup N\in \mathrm{N}SH_{N}(G))$ .

Definition 3.34. Let $G$ be arational semigroup. We say that $G$ is semi-
hyperbolic (resp. weakly semi-hyperbolic) if there exists apositive integer
$N$ such that $J(G)\subset SH_{N}(G)(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}.\partial J(G)\subset SH_{N}(G))$ .
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Theorem 3.35 ([S4]). Let G be a rational semigroup. Assume that G is
weakly semi-hyperbolic and there is a point zE $F(G)$ such that the closure
of the $G$ -orbit $G(z)$ is included in $F(G)$ . Then for each x cE $F(G)$ , $G\ovalbox{\tt\small REJECT}$ x) $\mathrm{C}$

$F(G)$ and there is no wandering domain.

Definition 3.36. Let $U$ be an open set in C. Let $G$ be asemigroup gener-
ated by holomorphic maps from $U$ to $U$. We say that anon-empty compact
subset $K$ of $U$ is an attractor in $U$ for $G$ (in the sense of this subsection) if
$g(K)\subset K$ for each $g\in G$ and for any open neighborhood $V$ of $K$ in $U$ and
each $z\in U$, $g(z)\in U$ for all but finitely many $g\in G$ .

Definition 3.37. Let $G$ be arational semigroup. We set

$A_{0}(G)=\overline{G(\{z\in\overline{\mathbb{C}}|\exists g\in G}$with $\mathrm{g}(\mathrm{K})\geq 2$ , $g(z)=z$ and$|g’(z)|<1.\})$ ,

$\tilde{A}_{0}(G)=\overline{G(\{z\in F(G)|\exists g\in G}$with $\deg(g)\geq 2$ , $g(z)=z$ and$|g’(z)|<1.\})$ ,

$A(G)=\overline{G(\{z\in\overline{\mathbb{C}}|\exists g\in G,g(z)=z}$and $|g’(z)|<1.\})$ ,

$\tilde{A}(G)=\overline{G(\{z\in F(G)|\exists g\in G,g(z)=z}$and $|g’(z)|<1.\})$ ,

where the closure in the definition of $\tilde{A}_{0}(G)$ and $\tilde{A}(G)$ is considered in C.

Theorem 3.38 ([S4]). Let $G=\langle f_{1}$ , $f_{2}$ , $\ldots$ , $f_{m}$ ) be a finitely generated ra-
tional semigroup. Assume that $F(G)\neq\emptyset$, there is an element $g\in G$ such
that $\deg(g)\geq 2$ and each element of $Aut\overline{\mathbb{C}}\cap G$($if$ this is not empty) is
loxodromic. Also we assume all of the follo wing conditions;

1. $\tilde{A}_{0}(G)$ is a compact subset of $F(G)$ ,

2. any element of G with the degree at least two has neither Siegel disks
nor Hermann rings.

3. $\#(UH(G)\cap\partial J(G))<\infty$ and all the fied points of elements in $G$

contained in $UH(G)\cap\partial J(G)$ are repelling.

Then $\tilde{A}_{0}(G)=\tilde{A}(G)\neq\emptyset$ and for each compact subset $L$ of $F(G)$ ,

$\sup\{d(f_{\dot{1}_{n}}\ldots f_{\dot{1}1}(z),\tilde{A}(G))|z\in L, (i_{n}, \ldots, i_{1})\in\{1, \ldots,m\}^{n}\}arrow 0$ ,

as $narrow\infty$ , where we denote by $d$ the spherical metric. Also $\tilde{A}(G)$ is the
smallest attractor in $F(G)$ for G. Moreover we have that if $(h_{n})$ is a sequence
in $G$ consisting of mutually disjoint elements and converges to a map $\phi$ in
a subdomain $V$ of $F(G)$ , then $\phi$ is constant taking its value in $\tilde{A}(G)$ .
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3.7 Conditions to be semi-hyperbolic

In this section we will show some conditions to be semi-hyperbolic.

Theorem 3.39 ([S4]). Let $G=\langle f_{1}, f_{2}, \ldots, f_{m}\rangle$ be a finitely generated ra-
tional semigroup. Let $z_{0}\in J(G)$ be a point. Assume all of the following
conditions:

1. there exists a neighborhood $U_{1}$ of $z_{0}$ in $\overline{\mathbb{C}}$ such that for any sequence
$(g_{n})\subset G$ , any domain $V$ in $\overline{\mathbb{C}}$ and any point $\zeta\in U_{1}$ , toe have that
the sequence $(g_{n})$ does NOT converge to $\langle$ locally uniformly on $V$.

2. there exists a neighborhood $U_{2}$ of $z_{0}$ in $\overline{\mathbb{C}}$ and a positive real number $\tilde{\epsilon}$

such that if we set

$T=\{c\in\overline{\mathbb{C}}|\exists j, f_{j}’(c)=0, (G\cup\{id\})(fj(c))\cap U_{2}\neq\emptyset\}$

then for each $c\in T\cap C(fj)$ , we have $d(c, (G\cup\{id\})(fj(c)))>\tilde{\epsilon}$.

3. $F(G)\neq\emptyset$ .

Then $z_{0}\in SH_{N}(G)$ for some N $\in \mathrm{N}$ .

Now we get the sufficient and necessary condition to be semi-hyperbolic
for afinitely generated rational semigroup.

Theorem 3.40 ([S4]). Let $G=\langle f1, f_{2}, \ldots f_{n}\rangle$ be a finitely generated ra-
tional semigroup. Assume that there exists an element of $G$ with the degree
at least two, that each element of $Aut\overline{\mathbb{C}}\cap G$(if this is not empty) is loxO-
dromic and that $F(G)\neq\emptyset$ . Then $G$ is semi-hyperbolic if and only if all of
the following conditions are satisfied.

7. for each $z\in J(G)$ there exists a neighborhood $U$ of $z$ in $\overline{\mathbb{C}}$ such that for
any sequence $(g_{n})\subset G$ , any domain $V$ in $\overline{\mathbb{C}}$ and any point $\zeta\in U$, we
have that the sequence $(g_{n})$ does NOT converge to $\langle$ locally uniformly
on $V$

2. for each j $=1$ , \ldots , m each c $\in C(fj)\cap J(G)$ satisfies
$d(c, (G\cup\{id\})(f_{j}(c)))>0$

Theorem 3.41 ([S4]). Let $G=\langle f_{1}, f_{2}, \ldots, f_{m}\rangle$ be a finitely generated sub-
hyperbolic rational semigroup. Assume that there exists an element of $G$ with
the degree at least tuto, that each element of $Aut\overline{\mathbb{C}}\cap G$ ($if$ this is not empty)
is loxodromic, that there is no super attracting fixed point of any element of
$G$ in $J(G)$ and $F(G)\neq\emptyset$ . Then $G$ is semi-hyperbolic.
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3.8 Interior points of Julia sets

The Julia set of arational semigroup may have non-empty interior points. In
this subsection, we discuss about when Julia set of arational semigroup has
non-empty or empty interior points. Further we give asufficient condition
for Julia sets of semi-hyperbolic rational semigroups to be of 2-dimensi0nal
Lebesgue measure zero.

Firstable we give asufficient condition for interior of Julia sets to be
non-empty.

Theorem 3.42 ([HM2]). Let $G$ be a rational semigroup. Suppose $J(G)$ is
uniformly perfect. Further suppose that there exists an element $g\in G$ such
that $g$ has a superattracting fixed point $z_{0}$ in $J(G)$ . Then $z0$ is an interior
point of $J(G)$ .

Hence by Theorem 3.9, we get the following Corollary. From this, we
can easily get many examples of rational semigroups of which Julia sets have
non-empty interior points.

Corollary 3.43 ([St3]). Let $G=\langle g: : i\in I\rangle$ be a rational semigroup
generated by the maps $\{g_{i} : i\in I\}$ such that the supremum of the Lipschitz
constants of $g$:with respect to the spherical metric in $\overline{\mathbb{C}}$ is bounded. Assume
that $\# J$ ( $G\rangle$ $\geq 3$ . If a point $z\circ\in J(G)$ is a superattracting point of some
element of $G$ , then $z0$ is an interior point of $J(G)$ .

Now we give some sufficient conditions for interior of Julia sets to be
empty.

Theorem 3.44 ([S2]). Let $G=(f1,$ $f_{2}$ , $\ldots$
$f_{n}\rangle$ be a finitely generated ratiO-

nal semigroup. We assume that the $set\cup(:\dot{o})::\neq jf_{i}^{-1}(J(G))\cap f_{j}^{-1}(J(G))$ does
not contain any continuum. Then the Julia set $J(G)$ has no interior points.

Definition 3.45. Let $G=(f1,$ $f_{2}$ , $\ldots$ , $f_{m}\rangle$ be afinitely generated rational
semigroup. We say that $G$ satisfies the open set condition with respect to
the generators $f_{1}$ , $f_{2}$ , $\ldots$ , $f_{m}$ if there exists an open set $O$ such that for each
$j=1$ , $\ldots$ , $m$ , $f_{j}^{-1}(O)$ $\subset O$ and $\{f_{j}^{-1}(O)\}_{j=1,\ldots,m}$ are mutually disjoint.

Proposition 3.46 ([S4]). Let $G=\langle f1, f_{2}, \ldots, f_{m}\rangle$ be a finitely generated
rational semigroup. Assume that $G$ satisfies the open set condition with
respect to the generators $f_{1}$ , $f_{2}$ , $\ldots$ , $f_{m}$ and $O\backslash J(G)\neq\emptyset$ there $O$ is an
open set in the definition of the open set condition. Then $J(G):=\emptyset$ there
we denote by $J(G)$ :the interior of $J(G)$ .

Now we give asufficient condition for Julia sets of semi-hyperbolic ra-
tional semigroups to be of 2-dimensional Lebesgue measure zero.

Theorem 3.47 ([S4]). Let $G=\langle f1, f_{2}, \ldots, f_{m}\rangle$ be a finitely generated ra-
tional semigroup which is semi-hyperbolic, contains an element with the de-
gree at least teoo and satisfies the open set condition with respect to the
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generators $f_{l_{\rangle}}f_{2t}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$

?
$f_{m}\ovalbox{\tt\small REJECT}$ Let O be an open set in Definition 3.45. Assume

that 1(aon$J(G))<\mathrm{o}\mathrm{o}$ . Then the 2-dimensional Lebesgue measure of $J(G)$

is equal to 0.

3.9 Hausdorff dimension of Julia sets

We introduce aresult on an upper estimate of Haussdorff dimension of semi-
hyperbolic rational semigroups. Actually the key is the Theorem 2.19.

Definition 3.48. Let $G$ be arational semigroup and $\delta$ anon-negative num-
ber. We say that aBorel probability measure $\mu$ on $\overline{\mathbb{C}}$ is $\delta$-subconformal if
for each $g\in G$ and for each Borel measurable set $A$

$\mu(g(A))\leq\int_{A}||g’(z)||^{\delta}d\mu$,

where we denote by $||\cdot$ $||$ the norm of the derivative with respect to the
spherical metric. For each $x\in\overline{\mathbb{C}}$ and each real number $s$ we set

$S(s, x)= \sum_{g\in G}\sum_{g(y)=x}||g’(y)||^{-s}$

counting multiplicities and

$S(x)= \inf\{s|S(s, x)<\infty\}$ .

If there is not $s$ such that $S(s, x)<\infty$ , then we set $S(x)$ $–$ oo.Also we set

so(G)=inf{S(x)}, $s(G)= \inf${ $\delta|$ Hp : $\delta$-subconformal measure}

It is not difficult for us to prove the next result using the same method
as that in [Sul].

Theorem 3.49 ([S2]). Let $G$ be a rational semigroup which has at most
countably many elements. If there exists a point $x\in\overline{\mathbb{C}}$ such that $S(x)<\infty$

then there is a $S(x)$ -subconformal measure. In particular, we have $s(G)\leq$

$s_{0}(G)$ .

Proposition 3.50 ([S4]). Let $G=\langle f_{1}, f_{2}, \ldots, f_{m}\rangle$ be a finitely generated
rational semigroup. Assume that $G$ satisfies the open set condition with
respect to the generators $/i$ , $f_{2}$ , $\ldots$ , $f_{m}$ and $O\backslash J(G)\neq\emptyset$ where $O$ is an open
set in the definition of the open set condition. If there exists an attractor in
$F(G)$ for $G$ , then

$s_{0}(G)\leq 2$ .
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Theorem 3.51 ([S4]). Let $G$ be a rational semigroup generated by a gen-
erator system $\{f_{\lambda}\}_{\lambda\in\Lambda}$ such that $\bigcup_{\lambda\in\Lambda}\{f_{\lambda}\}$ is a compact subset of End(C).
Let $\tilde{f}$ be a rational skew product constructed by the generator system. As-
same $\tilde{f}$ is semi-hyperbolic along fibers and satisfies the condition $C\mathit{2}$ . Then
we have

$\dim_{H}(J(G))\leq s(G)$ .

Theorem 3.52 ([S4]). Let $G=\langle f1, f_{2}, \ldots, f_{m}\rangle$ be a finitely generated ra-
tional semigroup $w$ hich is semi-hyperbolic. Assume that $G$ contains an ele-
ment with the degree at least two, each element of $Aut\overline{\mathbb{C}}\cap G(if$ this is not
empty) is loxodromic and $F(G)\neq\emptyset$ . Then we have

$\dim_{H}(J(G))\leq s(G)\leq s\mathit{0}(G)$ .

Proof. By Theorem 3.51 and Theorem 3.49. $\square$

Remark 14 $(\mathrm{S}2,\mathrm{S}4)$ . Let $G=\langle f1,f_{2}, \ldots, f_{m}\rangle$ be afinitely generated hy-
perbolic rational semigroup which satisfies the strong open set condition (i.e.
$G$ satisfies the open set condition with an open set $O$ satisfying $O$ :) $J(G).)$ .
We assume that when $n=1$ the degree of $f_{1}$ is at least two. By the results
in [S4](The0rem 3.2 and the proof, Theorem 3.4 and Corollary 3.5), we have

$0<\dim_{H}J(G)=s(G)=s_{0}(G)<2$ .

Example 3.53 (S4). Let $G=(f1,$ $f_{2}\rangle$ where $f_{1}(z)=z^{2}+2$ , $f_{2}(z)=$

$z^{2}-2$ . Since $P(G)\cap J(G)=\{2, -2\}$ and $P(G)\cap F(G)$ is compact, we
have $G$ is sub-hyperbolic. By Theorem 3.41, $G$ is also semi-hyperbolic.
Since $f_{j}^{-1}(D(0,2))\subset D(0,2)$ for $j=1,2\mathrm{a}\mathrm{n}\mathrm{d}f_{1}^{-1}(D(0,2))\cap f_{2}^{-1}(D(0,2))=$

$\emptyset$ , $G$ satisfies the open set condition. Also $J(G)$ is included in $B=$
$\bigcup_{j=1}^{2}f_{j}^{-1}(\overline{D(0,2)})$ . Since $B\cap\partial D(0,2)=\{2, -2,2i, -2i\}$ , we get $(J(G)\cap
$\partial D(0,2))<\infty$ . By Corollary 3.47, we have $m_{2}(J(G))=0$, where we de-
note by $m_{2}$ the 2-dimensional Lebesgue measure. By Theorem 3.52 and
Proposition 3.50, we have also

$dim_{H}(J(G))\leq s(G)\leq s_{0}(G)\leq 2$ .

3.10 Using thermodynamical formalisms

Let $G$ be arational semigroup generated by $\{f1, \ldots, f_{m}\}$ . Under the same
notation as those in subsection of Entropy, let $\tilde{f}$ : $\Sigma_{m}\mathrm{x}\overline{\mathbb{C}}arrow\Sigma_{m}\cross\overline{\mathbb{C}}$ be
the skew product map associated with the generator system $\{f_{1}, \ldots, f_{m}\}$ .
that is, $\tilde{f}((w, x))=(\sigma(w), f_{w_{1}}(x))$ where $\sigma$ is the shift map on $\Sigma_{m}$ and
$w=$ $(w_{1},w_{2}, \ldots)$ .

In this section, we assume that $\tilde{f}$ is expanding along fibers (see the
definition in subsection of semi-hyperbolicity in fibered rational maps.)

We recall the following sufficient condition to be expanding.
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Theorem 3.54 ([S2]). Let $G=\langle f_{1}, f_{2}, \ldots f_{m}\rangle$ be a finitely generated hy-
perbolic rational semigroup. Assume that $G$ contains an element with the
degree at least two and each Mobius transfo rmation in $G$ is neither the iden-
tity nor an elliptic element. Then the skew product map $\tilde{f}:\Sigma_{m}\mathrm{x}\overline{\mathbb{C}}arrow\Sigma_{m}\cross\overline{\mathbb{C}}$

associated with the generator system $\{f1, \ldots, f_{m}\}$ is expanding along fibers.
For each $j=1$ , $\ldots$ , $m$ , let $\varphi j$ be aHolder continuous function on $f_{j}^{-1}(J(G))$ .

We set for each $(w, x)\in\tilde{J}$ , $\varphi((w,x))=\varphi_{w_{1}}(x)$ . Then $\varphi$ is aHolder con-
tinuous function on $\tilde{J}$ . We define an operater $L$ on $C(\tilde{J})=\{\psi$ : $\tilde{J}arrow \mathbb{C}|$

continuous}by

$L \psi((w, x))=\sum_{\tilde{f}((w’,y))=(w,x)}\frac{\exp(\varphi((w’,y)))}{\exp(P)}\psi((w’, y))$,

counting multiplicities, where we denote by $P=P(\tilde{f}|_{\tilde{J}}, \varphi)$ the pressure of
$(\tilde{f}|_{\tilde{J}}, \varphi)$ .

Lemma 3.55. With the same notations as the above, let $G=\langle f_{1}, f_{2}, \ldots f_{m}\rangle$

be a finitely generated expanding rational semigroup. Then for each set of
Holder continuous functions $\{\varphi j\}j=1,\ldots,m$ ’there exists a unique probability
measure $\tau$ on $\tilde{J}$ such that

$\bullet L^{*}\tau=\tau$,. for each $\psi\in C(\tilde{J})$ , $||L^{n}\psi-\tau(\psi)\alpha||_{\tilde{J}}arrow 0,narrow\infty$ , where we set
$\alpha=\lim_{larrow\infty}L^{l}(1)\in C(\tilde{J})$ and we denote by $||\cdot$ $||_{\tilde{J}}$ the supremum
norm on $\tilde{J}$ ,

\bullet $\alpha\tau$ is an equilibrium state for $(\tilde{f}|_{\tilde{J}}, \varphi)$ .

Lemma 3.56. Let $G=\langle f_{1}, f_{2}, \ldots f_{m}\rangle$ be a finitely generated expanding ra-
tional semigroup. Then there exists a unique number $\delta>0$ such that if we
set $\varphi_{j}(x)=-\delta\log(||f_{j}’(x)||),j=1$ , $\ldots$ , $m$ , then $P=0$ .

From Lemma 3.55, for this $\delta$ there exists aunique probability measure
$\tau$ on $\tilde{J}$ such that $L_{\delta}^{*}\tau=\tau$ where $L_{\delta}$ is an operator on $C(\tilde{J})$ defined by

$L_{\delta} \psi((w, x))=\sum_{\tilde{f}((w’,y))=(w,x)}\frac{\psi((w’,y))}{||(f_{w_{1}},)’(y)||^{\delta}}$ .

Also $\delta$ satisfies that

$\delta=\frac{h_{\alpha\tau}(\tilde{f})}{\int_{\tilde{J}}\tilde{\varphi}\alpha d\tau}\leq\frac{\log(\sum_{j=1}^{m}\deg(f_{j}))}{\int_{\tilde{J}}\tilde{\varphi}\alpha d\tau}$ ,

where $at= \lim_{larrow\infty}L_{\delta}^{l}(1)$ , we denote by $h_{\alpha\tau}(\tilde{f})$ the metric entropy of $(\tilde{f}, \alpha\tau)$

and $\tilde{\varphi}$ is afunction on $\tilde{J}$ defined by $\tilde{\varphi}((w,x))=\log(||f_{w_{1}}’(x)||)$ .
By these argument, we get the following result.
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Theorem 3.57 ([S7]). Let $G=\langle f_{1}, f_{2}, \ldots f_{m}\rangle$ be a finitely generated ex-
panding rational semigroup and $\delta$ the number in the above argument. Then

$\dim_{H}(J(G))\leq s(G)\leq\delta$ .

Moreover, if the sets $\{f_{j}^{-1}(J(G))\}$ are mutually disjoint, then dim#(J (G)) $=$

$\delta<2$ and $0<H_{\delta}(J(G))<\infty$ , where we denote by $H_{\delta}$ the 6-Hausd0rff
measure.

Corollary 3.58 ([S7]). Let $G=\langle f_{1}, f_{2}, \ldots f_{m}\rangle$ be a finitely generated ex-
panding rational semigroup. Then

dim# $(J(G)) \leq\frac{\log(\sum_{j=1}^{m}\deg(f_{j}))}{1\mathrm{o}\mathrm{g}\lambda}$,

where Adenotes the number in Definition 2.13. (See Theorem 3.54).

Example 3.59. Let $G=\langle f_{1}, f_{2}\rangle$ where $f_{1}(z)=z^{2}$ and $f_{2}(z)=2.3(z-3)+$
$3$ . Then we can see easily that $\{|z|<0.9\}\subset F(G)$ and $G$ is expanding. By
the corollary 3.58, we get

$\dim_{H}(J(G))\leq\frac{\log 3}{1\mathrm{o}\mathrm{g}1.8}<2$ .

In particular, $J(G)$ has no interior points.

3.11 Lower estimate of Hausdorff dimension of Julia sets

Now we consider ageneralization of Mane’s result([Ma3]).

Lemma 3.60 ([S5]). Let $G=(f_{1},$ $f_{2}$ , $\ldots$
$f_{m}\rangle$ be a finitely generated ratiO-

nal semigroup. Assume that the sets $\{f_{\dot{1}}^{-1}(J(G))\}j=1,\ldots,m$ are mutually dis-
joint. We define a map $f$ : $J(G)arrow J(G)$ by $f(x)=\mathrm{f}(\mathrm{x})$ if $x\in f_{*}^{-1}.(J(G))$

(Note that $J(G)= \bigcup_{\dot{|}=1}^{m}f_{\dot{l}}^{-1}(J(G))$). If $\mu$ is an ergodic invariant probability
measure for $f$ : $J(G)arrow J(G)$ with $h_{\mu}(f)>0$, then $\int_{J(G)}\log(||f’||)d\mu>0$

and $HD( \mu)=\frac{h_{\mu}(f)}{\int_{J(G)}1\mathrm{o}\mathrm{g}(||f’ 1|)d\mu}$ , where we set

$HD( \mu)=\inf\{\dim_{H}(\mathrm{Y})|\mathrm{Y}\subset \mathrm{J}(\mathrm{G}), \mu(\mathrm{Y})=1\}$ .
The following result is shown from Lemma 3.60 and Theorem 2.9.

Theorem 3.61 ([S5]). Let $G=\langle f_{1}, f_{2}, \ldots f_{m}\rangle$ be a finitely generated ratiO-
nal semigroup. Assume that $F(H)\supset J(G)$ where $H=\{h^{-1}|h\in Aut(\overline{\mathbb{C}})\cap$

$G\}$ ($ifH$ $=\emptyset$ , put $F(H)=\overline{\mathbb{C}}.$) Also assume that the sets $\{f_{i}^{-1}(J(G))\}_{j=1,\ldots,m}$

are mutually disjoint. Then

$\dim_{H}(J(G))\geq\frac{1\mathrm{o}\mathrm{g}(\sum_{j=1}^{m}\deg(f_{j}))}{\int_{J\langle G)}1\mathrm{o}\mathrm{g}(||f||)d\mu},$,

where $\mu=(\pi_{2})_{*}\tilde{\mu}_{a}$ , $a=(_{d}^{d}\lrcorner$ , ... ’
$\yen^{d})$ and $f(x)=\mathrm{f}(\mathrm{x})$ if $x\in f_{\dot{1}}^{-1}(J(G))$ .
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4Semi-hyperbolic transcendental semigroups

An entire semigroup is asemigroup generated by non-constant entire func-
tions in C. In [KS] H.kriete and H.Sumi investigate asufficient condition
to be semi-hyperbolic for (not necessarily finitely generated)entire semi-
groups. The result is similar to that in the subsection of conditions to be
semi-hyperbolic for rational semigroups. In fact, originally the idea to get
the sufficient conditions to be semi-hyperbolic for finitely generated rational
semigroups has come from the idea in [KS].

5Random holomorphic dynamics

There are so many pubulished articles concerning the random dynamical sys-
tems. (for example, [A],[K]). Very recently, some have been investigating the
random holomorphic dynamics. ([Br],[Bul], [Bu2], [BBR],[FS],[FW],[Ro],
[ZR] $)$ . We introduce some results of them.

5.1 Classification of sequences of polynomials

First we introduce the works of Biiger’s in which the classification of se-
quences of polynomials was given.

Definition 5.1 ([Bui]). Given asequence $(f_{n})$ of polynomials of one com-
plex variable with the degrees at least two, the Fatou set for the sequence is
the set of points in $\overline{\mathbb{C}}$ each of which has aneighborhood where the sequence
is normal. The Julia set is the complement in C. For any connected com-
ponent $V$ of the Fatou set of asequence, we denote by $\mathcal{L}(V)$ the set of all
limit functions. If all elements of $\mathcal{L}(V)$ are constant functions, we call $V$ a
contracting domain, otherwise an expanding domain.

Definition 5.2 ([Bui]). Let $(f_{n})$ be asequence of polynomials of degree
at least two. We say that Ahyperbolic domain $M\subset\overline{\mathbb{C}}$ is called invariant,
if $fn(M)\subset M$ for all $n\in \mathrm{N}$ . We say that $(f_{n})$ belongs to

1. -the class $P_{1}$ if there is an invariant domain M, $\infty\in M$, such that
$f_{n}\circ\cdots\circ f1arrow\infty(narrow\infty)$ , locally uniformly in M,

2. -the class $P_{2}$ if $f_{n}\circ\cdots\circ f_{1}arrow\infty(narrow\infty)$ , locally uniformly in some
neighborhood of 00, although there is no invariant domain $M$ such
that $\infty\in M$,

3. -the class $P_{3}$ , if $\infty$ belongs to the Julia set of $(/\mathrm{n})$ .

We say $(f_{n})$ belongs to class Q if for each n $\in \mathrm{N}$ , there exists acomplex
number $c_{n}$ such that $f_{n}(z)=z^{2}+c_{n}$ .
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Theorem 5.3 ([Bui]). If $(f_{\mathrm{n}})$ ’-lr\rangle then the Julia set of the sequence
is equal to the boundary of the attracting basin of infinity. Moreover, the
attracting basin of infinity is equal to $\mathrm{U}\ovalbox{\tt\small REJECT}_{0}\mathrm{C}\mathit{1}\cdot\circ\cdots$ o $f.)^{-1}(M)$ .

Definition 5.4 ([Bui]). Let $(f_{n})$ be sequence of polynomials. If for every
domain $D$ which intersects the Julia set $J$ of the sequence there is an integer
$n$ such that $(f_{n}\circ\cdots\circ f1)^{-1}(f_{n}\circ\cdots\circ f1(D\cap J))=J$ , we call $J$ self-similar.
Theorem 5.5 ([Bui]). If $(f_{n})\in P_{1}$ , then the Julia set of the sequence is

self-similar. Moreover, the Julia set is perfect or finite. In the finite case
we can find $n\in \mathrm{N}$ such that $f_{n}\mathrm{o}\cdots\circ f1(J)$ consists of a single point.

Theorem 5.6 ([Bui]). Let $(f_{n})$ be a sequence of polynomials

$f_{n}(z)= \sum_{k=0}^{d_{n}}a_{k_{n}}z^{k}$, $a_{d_{n\prime}n}\neq 0$ , $d_{n}\geq 2$ ,

such that:

1. $\inf\{|a_{d_{\mathfrak{n}},n}| : n\in \mathrm{N}\}>0$ ,

2. $\max\{|a_{k_{n}}| : 0\leq k<d_{n}\}=O(|a_{d_{n},n}|)$

Then $(f_{n})$ is contained in $P_{1}$ . If, in addition, $(f_{n})$ satisfies
3. $\log^{+}|a_{d_{n},n}|=\mathrm{O}(\mathrm{d}\mathrm{n})$ , then the Julia set is perfect.

Theorem 5.7 ([Bu2]). Let $(f_{n})\in Q$ , and $(c_{n})$ be a sequence of complex
numbers such that $f_{n}(z)=z^{2}+c_{n}$ . Then $(f_{n})$ belongs to

1. class $P_{1}$ , if and only if $(c_{n})$ is bounded,

2. class $P_{2}$ , $f$ and only if (h) is not bounded, but $\log^{+}|c_{n}|=O(2^{n})$ ,

3. class $P_{3}$ , $|.f$ and only if $\lim\sup_{narrow\infty}(\log^{+}|c_{n}|)/2^{n}=+\infty$.

In particular, $Q$ is the disjoint union of $P_{1}\cap Q$ , $P_{2}\cap Q$ and $P_{3}\cap Q$ .

We investigate the class $P_{1}$ .
Theorem 5.8 ([Bu2]). 1. Let $(f_{n})\in P_{1}\cap Q$ and $V$ be a contracting

domain. Suppose $V\subset \mathbb{C}$. Then $\mathcal{L}(V)$ is compact and $\mathcal{L}(V)\cap\{z||z|\leq$

$1/2\}$ $\neq\emptyset$ .
2. For every compact set $L\subset \mathbb{C}$ which satisfies $L\cap\{z||z|\leq 1/2\}\neq\emptyset$

we can find a sequence $(f_{n})\in P_{1}\cap Q$ whose Fatou set contains $a$

contracting domain $V$ such that $\mathcal{L}(V)=L$ .

Theorem 5.9 ([Bu2]). Let $(f_{n})\in P_{1}\cap Q$ , and $V$ be an expanding domain.
Then the set $\mathcal{L}(V)$ contains infinitely many functions.
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Next we investigate the class $P_{2}$ .

Theorem 5.10 ([Bu2]). Let $D\subset \mathbb{C}$ be a bounded domain. Then we can
find a sequence $(f_{n})\in P_{2}\cap Q$ such that $\overline{D}$ is included in the Julia set of
$(f_{n})$ .

Theorem 5.11 ([Bu2]). 1. Let $(f_{n})\in P_{2}\cap Q$ , and $V$ be a contracting
domain, $\mathcal{L}(V)\neq\{\infty\}$ . Then $\mathcal{L}(V)$ is closed and $\infty\in \mathcal{L}(V)$ .

2. For every closed set $L\subset\overline{\mathbb{C}}$, $\infty\in L$ , which satisfies $L\cap\{|z|\leq 1/2\}\neq\emptyset$ ,
Mere exists a sequence $(f_{n})\in P_{2}\cap Q$ whose Fatou set contains $a$

contracting dornain $V$ such that $\mathcal{L}(V)=L$ .

Theorem 5.12 ([Bu2]). There is a sequence $(f_{n})\in P_{2}\cap Q$ such that the
Fatou set contains an expanding domain.

Next we investigate the class $P_{3}$ .

Theorem 5.13 ([Bu2]). Let $(f_{n})\in P_{3}\cap Q$ . Then $(f_{n}\circ\cdots\circ f_{1})converges$

to oo locally uniformly in the Fatou set.

5.2 Results for generic sequences

In 1991 J.Fornaess and N.Sibony started to investigate the behavior of the
generic sequences for the random iteration of rational functions.

Notation. Let $W$ be aconnected open set in C. We consider aholomor-
phic function $R:W\cross\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ such that for each $c\in W$, $R_{c}(z):=R(c, z)$ is a
rational function of degree $d$. In this subsection we will always assume that
$R(c, z)$ is generic, i.e. that for every $z\in\overline{\mathbb{C}}$ , the function $carrow R(c, z)$ is not
constant. For any point $c_{0}\in W$ and any number $\delta>0$ with $\overline{D(c0,\delta)}\subset W$,
we set $X(c0, \delta)=\overline{D(c0,\delta)}^{\mathrm{N}}$ . Let $g$ : $X(c0, \delta)arrow X(c_{0}, \delta)$ be the shift map.
We construct afibered rational map $f$ : $X(c\circ, !)$ $\cross\overline{\mathbb{C}}arrow X(c0, \delta)\cross\overline{\mathbb{C}}$ fibered
over $g:X(c0, \delta)arrow X(c0, \delta)$ defined as:

$f(x, y)=(g(x), R_{x_{1}}(y))$

for $(x, y)\in \mathrm{X}(\mathrm{c}\mathrm{o}, \delta)\cross\overline{\mathbb{C}}$ , $x=(x_{1}, x_{2}, \ldots)$ .
For any probability measure $\mu$ on $\overline{D(c_{0},\delta)}$ we set $\tilde{\mu}=\otimes_{k=1}^{\infty}\mu$ .

Theorem 5.14 ([FS]). Under the above, let $c\circ\in W$ and suppose $R_{c_{0}}$ has
$k$ attractive cycles, $\gamma_{1}$ , $\ldots$ , $\gamma_{k}$ , $k\geq 1$ . For each 1 $\leq j\leq k$ let $V_{j}$ be $a$

neighborhood of $\mathrm{j}\mathrm{j}$ . We will assume that $Vj$ is contained in the basin of
attraction of $\mathrm{j}\mathrm{j}$ . Then, there is a $\delta\circ>0$ such that for each $0<\delta<\delta_{0}$

there exist continuous functions $h_{1}$ , $\ldots$ , $h_{k}$ defined on $\overline{\mathbb{C}}$ with the following
properties:

1. $0\leq h_{j}(y)\leq 1$ , $\sum_{j=1}^{k}hj(y)=1$ ,
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2. for each $y\in\overline{\mathbb{C}}$ there exist disjoint open sets $Uj,y$ in $K(c_{0}, \delta)$ with
$\tilde{\lambda}(U_{j,y})=h_{j}(y)$ where Ais the normalized Lebesgue measure on $\overline{D(c0,}$!),
and if $x\in Uj,y$ then for all large enough $n\in \mathrm{N}$ , $f_{x}^{n}(y)(z)\in Vj$ .

Corollary 5.15 ([FS]). Under the same condition of Theorem 5. i4, let $V$

be a neighborhood of $\{\gamma 1, \ldots, \gamma_{k}\}$ . Then there exists $\delta_{0}>0$ such that for
$each\leq\delta\leq\delta 0$ there exists a set $\mathcal{E}\subset K(c0, \delta)$ of full measure with respect to
the measure $\tilde{\lambda}$ , $w$ here Adenotes the normalized Lebesgue measure in $\overline{D(c\circ,\delta)}$ ,
such that $ifx\in \mathcal{E}$ , $a.e$ . in $\overline{\mathbb{C}}$ , $f_{x}^{n}(y)\in V$ for all large enough $n$ . In particular,
$J_{x}$ is of Lebesgue measure 0in $\overline{\mathbb{C}}$ for $x\in \mathcal{E}$ .

We next show an ergodic property of random iteration of rational func-
tions. Let $c_{0}\in W$. Let $M(\overline{\mathbb{C}})$ denote the set of Borel probability measures
on C. Fix asmall $\delta>0$ such that $\overline{D(c_{0},\delta)}\subset W$. We define the operator
$T$ : $\mathrm{M}(\mathrm{C})$ $arrow M(\overline{\mathbb{C}})$ by:

$(T \nu)(B)=\int_{c\in D(\mathrm{c}0,\delta)}\nu(R_{c}^{-1}(B))d\lambda(c)$ ,

where $B$ is aBorel set in $\overline{\mathbb{C}}$ and Ais the normalized Lebesgue measure on
$\overline{D(c0\cdot\delta)}$. Then the following holds.

Theorem 5.16 ([FS]). Under the above, Suppose $R_{\mathrm{c}_{\mathrm{O}}}$ has no superattract-
ing cycles. Then there is a lower semicontinuous function $h_{\delta}$ : $\overline{\mathbb{C}}arrow(0, \infty]$

such that for every $M(\overline{\mathbb{C}})$ the sequence $T^{n}\nu$ converges to $h\delta\sigma$ where $\sigma$ denotes
the normalized Lebesgue measure on C.

Moreover, for $y\in\overline{\mathbb{C}}$, $B\subset\overline{\mathbb{C}}$ Borel set, there exists $\mathcal{E}_{y,B}\subset X(c_{0}, \delta)$ of
full measure with respect to Asuch that for every $x\in \mathcal{E}_{y,B}$ we have

$\lim_{karrow\infty}\frac{1}{k}\sum_{n\leq k}\chi_{B}(f_{x}^{n}(y))=\int_{B}h_{\delta}d\sigma$.

If $R(c, z)$ is regular, then $h_{\delta}$ : $\overline{\mathbb{C}}arrow(0, \infty)$ is continuous.

5.3 Random iteration of quadratic polynomials

Developing some ideas of random iteration of rational functions in [FS],
R.Briick, M.Biiger and S.Reitz investigated the case of random quadratic
polynomials in detail.

In this subsection we discuss about the following fibered quadratic poly-
nomials. Let $K$ be acompact subset of C. Let $X(K)=K^{\mathrm{N}}$ and $g:Xarrow X$

be the shift map. We consider the following map $f$ defined as:

$f(x,y)=(g(x), y^{2}+x_{1})$ ,

where $(x, y)\in X(K)\cross\overline{\mathbb{C}}$ and $x=(x_{1}, x_{2}, x_{3}, \ldots)$ . For aprobability measure
$\mu$ on $K$, we set $\tilde{\mu}=\otimes_{k=1}^{\infty}\mu$ .
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Theorem 5.17 ([BBR]). Under the above, let $K=\overline{D(0,1/4)}$ and Abe $a$

Borel probability measure on $K$ with the support equal to K. We denote by $B$

the set of points $x\in X(K)$ satifying that the orbit $\{\pi_{\overline{\mathbb{C}}}(f_{x}^{n}(y))\}_{n\in \mathrm{N}}$ is dense
in $\overline{D(0,1/2)}$ for all $y\in\overline{D(0,1/2)}$ . Then we have

$\tilde{\lambda}(B)=1$ .
Theorem 5.18 ([BBR],[Br]). Let $K\subset \mathbb{C}$ be a compact set. Suppose
int(K) $\cap(\mathbb{C}\backslash \mathcal{M})\neq\emptyset$ , where $\mathcal{M}$ denotes the Mandelbrot set. Let $\mu$ be $a$

Borel probability measure on $K$ $w$ hich is absolutely continuous with respect
to the Lebesgue measure on $K$ and which satisfies int(supp(\mu ))\cap (C\M) $\neq\emptyset$ .
Then we have the following.

1. Let $R>0$ . Then for every $y\in\overline{\mathbb{C}}$ there exists an open set $U_{y}\subset \mathrm{X}(\mathrm{K})$

with the follow $ing$ properties:

(a) $\tilde{\mu}(U_{y})=1$ ,
(b) for every $x\in U_{y}$ , there holds $|\pi_{\overline{\mathbb{C}}}(f_{x}^{k}(y))|>R$ for all sufficiently

large $k$ .

In particular, for almost all $x\in X(K)$ with respect to $\tilde{\mu}$ we have that
the 2-dimensional Lebesgue measure of $J_{x}$ is equal to zero.

2. We denote by $D_{\infty}$ the set of points $x\in X(K)$ satifying that $J_{x}$ has
infinitely many components. Then ate have

$\tilde{\mu}(D_{\infty})=1$ .

Theorem 5.19 ([Br]). Let $K$ be a bounded set such that $K\cap(\mathbb{C}\backslash \mathcal{M})\neq\emptyset$.
We set:

$D_{N}=$ {$x\in X(K)|J_{x}$ has more than $N$ components}, (4)

$D_{\infty}=$ {$x\in X(K)|J_{x}$ has infinitely many components }, (5)

$\mathcal{T}=$ {$x\in X(K)|J_{x}$ is totally disconnected }. (6)

Then

7. $\mathcal{T}$ is dense in $X(K\rangle$ .

2. $D_{N}$ is an open and dense subset of $X(K)$ for each N $\in \mathrm{N}$ .
3. $D_{\infty}$ is a countable intersection of dense open subsets of $X(K)$ and has

empty interior.

Question.

1. ([Br]) Is $\mathcal{T}$ of the second Baire category in $X(K)$ ?

2. ([BBR]) By zer0-0ne law, we know that $\tilde{\mu}(\mathcal{T})$ is equal to 0or 1. Which
is true?
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5.4 Rational semigroups and random iteration

We introduce awork of S.Rohde’s in which some relationship between ra-
tional semigroups and random iteration composed in the opposite way.

Let $K$ be aclosed disk centered at the origin. Let $R(c, z)$ : $K\cross\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$

be aholomorphic family such that the degree of $R_{c}(z):=R(c, z)$ is at least
two. In this subsection we always assume that there exists apoint $c0\in K$

such that $z \vdasharrow\frac{\partial R}{Tc^{-}}(c_{0}, z)$ is not identically zero.
For $x\in X(K)=K^{\mathrm{N}}$ , we denote by $\hat{F}_{x}$ the set of points $z\in\overline{\mathbb{C}}$ satisfying

that $z$ has aneighborhood where the sequence $(R_{x_{1}}\circ R_{x_{2}}\circ\cdots\circ R_{x_{n}})_{n\in \mathrm{N}}$ is
normal, where $x=$ $(x_{1},x_{2}, \ldots)$ . We set $\hat{J}_{x}=\overline{\mathbb{C}}\backslash \hat{F}_{x}$. We call $\hat{J}_{x}$ the opposite
Julia set for the sequence $x$ . Let Abe the normalized Lebesgue measure. We
set A $=\otimes_{k=1}^{\infty}\lambda$ .

Theorem 5.20 ([Ro]). Under the above, Let $G$ be the rational semigroup
generated by $\{R_{c}|c\in K\}$ . Then $J(G)$ contains interior points and for
almost $x\in X(K)$ with respect to $\tilde{\lambda}$ , the opposite Julia set $\hat{J}_{x}$ is equal to
$J(G)$ .

Similarly, let $K=\{1, \ldots n\}$ . Let $\{R_{1}, \ldots, R_{n}\}$ be some rational functions
of degree at least two. We define the opposite Julia set $\hat{J}_{x}$ for $x\in X(K)=$
$K^{\mathrm{N}}$ as the above. Let Abe any probability measure on $K$ such that $\lambda(j)>0$

for any $j=1$ , $\ldots$ , $n$ . We set $\lambda=\otimes_{k=1}^{\infty}$ X. Then we have the following.

Theorem 5.21 ([Ro]). Under the above, let $G$ be the rational semigroup
generated by $\{R_{1}, \ldots, R_{n}\}$ . Then for almost $x\in X(K)$ with respect to Athe
opposite Julia set $\hat{J}_{x}$ is equal to $J(G)$ .

6Higher dimensional cases
6.1 Attracting currents and measures

We introduce the J.Fornaess and B.Weickert’s work([FW]) in which they
showed that for the random iteration which is generated by aholomorphic
family in $\mathrm{P}^{k}$ , there exists apositive closed $(1, 1)$ current and ameasure on
$\mathrm{M}$ which are invariant and which attract all positive closed $(1, 1)$ currents
and all measures, respectively, under normalzed $\mathrm{p}\mathrm{u}\mathrm{U}$-back and averaging by
the maps.

Let $K=\overline{D(0,\delta)}\subset \mathbb{C}^{k}$ . Let $R:K\cross \mathbb{R}$ $arrow \mathrm{P}^{k}$ be aholomorphic family
such that $R_{\mathrm{c}}(z):=R(c, z)$ is of degree $d>1$ for each $c\in K$ . We also assume
that $carrow R(c, z)$ is finite-t0-0ne and hence open. Let $X(K)=K^{\mathrm{N}}$ . Let Abe
the normalized Lebesgue measure on $K$. Let A $=\otimes_{j=1}^{\infty}\lambda$ .

Just as in the subsection ‘Potential theory and measure theory’ in the
section of fibered rational maps, we construct afamily of Green functions
$\{G_{x}\}_{x\in X(K)}$ on $\mathbb{C}^{k+1}$ . We denote by $T_{x}$ the unique positive closed $(1, 1)$
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current in $\mathrm{P}^{k}$ such that $\pi^{*}T_{x}=dd^{c}(G_{x})$ where $\pi$ : $\mathbb{C}^{k+1}\backslash \{0\}arrow \mathrm{P}^{k}$ is the
natural projection.

Further, we set $EG(y)= \int_{X(K)}G_{x}(y)d\tilde{\lambda}(x)$ . Then we can see $EG$ is
plurisubharmonic and continuous on $\mathbb{C}^{K+1}\backslash \{0\}$ . We also see that there
exists aunique positive closed $(1, 1)$ current $T$ on $\mathrm{P}^{k}$ satysfying that $\pi^{*}T=$

$dd^{c}(EG)$ .
Let $S$ be the space of positive closed $(1, 1)$ current $S$ on $\mathrm{P}^{k}$ such that

$||S||=1$ . We define an operator $\Theta$ on $S$ as:

$\Theta(S)=\frac{1}{d}\int_{K}R_{c}^{*}S$.

Similarly, define the measure $\mu_{x}$ , considered as a $(k, k)$ current, on $\mathrm{P}^{k}$ ,
by the equation $\pi^{*}\mu_{x}=(dd^{c}G_{x})^{k}$ . We set $\mu=\int_{X(K)}\mu_{x}$ . Let $P$ be the space
of Borel probability measure $\eta$ on $\mathrm{P}^{k}$ . We define an operator $\Omega$ on $P$ as:

$\Omega(\eta)=\frac{1}{d^{k}}\int_{K}R_{c}^{*}\eta$ ,

where $R_{c}^{*}$ is the operator defined just as in the subsection ‘Potential theory
and measure theory’ in the section of fibered rational maps. Then we have
the following result.

Theorem 6.1 ([FW]). Under the above, we have the following.

1. T $= \int_{X(K)}T_{x}$ .

2. $\ominus(T)=T$.

3. For any s $\in S$ , we $have\ominus^{n}(S)arrow T$ as n $arrow\infty$ in the weak topology
of currents.

4. $\Omega(\mu)=\mu$ .

5. For any $\eta\in P$ , we have $\Omega^{n}(\eta)arrow\mu$ as n $arrow\infty$ in the weak topology of
currents.

6. The support of $T_{x}$ is equal to the Julia set of $(R_{x_{n}}\circ\cdots \mathrm{o}R_{x_{1}})_{n\in \mathrm{N}}$ .

7. The support of T is equal to the Julia set of semigroup generated by
$\{R_{c}|c\in K\}$ .

6.2 Fibered holomorphic maps and semigroups
We introduce some works of K.Maegawa’s. ([Mae]).

Let $X$ be acompact metric space.
Just as in the section of fibered rational maps in $\overline{\mathbb{C}}$-bundles, let $f$ :

$X\cross \mathrm{P}^{k}arrow X\cross \mathrm{P}^{k}$ b$\mathrm{e}$ afibered holomorphic map fibered over acontinuous
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map g $\ovalbox{\tt\small REJECT}$ X $-+X$. We define fiberwise Fatou sets $\{F_{x}\}$ and Julia sets $\{J_{x}\}$ .
We use the same notations as those in the section of fibered rational maps.
We assume that the degree of $f_{x}$ is at least two for any xE X. (Here we do
not assume that the degree of $f_{x}$ is constant with respect to xEX.)

Theorem 6.2 (Mae). Under the above,

1. Let $x\in X$ . We have that $y\in\pi_{\mathrm{P}^{k}}(F_{x})$ if and only if there exists $a$

neighborhood $U$ of $y$ in $\mathrm{P}^{k}$ such that there exists a saubsequence of
$\{f_{x}^{n}\}_{n\in \mathrm{N}}$ which converges to a rnap locally uniformly in $U$.

2. Suppose that $X=K^{\mathrm{N}}$ for some compact subset $K$ of the space of
all holomorphic maps on $\mathrm{P}^{k}$ , that $g$ : $Xarrow X$ is the shift map and
that $f(x, y)=(g(x),$ $R(x_{1}, y)$ where $R(c, z)$ is a continuous family of
holomorphic maps on $\mathrm{P}^{k}$ . Then we have that a point $y\in \mathrm{P}^{k}$ belongs to
the Fatou set of semigroup $G$ generated by $\{R_{c}|c\in K\}$ if and only
if there exists a neighborhood $U$ such that for each $x\in X(K)$ , there
exists a subsequence of $\{f_{x}^{n}\}_{n\in \mathrm{N}}$ converging to a map locally uniformly
on U. In particular, we have

$\pi_{\mathrm{F}^{k}}(\overline{\cup J_{x}})=J(G)x\in X^{\cdot}$

Remark 15. He generalized aresult concerning the normality of the family
of inverse branches of maps in semigroups in [HM3] to higher dimensional
case also.([Mae])

6.3 Other works

In [ZR] W.Zhang and F.Ren discussed about the random iteration of hol0-
morphic self-maps over bounded domains in $\mathbb{C}^{n}$ . In [Hi] A.Hirachi discussed
about the skew product maps associated with finitely many H\’enon maps on
$\mathbb{C}^{2}$ . He constructed afamily of Green function $\{G_{x}\}$ .

7Problems

\bullet Consider Collet-Eckmann and expansive fibered rational maps.

$\bullet$ Similarly, consider Collet-Eckmann and expansive rational semigroups.
Consider the dynamical behavior and get some estimate of Hausdorff
dimension of Julia sets of such rational semigroups, using Poincare
series or ergodic theory. Use some ideas in Iterated function systems,
for example those in [MU1] and [MU2].

\bullet Get some estimate of entropy of finitely generated semigroups with
respect to the some generator systems. Note that by Theorem 2.9,
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we have an upper estimate of that. What happens when the entropy
of afinitely generated rational semigroup with respect to agenera-
tor system is maximal i.e. attains the $\log$ of the sum of degrees of
generators.

\bullet Develop the ergodic theory for fibered rational maps, like the works of
M.Denker and Urbari ski’s.

\bullet Investigate the non-constant limit functions of fibered rational maps
and investigate the ‘rotation domains.’ (See Theorem 2.18.)

\bullet Construct the Teichmiiller theory for fibered rational maps.

$\bullet$ Develop the theory of random holomorphie dynamics to amore gen-
eral one. For example, take other measures than Bernoulli measures
or Lebesgue measures. Consider stochastic process with holomorphie
dynamics. What happens for pathwise dynamics and Julia sets? What
can we say about almost sure paths?

8Note

In this note, we use the same notations as those in ‘Skew product maps
ralated to finitely generated rational semigroup’ by Hiroki Sumi. ([S5]) We
will give aprecise proof of astatement in it.

Proposition 8.1. Let $G=\langle f_{1}, \ldots, f_{m}\rangle$ be a finitely generated rational
semigroup. Let $\tilde{f}$ : $\Sigma_{m}\cross\overline{\mathbb{C}}arrow\Sigma_{m}\cross\overline{\mathbb{C}}$ be the skew product rnap associ-
ated with the generator system $\{f_{1}, \ldots, f_{m}\}$ . Then we have the following.

$\tilde{J}=\bigcap_{n\geq 0}\tilde{f}^{-n}(\Sigma_{m}\mathrm{x} J(G))$ (7)

$\pi_{\overline{\mathbb{C}}}(\tilde{J})=J(G)$ . (8)

Proof. First we will show (8). Since $J_{w}\subset J(G)$ for each $w\in\Sigma_{m}$ , we have
$\pi_{\overline{\mathbb{C}}}(\tilde{J})\subset J(G)$. We set

$R(G)=\{z\in\overline{\mathbb{C}}|\exists g\in G, g(z)=z, |g’(z)|>1\}$ .

We consider several cases.
Case 1. $\# J(G)\geq 3$ . Then by Hinkkanen and Martin, we have $\overline{R(G)}=$

$J(G)$ . Since we have $R(G)\subset\pi_{\overline{\mathbb{C}}}(\tilde{J})$ and $\pi_{\overline{\mathbb{C}}}(\tilde{J})$ is acompact set, we get
$\overline{R(G)}\subset\pi_{\overline{\mathbb{C}}}(\tilde{J})$ . Hence we get (8).

Case 2. $\# J(G)=0$ . Then it is trivial to see (8).
Case 3. $J(G)=\{a\}$ . Then each element of $G$ belongs to Aut $(\overline{\mathbb{C}})$ . We have

for each $g\in G,g(a)=a$ . If there exists an element $g\in G$ with $|g’(a)|<1$ ,
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then the repelling fixed point $b$ of $g$ is different from $a$ and $b\in J(G)$ . It is a
contradiction. Hence we have for each $g\in G$ , $|g’(a)|\geq 1$ . If each element of
$G$ is elliptic, then each disc $D\subset\overline{\mathbb{C}}$ satisfies diam $g(D)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}$ $D$ and so $G$ is
equicontinuous in C. This is acontradiction. Hence there exists an element
$g\in G$ such that $a$ is arepelling or parabolic fixed point, then $a\in\pi_{\overline{\mathbb{C}}}(\tilde{J})$

and (8) holds.
Case 4. $J(G)=\{a_{1},a_{2}\}$ and $a_{1}\neq a_{2}$ . Then each element of $G$ belongs

to Aut(C). Also we have $g(J(G))=J(G)$ for each $g\in G$ . Prom this, there
is no parabolic element in $G$ . Since $J(G)\neq\emptyset$ , We must have non-elliptic
element in $G$ . Hence we have aloxodromic element $g\in G$ . We can assume
that $a_{1}$ is arepelling fixed point of $g$ . Then we have

$a_{1}\in\pi_{\overline{\mathbb{C}}}(\tilde{J})$ . (9)

If there exists anumber $j$ such that $fj(a_{2})=a_{1}$ , then we have $a_{2}\in\pi_{\overline{\mathbb{C}}}(\tilde{J})$

and so (8) holds. Now let us assume $fj(a_{2})=a_{2}$ for each $j=1$ , $\ldots$ $m$ . If a2
is arepelling fixed point of some element in $\{fj\}$ , then a2 $\in\pi_{\overline{\mathbb{C}}}(\tilde{J})$ and (8)
holds. If $|f_{j}’(a_{2})|\leq 1$ for each $j$ then we have $fj$ is elliptic or loxodromic for
each $j$ . Then there exists adisc $D$ around $a_{2}$ such that $f_{j}(D)\subset D$ for each
$j$ . Then $a_{2}\in F(G)$ and this is acontradiction.

Now we will show (7). Since $J_{w}\subset J(G)$ for each $w\in\Sigma_{m}$ , we have
$\tilde{J}\subset\bigcap_{n\geq 0}\tilde{f}^{-n}(\Sigma_{m}\cross \mathrm{J}(\mathrm{G}).$ . Let $(w,x)\in\Sigma_{m}\cross\overline{\mathbb{C}}$ be apoint satisfying that
$\tilde{f}^{n}((w, x))\in\Sigma_{m}\cross J(G)$ for each $n\in \mathrm{N}$ . Suppose $(w, x)\in\tilde{F}$ . We will show
it causes acontradiction. There exists acylinder set $U=\{w’\in\Sigma_{m}|w_{j}’=$

$w_{j}$ , $j=1$ , $\ldots$ $n$} and an open neighborhood $V$ of $x$ such that $U\cross V\subset\tilde{F}$ .
Then we have

$\tilde{f}^{n}(U\cross V)=\Sigma_{m}\cross f_{w_{n}}\circ\cdots\circ f_{w_{1}}(V)\subset\tilde{F}$ . (10)

In particular, we have $\Sigma_{m}\cross\{f_{w_{n}}\circ\cdots\circ f_{w_{1}}(x)\}\in\tilde{F}$ . By (8), we get $fWn\circ$

\ldots $\circ f_{w_{1}}(x)\in \mathrm{F}(\mathrm{G})$ . It is acontradiction. $\square$

References

[A] R.Arnold, Random Dynamical Systems, Springer Monographs in Math-
ematics, Springer, 1998.

[Br] R.Briick, Connectedness and stability of Julia sets of the composition
of polynomials of the form $z^{2}+\cdot c_{n}$ , preprint.

[Bul] M.Biiger, Self-similarity of Julia sets of the composition of polynorni-
als, Ergod.Th.and Dynam.Sys., (1997), 17, 1289-1297.

[Bu2] M.Biiger, On the compostion of polynomials of the form $z^{2}+c_{n}$ ,
Math.Ann.310, 661-683(1998).

41

118



[Bol] D.Boyd, An invariant measure for finitely generated rational serni-
groups, Complex Variables, 39, (1999), N0.3, 229-254.

[B02] , D.Boyd, Dynamics and measures for semigroups of rational func-
tions. PhD thesis, University of Illinois, 1998.

[BBR] R.Briick, M.Biiuger, S.Reitz, Random iterations ofpolynomials of the
form $z^{2}+c_{n}$ : Connectedness of Julia sets, Ergod.Th. and Dynam.Sys.,
19, (1999), N0.5, 1221-1231.

[CJY] L.Carleson, P.W.Jones and J.-C.Yoccoz, Julia and John,
Bol.Soc.Bras.Mat.25, N.I 1994, 1-30.

[D] M.Dabija, Bottcher divisors. Preprint.

[FS] J.E.Fornaess, N.Sibony, Random iterations of rational functions, Er-
god.Th.and Dynam.Sys. 11(1991), 681-708.

[FW] J.E.Fornaess, B.Weickert, Random iterations in $\mathrm{P}^{k}$ , Ergod.Th.and
Dynam.Sys., Vo1.20,2000, 1091-1111.

[GR] Z.Gong, F.Ren, Arandom dynamical system formed by infinitely
many functions, Journal of Fudan University, 35, 1996, 387-392.

[Hal] T.Harada, The dynamics of nearly abelian polynomial semigroups at
infinity, Proc.Japan.Academy, Vol73, Ser.A, N0.3, (1997).

[Ha2] T.Harada, The Teichmuller space of a rational semigroup, preprint.
$\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{w}\mathrm{w}\mathrm{w}$.math.okayama-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{t}\mathrm{a}\mathrm{t}\mathrm{s}\mathrm{u}/\mathrm{p}\mathrm{r}\mathrm{o}$.html

[Hel] S.-M.Heinemann, Julia sets for holomorphic endomorphisms of $\mathbb{C}^{n}$ . ’

Ergod.Th. and Dyn.Sys. 16(1996), 1275-1296.

[He2] S.-M.Heinemann, Julia sets of skew products in $\mathbb{C}^{2}$ , Kyushu
J.Math.52(1998), 299-329.

[Hi] A.Hirachi, Master thesis, Tokyo Institute of Technology, Tokyo, Japan,
2000.

[HK] J.Heinonen, P.Koskela, Definitions of quasiconformality, Invent
math. 120, 61-79(1997).

[HM1] A.Hinkkanen, G.J.Martin, The Dynamics of Semigroups of Rational
Functions I, Proc.London Math.Soc. (3)73(1996), 358-384.

[HM2] A.Hinkkanen, G.J.Martin, Julia Sets of Rational Semigroups ,
Math.Z. 222, 1996, n0.2, 161-169.

42

119



[HM3] A.Hinkkanen, G.J.Martin, Some Properties of Semigroups of RatiO-
nal Functions, XVIth Rolf Nevanlinna Colloquium(J0ensuu,1995), 53-
58, de Gruyter, Berlin, 1996.

[K] Y.Kifer, Ergodic theory of random transformations, Number 10 in
Progress in Probability and Statistics. Birkh\"auser, Boston, 1986.

[Jone] PJones, On removable sets for Sobolev spaces in the plane, Essays
on Fourier Analysis in honor of Elias M.Stein, (Princeton, NJ, 1991),
250-267, Princeton Univ. Press, Princeton N.J., 1995.

[J1] MJonsson, Dynamics of polynomial skew products on $\mathbb{C}^{2}$ ,
Math.Ann,314(1996), pp403-447.

[J2] M.Jonsson, Ergodic $prope\hslash ies$ of fibered rational maps , to appear in
Ark.Mat.

[KS] H.Kriete and H.Sumi, Semihyperbolic transcendental semigroups, to
appear in J.Math.Kyoto.Univ.

[Mae] K.Maegawa, personal communication.

[Ma] R.Mane, On a Theorem of Fatou, Bol.Soc.Bras.Mat., Vo1.24, N. 1, 1-
11. 1992.

[Ma2] R.Mane, On the uniqueness of the maximizing measure for rational
maps, Bol.Soc.Bras.Mat.Vo1.14 No.1 (1983), 27-43.

[Ma3] R.Mane, The Hausdorff dimension of invariant probabilities of ra-
tional maps, Dynamical systems, Valparaiso 1986, Lecture Notes in
Mathematics (Springer, Berlin, 1988)86-117.

[MS] C.McMullen and D.Sullvan, Quasiconfo rmal homeomorphisms and
dynamics III..The Teichm\"uller space of a rational map. Adv.Math.,
135(1998), N0.2, 351-395.

[MU1] R.Mauldin and M.Urbanski, Dimensions and measures in infinite
iterated function systems, Proc. London Math. Soc. (3) 73 (1996), 105-
154.

[MU2] R.Mauldin and M.Urbanski, Parabolic iterated function systems, to
appear in Ergod.Th.and Dyn.Sys.

[NV] R.Nakki, J.V\"ais\"al\"a, John Discs, ExpO.math.9(1991), 3-43.

[P] F.Przytycki, Hausdorff dimension of harmonic measure on the bound-
ary of an attractive basin for a holomorphic map, Invent.Math.80
(1985), 161-179.

43

120



[Ro] S.Rohde, Composition of random rational functions, Complex Variable,
1996, V01.29, pp. 1-7.

[Sel] O.Sester, Thesis: Etude Dynamique Des Polynomes Fibr\’es, Univer-
site De Paris-Sud, Centre d’Orsey, 1997.

[Se2] O.Sester, Hyperbolicite’ des polynomes fibres. Bull.Sc.Math.France,
127, (1999), N0.3, 393-428.

[Se3] O.Sester, Configurations combinatoires des polynomes fibres de degre
2. C.R.Acad.Sci.Paris Ser.I.Math.326, (1998), n0.4, 477-482.

[Stl] R.Stankewitz, Completely invariant Julia sets of Polynomial semi-
groups Proc.Amer.Math.SOc.127 (1999), No.IO, 2889-2898.

[St2] R.Stankewitz, Completely invariant sets of no rmality for rational
semigroups, Complex Variables, Vol $40.(2000)$ , 199-210.

[St3] R.Stankewitz, Uniformly perfect sets, rational semigroups, Kleinian
groups and IFS’s, Proc.Amer.Math.Soc, 128, (2000), N0.9, 2569-
2575.

[St4] R.Stankewitz, Unifo rmly perfect analytic and confo rmal attractor sets,
to appear in Bulletin of the London Mathematical Society.

[Sul] D.Sullivan, Confo rmal Dynamical System, in Geometric Dynamics,
Springer Lecture Notes 1007(1983), 725-752.

[S1] H.Sumi, On Dynamics of Hyperbolic Rational Semigroups, Journal of
Mathematics of Kyoto University, Vo1.37, N0.4, 1997, 717-733.

[S2] H.Sumi, On Hausdorff Dimension of Julia Sets of Hyperbolic Rational
Semigroups, Kodai.Math.J. Vo1.21, No.1, pplO-28, 1998.

[S3] H.Sumi, Dynamics of rational semigroups and Hausdorff dimension of
the Julia sets, Thesis, Graduate School of Human and Environmental
Studies, Kyoto University, Japan, 1999.

[S4] H.Sumi, Dynamics of sub-hyperbolic and semi-hyperbolic rational serni-
groups and skew products, to appear in Ergod. Th. and Dynam. Sys.

[S5] H.Sumi, Skew product maps related to finitely generated rational semi-
groups, Nonlinearity, 13, (2000), 995-1019.

[S6] H.Sumi, Semi-hyperbolic dynamics on $\overline{\mathbb{C}}$-bundles, to appear in RIMS
Kokyuuroku, 2000.

[S7] H.Sumi, Hausdorff dimension of expanding rational semigroups,
preprint.

44

121



ZR] W.Zhang and F.Ren, Random iteration of holomorphic self-maps over
bounded domains in $\mathrm{C}^{n}$ Chin.Ann. of Math., 16B:l(1995), 33-42.

45

122


