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Abstract

This article is a survey on dynamics of fibered rational maps, semi-
groups generated by rational or entire semigroups and random holo- .
morphic dynamics.

1 Introduction

The modern theory of iteration of rational functions has been started in
early 80’s. Since then, so many articles concerning this field has been pub-
lished. Some mathematicians pointed out that there are a large amount of
similarities between the field of iteration of rational functions and that of
Kleinian groups. _ ‘

In early 90’s, A.Hinkkanen and G.Martin discovered that the moduli
space of discrete groups free on two generators (of given but fixed trace) is a
one-complex-dimensional space which is modelled by the complement of the
filled-in Julia set of some semigroup generated by (infinitely many ) poly-
nomials. After that, they started the research on dynamics of semigroups
generatd by rational functions. ((HM1], [HM2], [HM3]). Of course, the field
of ‘semigroups generated by rational functions’ contains iteration of rational
functions, that of Kleinian groups and iterated function systems generated
by some elements of Aut(C). From the early 90’s F.Ren’s group in China
has studied the same subject and has obtained the same results. ([GR]).

In recent several years some articles on the dynamics of semigroups gen-
erated by rational functions which had some results on completely invariant
sets ([St1], [St2]), uniformly perfectness of Julia sets ([St3]) by R.Stankewitz,
Teichmiiller theory for semigroups ([Ha2]) by T.Harada, invariant measures
and entropy ([Bol], [S5]) by D.Boyd, H.Sumi, (semi)-hyperbolic dynamics
and Hausdorff dimension of Julia sets ([S1], [S2], [S4], [S7]) by H.Sumi have
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been written. Sometimes the idea in iterated function systems (for exam-
ple, [MU1},[MU2]) can be used. Difficult points are: that the Julia set of a
rational semigroup may not be forward invariant and that the Julia set of
sequence of words may not depend continuously on the sequence.

Since the middle of 90’s S.Heinemann has studied the dynamics of skew

product polynomials in C2. ([Hel], [He2]). M.Jonsson followed the subject.([J1]).

They discussed about decomposition of maximal entropy measures into fiber-
wise measures and hyperbolicity. They used the potential theory and current
theory. :

In 1997 O.Sester started the research on dynamics of skew product poly-
nomials of which base spaces are arbitrary compact metric spaces.([Sel],[Se2]).
He obtained many results especially on quadratic fibered polynomials. In
[Sel] he constructed a compact connected configuration space which gives a
combinatorial model of a subset of the parameter space. Then he explained
how an abstract configuration can be realized by a quadratic fibered polyno-
mial. In [S2] he discussed about hyperbolicity and generalized some results
in [J1).

In [S4] that result on hyperbolicity by O.Sester was generalized to the
case of semi-hyperbolic dynamics on fibered rational maps. This was a key to
obtain uniformly perfectness of fiberwise Julia set, Johnness of the fiberwise
attracting basins of semi-hyperbolic fibered rational maps and the upper
estimate of Hausdorff dimension of Julia sets of semi-hyperbolic semigroups
generated by rational functions.([S4], [S6]).

In [J2], [S5] and [S6], the entropy of fibered rational maps and the unique-
ness of maximizing measures were discussed.

There is another context that is called random holomorphic dynamics.
In 1991, J.E.Fornaess and N.Sibony showed that if f, is a random polynomial
map where c is taken over small polydisc, then for almost surely sequence,
the Julia set has Lebesgue measure zero.([FS]). Developing the idea in
this article, R.Briick, M.Biiger and S.Reitz investigated the case of random
quadratic polynomials in detail. They studied the Lebesgue measure and
connectedness of random Julia sets and density of random orbits.([BBR],
[Br], [Bul], [Bu2]).

There are some works in which higher dimensional random complex dy-
namics or holomorphic semigroups are discussed. ([ZR],[FW],[Mae]).

2 Fibered rational maps

In this section we consider the fiber-preserving complex dynamics on fiber
bundles. This setting sometimes gives us an integrated point of view among
the field of skew product polynomials in higher dimensional comlex dynam-
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ics, dynamics of semigroups generated by rational functions and random
complex dynamics.

Definition 2.1. ( [J2]) A triplet (Y, X) is called a "C-bundle ” if
1. Y and X are compact metric spaces,
2. 7:Y — X is a continuous and surjective map,

3. There exists an open covering {U;} of X such that for each i there ex-
ists a homeomorphism ®; : U; x C — n~1(U;) satisfying that ®;({z} x
C) = n~Y(z) and <I>J-"10<I>i (UinU;) x C = (U;NU;) x C is a Mobius
map for each x € U; NU;.

Remark 1. By the condition 3, each fiber Y, ~1(z) has a complex
structure We also have that given o € X we may ﬁnd a continuous family

: C = Y, of homeomorphisms for z close to . Such a family {iz} will be
called a "lacal parameterization.” Since X is compact, we may assume that
there exists a compact subset My of the set of Mobius transformations of C
such that i, 0j; 1 € My for any two local parametnzatlos {iz} and {j;} . In
this paper we always assume that.

Definition 2.2. ([J2]) We say that a C-bundle (,Y, X) satisfies the ”con-
tinuous forms condition” if for each € X there exists a smooth (1, 1)-form
wz > 0 inducing the metric on Y; and z — w; is continuous. That is, if
{iz} is a local parametrization, then the pull back ifw; is a positive smooth
forms on C depending continuously on z.

Definition 2.3. Let (,Y, X) be a C-bundle. Let f : Y - Y and g: X —
X be continuous maps. We say that f is a rational map fibered over g if

l. tof=gonm

2. fly, : Yz = Yy(4) is arational map for any = € X. That is, (i4,) 1o foi,
is a rational map from C to itself for any local parametrization i, at
z € X and iy(y) at g(x).

Notation: If f 'Y 5 Yisa rational map fibered over g : X — X,
then we put f? = f"|y, for any £ € X and n € N. Furthermore we put
dy(z) = deg(f?) and d(z) = di(z) for any x € X and n € N.

Definition 2.4. Let (m,Y, X) be a C-bundle. Let f : Y — Y is a rational
map fibered over g : X — X. Then for any z € X we denote by F, the set of
points y € Y, which has a neighborhood U in Y, satisfying that { 2 }nEN is a
normal family in U, that is, y € F; if and only if the family Q7 = iZlo fPoi,
of rational maps on C (z, denotes g"(z) ) is normal near i;!(y): ‘note that
by Remark 1, this does not depend on the choices local parametrizations at =
and . Still'equivalently, F; is the open subset of Y, where the family {f"}

4
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of mappings from Y, into Y is local equicontinuous. We put J, = Y, \ F;.
Furthermore, we put

J(f)= U o F(H) =Y\ J(f).

zeX

Remark 2. There exists a fibered rational map f : Y — Y satysfying that
Uzex Jz is NOT compact.

Remark 3. In [D] it was shown that if M is a ruled surfaceand f : M - M
is a non-constant holomorphic map, then f is actually a fibered rational map
on the C-bundle M.

We can construct a fibered rational map on trivial bundle from a gener-
ator system of a semigroup generated by rational functions. To investigate
the dynamics of semigroups, we sometimes study the fibered rational maps.

2.1 Potential Theory and Measure Theory

We need some notations from [J2] and [S4], concerning potential theoritic as-
pects. Let (m,Y, X) be a C-bundle satisfying the continuous forms condition
with a family {w;}zex of positive (1,1)-forms. Let f : Y — Y be a rational
map fibered over g : X — X. Let £ € X be a point. We set z, = g"(x)
for each n € N. The form w, on Y, induces a measure which is also called
wz on Yz or even on Y. As measures on Y we have that r — w; is weakly
continuous. For each continuous function ¢ on Y; let (f2).y be the contin-
uous function on Y, defined by ((f2).«¢)(2) = Y. ¢(w) for each n € N.
, f2(w)=z
We define pullbacks of measures by duality: ((f2)*v, ¢) = (v, (f2)s¢p). Let
Uzn be the probability measure on Y; defined by puzn = d—n%a( Mrwg, -
We will lift f, : Yz = Yz, to self maps of C and C? := C2?\ {0}. Let i,
and iz, be local parametrizations near  and x,. Define Q : C—oCtobea
rational map and R; : C — C to be a homogeneous polynomial map, both
of degree d(z), such that

sup{|Rz(z,w)| : |(2,w)| = 1} = 1

and such that
feoiz= ir, °0Qz, Qzo ' =n'0o R,

where we denote by 7’ the projection from C2 to C. Given the local parametriza-

tions i, and i, these properties determine Q) uniquely, and R; uniquely
up to multiplication by a complex number of unit modulus.

Now consider and orbit (z;)jeN in X, select parametrizations at each
point z; and let Ry, be the corresponding homogeneous selfmaps of C2. Let
R? be the composition R;, o --- o R;. Then R7 is a homogeneous poly-
nomial mapping of C2? of degree d,(z). Notice that R? is determined, up
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to multiplication of by a complex number of unit modulus, by the local
parametrizations at x and z,,.

Given a local parametrization iz : C — Y, there exists a smooth potential
Gz, for wy in the sense that w, = dd°(Gzp 0 soiz!), where s is any local
section of 7’ and d° = =(9 - 9).

Define the plurisubharmonic function G, on C? by

n
Gz,n = z,0 o Rz.

1
— G
dn(z)
If we change the local parametrizations at T, and the potential Gz, then

the modified plurisubharmonic function G:n satisfies that there exists a
constant C > 0 such that

|G:c,n(za w) — C:”:(z, w)| <

e o

forallz € X, (2, w) and n € N. By (1) and the arguments in [J2] and [S4],
we get the following.

Proposition 2.5. Let (m,Y,X) be a C-bundle satisfying the continuous
forms condition with a family {w;}zex of positive (1,1)-forms. Let f :
Y =Y be a rational map fibered over g : X — X. Assume that d(z) > 2 for
each x € X. Then we have the following.

1. pgn converges to a probability measure p, on 'Y, weakly as n — oo for
each z € X.

2. Ggn converges to a continuous plurisubharmonic function G locally
uniformly on C2 as n — oo for each = € X. This function does not de-

pend on the choice of local parametrizations at zj,5 > 1 and potentials
Gz,().

3. g = (i71)x(dd*(Gy05)) where s is a local section of 7' : C2 — C. Fur-
ther Gz(z,w) < log|(z,w)| + O(1) as |(z,w)| = oo and Gz(Az, \w) =
Gz(z,w) + log X for each A € C, for each x € X.

Gz, o Ry = d(z) - G; for each z € X.
if £ = o' then G, = Gy uniformly on C2.
(fo)sbiz = pay, (f)*e, = d(z1) - po for each T € X.

Mz puts no mass on polar subsets of Y, for each x € X.

T S

T > jug 18 conlinuous with respect to the weak topology of measures in

Y.

9. supp(pg) = Jy for each z € X.
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10. J. has no isolated points for each z € X.

11. z — J; is lower semicontinuous with respect to the Hausdorff metric
in the space of non-empty compact subsets of Y. That is, if x,z" €
X,z" >z asn - oo and y € Yy, then there exists a sequence (yn) of
points in Y with y, € Yyn for each n € N such that y, — y as n — oo.

2.2 Entropy

Now we show some results on entropy of rational maps on C-bundles using
the arguments in [J2].

Notation: Let (Y, d) be a metric space. Let f : Y — Y be a continuous
mapping. For any compact subset Z of Y we denote by h(f, Z) the entropy
of f on Z. We set h(f) = h(f,Y). For any f-invariant probability measure
v on Y we denote by h,(f) the metric entropy of f with respect to v. If
g : X = X is a continuous mapping on a compact metric space X and
7 :Y — X is a continuous mapping such that go 7 = 7 o f, then we denote
by hy,(f|g) the metric entropy of f relative to g with respect to v. See [J2]
for these notations and definitions.

Theorem 2.6 ([J2],[S6]). Let (m,Y,X) be a C-bundle. Let f: Y = Y be
a rational map fibered over g : X — X. Then the following holds.
n-1
1. h(f,Y;) < lim sup,,_,oo% 3" logd(zy) for any x € X. If the function
=1
d(z) is constant, then h(f,Y;) = logd.

2. If u is an f-invariant probability measure on Y, then we have
hu(flo) < [ togd(z) dim.)(@).

3. h(f) < sup{hr.u(g)+ [xlogd(z) d(mp)(x))}, where the supremum is
taken over all f-invariant probability measures u on Y. If the function
d(z) is constant, then we have h(f) = h(g) + logd.

Theorem 2.7 ([J2],[S8]). Let (m,Y, X) be a C-bundle satisfying the con-
tinuous forms condition with a family (wz)zex of positive (1,1)-forms. Let
f:Y =Y be a rational map fibered over g : X — X. Assume that d(z) > 2
for any z € X. Let p' be a g-invariant Borel probability measure on X.
Define the measure yu on'Y by:

(o) = /X ( /Y o(y) dpa(y))du (z)

for continuous funcitions ¢ on Y, where pu; is the measure in Proposi-
tion 2.5. Then we have the following.
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1. p is f-invariant.
2. if u' is ergodic, then so is p. ‘
3. if ' is (strongly)mizing, - then so is p.

4- hu(flg) = suph,(flg) = [y logd(z) du'(z), where the supremum is
v . .
taken over all f-invariant probability measures v satisfying m,v = p'.

Problem. The interesting problems concerning the above result are:

1. the uniqueness of the measure p with m,u = u’ which gives us the
equality in Therem 2.7.4.

2. the uniqueness of the maximal entropy measure of the fibered rational
maps.

Here are some results concerning these problems.

Theorem 2.8 ([J2]). Let (7,Y, X) be a C-bundle satisfying the continuous
forms condition with a family (wz)zex of positive (1,1)-forms. Let f : Y —
Y be a rational map fibered over g : X — X. Assume that there ezxist a
constant integer d > 2 such that d(z) = d for each x € X. Let y' be a
g-invariant Borel probability measure on X. Define the measure ponY as
in Theorem 2.7 Let v be another invariant Borel probability measure for f
such that mev = p'. Then the following holds.

1. If h,(flg) = logd, thenv = p.

2. If hy(f) = hu(f), thenv =p.

Further, if g has a unique measure ' of mazimal entropy, then u, defined
as in Theorem 2.7, is the unique measure of mazimal entropy for f.

Now we consider the case of skew product maps associated with finitely
generated semigroups of rational functions. Let {fi,...,fm} be finitely
many rational functions. We set ¥, = {1,... m}N and let 0 : £, =& X,
be the shift map. Let f Ym x C = ,;, x C be the skew product map
defined by: f((z,y)) = (0(z), fz,(v)), where z = (z1,72... )- We call this
f the skew product map associated with the generator system {f; ..., fm}

Let K bea compact subset of ,, x C which is backward mvarlant under
f We define an operator B, on the space of complex valued continuous
functions C(K) as follows. For each element @ € C(K) we set

(Baf)(2) = T o1y B(O)%a(C)

where 5(¢) = 32 if m1(¢) = (w1, wa,...).
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B, is a bounded operator on C(K).

Notation: If G is a semigroup generated by non-constant rational func-
tions on C with the semigroup operation being the composition of maps,
then G is called a rational semigroup. For any rational semigroup G,
we denote by F(G) the Fatou set for G:i.e. the set of points z which has
a neighborhood where G is normal. We set J(G) = C\ F(G) and this is
called the Julia set for G. Further we set E(G) = {2 | {U,cc 9~ 1(2) < oo}
and this is called the exceptional set for G. For more details, see the section
of rational semigroups.

Theorem 2.9 ([S5]). Let Gbe a rational semigroup generated by finitely
many non-constant rational functions (fi,... , fm). Assume that there ezists
an element go € G of degree at least two, the exceptional set E(G) for G
is included in F(G) and F(H) D J(G) where H is a rational semigroup
defined by H = {h~ 1| h € Aut (C)NG}.( if H is empty, put F(H) = C.)
Let f : Em x C = T x C be the skew product map associated with the
generator system {fi,... , fm}. Then all of the following hold.

1. For each weight a = (ay,...,a,;,) with Z;" 16; = 1 and a; > 0,
there ezists a unique regular Borel probability measure jiq on Xy, X C
for each compact set K which is included in £,, x (C \ E(G)) and
backward invariant under f, we have

| B2 (@) - fa(@)Il| g =0, asn— o0

for any continuous function $ on K where ||-|| z denotes the supremum
norm on K and 1 denotes the constant function taking its value 1.

2. B;(;Ia) = 4i, and fiq is f-invariant. The projection of fi, onto T, is
the Bernoulli measure with respect to the weight a.

3. The support of fi, is equal to the ”Julia set” J of f.
4. (f, o) is ezact.

5. Let v, be the Bernoulli measure on X,, corresponding to the weight
a=(ay,...,an). Then

sup hp(f'”) Za] log deg(f;),

PGE(f,Va) J—

where E(T,v,) denotes the set of all ergodic f—invariang probability
measures p on Ty, X C satisfying (m)s(p) = va and hp(flo) denotes
the "relative metric entropy” of f with respect to p.
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6. The relative metric entropy of f with respect to [i, 1s:

hio(flo) =) _ a;log deg(f;)

=1
and i, is the unigue element of E(f,v,) satisfying the above.

7. Let ji be the measure for the weight

El deg(f;) E deg(f,

a=

Then [i is the unique mazimal entropy measure and we have

h(f) = ha(f) = log(})_ deg(f;)).

=1

In particular, the projection of mazimal entropy measure of f onto the
base space L., is equal to the Bernoulli measure corresponding to the
above weight a.

Remark 4. e David Boyd’s invariant measure([Bol]) is the projection
of ji to C. To show the convergence of iy we e developed the method
in [Bol]. Considering the projection of fi, to C, the above result can
be regarded as a generalization of the result on uniqueness of usual
”self-similar measures” of iterated function systems generated by some
similitudes.

e One of the motivations for the above result is to estimate the ‘entropy
of semigroup actions’. If G is a finitely generated semigroup acting
on a compact metric space and S = {fi,..., fm} is a fixed generator
system of G, then we can define the entropy h(G, S) of G with respect
to S in the same way as that of the entropy of any group action with
respect to a fixed generator system of the group. By definition, we
have h(G,S) < h(f), where f is the skew product associated with the
generator system S.

2.3 Skew product polynomials on C?

In this subsection we introduce the works of S.Heinemann and M.Jonsson
on skew product polynomials on C2. ([Hel],[He2],[J1]). The first research
on polynomial skew product on higher dimensional space was given by
S.Heinemann. ([Hel],[He2]).

10
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Definition 2.10. A polynomial skew product on C? of degree d is a map of
the form f(z,w) = (p(2),q(z,w)), where p and ¢ are polynomials of degree
d and where p(z) = 2% + O(2%71) and g(z,w) = w? + O(w?1).

Remark 5. If f(2,w) = (p(2), ¢(z, w)) is a polynomial skew product on C?,
then f can be extended to a holcgnorphic map on P2, Also we can consider a
fibered rational map f : J(p) x C — J(p) x C fibered over p : J(p) = J(p).

Theorem 2.11 ([J1]). Let f(z,w) = (p(2),q(2,w)) be a polynomial skew
product map on C? of degree d > 2. Regarding f as a map on C? (or P?),
we associate a Green function G, measuring the rate of escape to infinity,
a positive closed current T = %dch and an invariant probabilily measure
p=TAT. Let ' be the mazimal entropy measure for p : J(p) — J(p).
Let {piz}zc(p) be the family of probability measures in Proposition 2.5 con-
structed by the fibered rational map f : J(p) x C = J(p) x C overp: J(p) —
J(p). Then we have

p =/ pa dp'(z).
J(p)

In particular, the second Julia set Ja for f : P2 — P2, which is defined as
the support of u, satisfies the following:

J2=j(f)a

where J( f) is the set defined in Definition 2.4 for the fibered rational map
f:J(p) xC = J(p) x C over p: J(p) = J(p). Moreover, Jz is the closure
of the repelling periodic points of f : C* - C2.

Remark 6. Concerning Theorem 2.11, see also Theorem 2.8. By Theo-
rem 2.8, the map f on C? (or P?) in Theorem 2.11 has the unique maximal
entropy measure .

Let f(z,w) = (p(2),q(z,w)) be a polynomial skew product map on C? of
degree d > 2. Let u be the maximal entropy measure for f in Theorem 2.11.
We now investigate the Lyapunove exponent A, A2 with A; > Az for f with
respect to the measure u. Let A(p) be the Lyapunov exponent for p. Then
by Przytycki([P]), we know that

A(p) = logd + / Gplic,p,

where G, is the Green function for p and p.p is a critical measure defined
by: '

Hep = Z dc. | (2)

P (c)=0

11
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Define H = log |0q/dy|. Define also a new critical measure p. 4 by:
o = (- dds H A5Gy, (3)

Under these notations, we have the following result.
Theorem 2.12 ([J1]). Under the above, we have the followings.

1. M =logd + [ Gppicyp,

2. My =logd+ [ Gpcg.

Some types of polynomial skew i)roducts in C? were invesﬁgated in [Hel]
and [He2|] by S.Heinemann. :

2.4 Quadratic fibered polynomials

In 1997 O.Sester investigated quadratic fibered polynomial maps in detail.
([Sel], [Se3]). Let

fe: X xC = X xC, fe(z,y) = (9(z),y* + c(2))

be a fibered polynomial map, where X is a compact space, g is a continuous
map on X and c is a continuous complex-valued function on X considered
as a parameter. He constructed a compact connected configuration space
which gives a combinatorial model of a subset of the parameter space. Then
he explained how an abstract configuration can be realized by a quadratic
fibered polynomial. He defined the fiberwise equipotential curves and ex-
ternal rays for fibered polynomial maps. Then he used the idea of ‘Yoccoz
puzzle’ for quadratic fibered polynomial maps.

2.5 Semi-hyperbolicity
Notation :

e Let Z; and Z; be two topological spaces and g : Z; — Z; be a map.
For any subset A of Z3, we denote by c(g, A) the set of all connected
components of g7 1(A).

e for any y € C and § > 0, we put B(y,8) = {3’ € C | d(y,¥') < 8},
where d is the spherical metric. Similarly, for any y € Cand d >0 we

put D(y,8) = {y € C| |y — ¢'| < é}.

Now we will define the (semi—)hype_rbolicity of fibered iational maps.

12
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Definition 2.13. Let f be a fibered rational map on a C-bundle. with
continuous forms {w;}. We say that f is expanding along fibers if there
exists a positive constant C and a constant A with A > 1 such that for each
n € N, we have
inf_[|(f*)(2)l > CA™,
2€J(f)

where we denote by || - | the norm of the derivative with respect to the
metrics on fibers induced by {w;} .

Definition 2.14. (semi-hyperbolicity) Let (7,Y, X) be a C-bundle. Let
f : Y = Y be a rational map fibered over g : X — X. Let N € N.
We say that a point z € Y belongs to SHyn(f) if there exists a positive
number 4, a neighborhood U of m(2) and a local parametrization {i;} in
U such that for any z € U,any n € N, any z, € g '(z) and any V €
C(ix(B(i;(lz)(Z), 6))1 f:)a we have

deg(f7 : V = ix(Blig,(2), 9))) < N.

We set
UH(f) =Y\ |J SHx(f).

NeN

We say that f is semi-hyperbolic (along fibers) if for any point z € Y there
exists a positive integer N € N satisfying that z € SHn(f).

The result of the following lemma is a beauty deduced from semi-hyperbolicity.

Lemma 2.15 ([S4]). Let V be a domain in C, K a continuum in C with
diamgK = a. Assume V C C\ K. Let f : V — D(0,1) be a proper holo-
morphic map of degree N. Then there ezists a constant r(N,a) depending
only on N and a such that for each r with 0 < r < r(N,a), there ezxists a
constant C = C(N,r) depending only on N and r satisfying that for each
connected component U of f~1(D(0,r)),

diamg U < C,

where we denote by diamg the spherical diameter. Also we have C(N,r)—>0
asr —0.

We need some technical conditions.

Definition 2.16 (Condition(C1)). Let (,Y, X) be a C-bundle. Let f :
Y — Y be a rational fibered over g : X — X. We say that f satisfies the
condition (C1) if there exists a family {D;}zex of topological discs with
D, C Y, z € X such that the following three conditions are satisfied:

1. Upnso f2(Dz) C F(f) for each z € X.
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2. for any x € X, we have that diamy(fén)(Dz)) — 0, asn — oo.
3. infzex diam y(D;) > 0.

Definition 2.17 (Condition(C2)). Let (,Y, X) be a C-bundle. Let f :
Y — Y be a rational map fibered over g : X — X. We say that f satisfies
the condition (C2) if for each zp € X there exists an open neighborhood O
of zy and a family {D;},c0 of topological discs with D, C Y,z € O such
that the following three conditions are satisfied:

1. Upyo f2(Dz) C F(f) for each z € O.

2. for any x € O, we have that diamy(fin)(Dx)) — 0, asn — oo.

3. z+— D, is continuous in O.

The following results(Theorem 2.18,2.19) are the key to investigate the
dynamics of semi-hyperbolic fibered rational maps. The most important
thing is the continuity of the map z — J,; with respect to the Hausdorff
topology. Note that there exists a fibered rational map such that  — J is
not continuous. The following results are also keys to get an upper estimate
of Hausdorff dimension of semi-hyperbolic rational semigroups.

Theorem 2.18 ([S4]). Let (7,Y,X) be a C-bundle. Let f:Y - Y be a
rational map fibered over g : X — X. Assume f satisfies the condition (C1).
Let z € Y be a point with z € Fy(;). Let (iz) be a local parametrization.
Let U be a connected open neighborhood of i;(lz)(z) in C. Suppose that there
exists a sequence (n;) of N such that R; := i;}nj 2)° :(’z) Oly(z) cOnverges to
a non-constant map ¢ uniformly on U as j — oo. Further suppose f:gz)(z)

converges to a point 29 € Y. Let S; j = f;,{;’(l;') for 1 <i<j We set

V={ac€ Yr(z) | 3¢ > 0, lim sup sup d(S;; o p(£), &) = 0},
Y0 >4 d(£,y)<E£EY (o)

where ¢ is a map from Yy (,,) onto Yyn.r(,) defined by the local triviality of
Y around z9. Then V is a non-empty open proper subset of Yr(2) and we
have that

vV c J(f) NUH(¥).

Remark 7. We call this domain V the rotation domain.

Theorem 2.19 ([S4],[S6]). (Key theorem) Let (1,Y, X) be a C-bundle.
Let f :Y =Y be a rational map fibered over g : X — X. Assume f is semi-

hyperbolic along fibers and satisfies the condition (C1). Then the following
hold.
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1. Let z €Y be any point with z € Fy(,). Then for any local parametriza-
tion (iz) and any open connected neighborhood U of i;(lz)(z) in C,

there ezists no subsequence of (i~} 2fr(z) © W(z) 0 ix(z))n converging to a
non-constant map locally uniformly on U.

z€X

3. Suppose the condition (C2) is satisfied. Then there exist positive con-
stants 6, L and A\(0 < A < 1) such that for any n € N,

sup{diam yU | U € ¢(B(z,8), f2), z € J(f), zn € g7"(n(2))} < LA™,

where we denote by B(z,6) the ball in Yr(z) with the center z and the
radius & with respect to the metric in Y, (,) induced by the metric of Y.

4. Assume that (m,Y, X) satisfies the continuous forms condition and that
d(z) > 2 for each ¢ € X. Then we have that x — J; is continuous

with respect to the Hausdorff metric in the space of compact subsets of
Y.

5. Assume that (7,Y, X) satisfies the continuous forms condition with a
family (w;) of positive (1,1)-forms and that d(z) > 2 for each z € X.
Then for any compact subset K of F(f), we have that Un>of™(K) C
F(f) and there ezist constants C > 0 and 7 < 1 such that for each

n, sup (™) (2)|| £ CT", where we denote by ||(f")'(2)|| the norm
zeK
of the derivative measured from wy(;) 10 Wyn(x(s)). In particular, the

condition (C2) is satisfied.

Theorem 2.20 ([S6]). (measure zero) Let (r,Y, X) be a C-bundle. Let
f:Y 5 Y be a rational map fibered over g : X — X. Suppose f is semi-
hyperbolic along fibers and satisfies the condition (C2). Then for each x €
X, the 2-dimensional Lebesgue measure of J; is equal to zero.

Definition 2.21. Let C be a positive number. Let K be a closed subset
of C. We say that K is C-uniformly perfect if for any doubly connected
domain A in C satisfying that both two connected components of C\ A have
non-empty intersection with K, the modulus of A is less than C.

Theorem 2.22 ([S6]). (uniform perfectness) Let (r,Y.X) be a C-bundle
with continuous forms condition. Let f : Y — Y be a rational map fibered
over g : X = X with d(x) > 2 for any x € X. Suppose that f is semi-
hyperbolic along fiberes and satisfies the condition (C1). Then there erists
a positive constant C such that J; is C-uniformly perfect for any z € X.
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Notation: Let y € C and b € C be two distinct points. Let E be a
curve in C joining y to b satisfying that E'\ {b} C C. For any ¢ > 1 we set

car (E,c,y,b) = U "~ D(z, ly ; zl)
" zeE\{y,b} !

This is called the c-carrot with core FE and vertex y joining y. to b.

Definition 2.23. Let V be a subdomain of C. Let ¢ > 1 be a number.
We say that V is a c-John domain if there exists a point yo € V satisfying
that for any y € V' \ {yo} there exists a curve E joining yo to y such that
E\ {y} CcC and

car (E,cvyayﬂ) cV

In the above the point yp is called the center of John domain V.

Remark 8. Johnness implies many good properties ([NV], [Jone]).For ex-
ample, if V is a John domain, then the following facts hold.

e If oo € V, then the center of V is oo. _

o Let a € 9V \ {oo} and b € V. Then there exists a curve E joining a
to b and a constant ¢ such that car (E,c,a,b) C V. In particular, a is
accessible from b.

e V is finitely connected at any point in 8V: that is, if y € OV, then
there exists an arbitrary small open neighborhood U of y in C such
that U NV has only finitely many connected components.

o If V is simply connected and 8V C C, then we have that 3V is locally
connected.

e If 9V C C then 9V is holomorphic removable: that is, if o : C - Cisa
homeomorphim and is holomorphic on C\ dV, then ¢ is holomorphic
on C. From this fact, we can deduce that the 2-dimensional Lebesgue
measure of AV is equal to zero.

Theorem 2.24 ([S6]). (Johnness) Let (1,Y = X x C, X) be a trivial
C-buundle. Let f : Y — Y be a rational map fibered over g: X > X
satisfying that fy is a polynomial with d(x) > 2 for any x € X. Then there
exists a positive constant ¢ such that for any x € X the basin of infinity
Az ={y e Yz | f2(y) > 00, n = oo} in Yy (here we identify f* with a
usual polynomial) satisfies that it is a c-John domain.

Remark 9. In the Theorem 2.24 if X is a set consisting of one point, then f
is semi-hyperbolic if and only if the basin of infinity is a John domain([CJY]).
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3 Rational semigroups

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. It is a semigroup with the semigroup operation being
composition of maps. A rational semigroup is a subsemigroup of End(C)
without any constant elements. We say that a rational semigroup G is a
polynomial semigroup if each element of G is a polynomial.

Definition 3.1. Let GG be a rational semigroup. We set
F(G) = {z € C| G is normal in a neighborhood of 2}, J(G) = C\ F(G).

F(G) is called the Fatou set for G and J(G) is called the Julia set for G.
The backward orbit G~(z) of z and the set of exceptional points E(G) are
defined by: G~(2) = Ugecg™!(2) and E(G) = {z € C | §G~(2) < 2}.

Definition 3.2. A subsemigroup H of a semigroup G is said to be of finite

index if there is a finite collection of elements {g;,g2,... ,9n} of G such that
G = Ul g;H. Similarly we say that a subsemigroup H of G has cofinite
index if there is a finite collection of elements {g;,92,... ,9n} of G such

that for every g € G there exists a j € {1,2,... ,n} such that gjg € H.

Next results were shown in [HM1]. F.Ren’s group in China has shown
almost the same results(dealing with all meromorphic semigroups).

Theorem 3.3 ([HM1],[GR]). Let G be a rational semigroup.

1. For each f € G, we have f(F(G)) C F(G) and f~'(J(G)) C J(G).
Note that we do not have that the equality holds in general.

2. If a subsemigroup H of G is of finite or cofinite indez, then J(H) =
J(G). In particular, when G is a rational semigroup generated by finite
elements {f1, f2,... fn} and m is an integer, if we set

Hm={9=fj1"'fj,; € G | m divides k},

I, = {g € G| g is a product of some elements of word length m}

then J(G) = J(Hp) = J(In). Here we say an element f € G is of
word length m if m is the minimum integer such that f = f;,--- f;...

3. If J(G) contains at least three points, then J(G) i3 a perfect set.
4. If J(G) contains at least three points, then §E(G) < 2.

5. If a point z is not in E(G), then for every x € J(G), z belongs
to G—(2). In particular if a point z belongs to J(G) \ E(G), then
G (z) = J(G).
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6. If J(G) contains at least three points, then J(G) is the smallest closed
backward invariant set containing at least three points. Here we say
that a set A is backward invariant under G if for eachg € G, g71(A) C
A ‘

7. If J(G) contains at least three points, then

J(G) = {z € C| z is a repelling fized point of some g € G}

If G is generated by a compact subset of End(C), then J(G) has the
backward self-similarity. That is,

Lemma 3.4 ([S4]). Let G be a rational semigroup and assume G is gen-
erated by a precompact subset A of End(C). Then

JG&) = @ =rtuo).

feA hek

In particular if A is compact then we have J(G) = Ujen FHJI(G)).
We call this property the backward self-similarity of the Julia set.

3.1 Completely invariant sets

The Julia set of a rational semigroup may not be forward invariant. For
example, J((z2, 22)) = {|z] < 1.}. Hence a natural question is; what is
the smallest compact subset of C which is completely invariant under each
element of the semigroup?

Definition 3.5 ([St1],[St2]). We say that a set Y is completely invariant
under a map f if f~1(Y) C Y and f(Y) C Y. For any rational semigroup
G, we denote by CI(G) the smallest compact subset of C which has at least
three points and is completely invariant under each element of G. Actually
this set exists. This set CI(G) is called the completely invariant J-set for
G. Furthermore we set W(G) = C \ CI(G).

Theorem 3.6 ([St1]). For polynomials f and g of degree at least two,
J(f) # J(g) implies CI((f,g)) =C

To show this result, the Green’s function in the component of W(G)
which contains the infinity is used. Further for ‘rational’ semigroup, we
have

Theorem 3.7 ([St2]). Let G be a rational semigroup of which any element
is of degree at least two. Then W(G) can have only 0, 1,2 or infinitely many
components.

Here is a conjecture concerning the above problem.
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Conjecture 3.8 (St2). Let G be a rational semigroup of which any ele-
ment is of degree at least two. Suppose there ezist two maps f and g in G
such that J(f) # J(g). Then CI(G) # C implies that CI(G) is a simple

closed curve in C.

Remark 10. It is not known that if the Fatou set F(G) must have only
0, 1,2, or infinitely many components when G is a finitely generated ratio-
nal semigroup. However, for each positive n, an example of an infinitely
generated polynomial semigroup G can be constructed with the property
that F(G) has exactly n components. These examples were constructed by
David Boyd in [Bo2]

3.2 Uniformly perfectness

Uniformly perfectness is an important notion in the complex analysis, as we
discussed in the section of semi-hyperbolicity of fibered rational maps. In
[HM2] it was shown that the Julia set of finitely generated rational semigroup
of which any element is of degree at least two is uniformly perfect. This
result was generalized in [St3] as follows. The proof of the paper is more
staight-forward than that in [HM2] and this result by Stankewitz is valid for
Klenian groups, iteration of rational functions and iterated function systems.
In fact, the result was given for a wide class of rational semigroups.

Theorem 3.9 ([St3]). Let G = (g : i € I) be a rational semigroup gen-
erated by the maps {g; : 1 € I} such that the supremum of the Lipschitz
constants of g; with respect to the spherical metric in C is bounded. Assume
that §J(G) > 3. Then the Julia set J(G) is uniformly perfect.

Now we consider the uniformly perfectness of attractors of semigroups.

Definition 3.10 ([St4]). Let U be a subdomain of C and K a compact
subset of U. Let {g; : © € I} be a family of non-constant maps from U to K
such that there exists 0 < s < 1 and a metric d on K which is compatible
with the induced topology from C satisfying that d(gi(z), gi(w)) < sd(z,w)
for all z,w € K and all i € I. Then We say that the semigroup G generated
by {gi : i € I} is a CIFS(Contracting Iterated Function System) on (U, K).
For a CIFS on (U, K) we set A'(G) = {z € K |39 € G, g(z) = 2} (the clo-
sure is taken in the topology of K.) and this set is called the attractor (in
the sense of this subsection). If G is a CIFS on (U, K) and each element of
G is analytic on U, then G is called an analytic CIFS.

Theorem 3.11 ([St4]). Let G = (g; : i € I) be an analytic CIFS on
(U,K). Let A’ be the attractor. Suppose there exist 0 < § < diam(A)
and C > 0 such that we have the following:

1. ifa€ A and i € I, then g; is one-to-one on D(a,d)
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2. ifa € A' and gi(a) = a' then the branch h; of g such that h;(a') = a
is defined on D(d', ), ‘

3. ifa € A' and gi(a) = a', then the branch h; of g; ' such that h;(a’) = a
satisfies , g :
|hi(2) — hi(a)| < Clz — d'|

for all z € D(a’, 3/10).

Then, if the attractor set A’ has infinitely many points, then A’ is uniformly
perfect. Note that in the assumption we take the Euclidian metric.

Corollary 3.12 ([St4]). Let G = (g; : © € I) be an analytic CIFS on
(U,K). Let A' be the attractor. Suppose that there exists n > 0 where
|9i(a)] > n for alla € A" and alli € I. If A’ has infinitely many points, then
A’ is uniformly perfect. '

If the attractor set has a critical point of an element of G, then the
attractor set may not be uniformly perfect. In fact,

Example 3.13 (St4). Let G = (223, (2 —1/2)2+1/2). Then G is actually
an analytic CIFS on some (U, K) and the attractor set is NOT uniformly
perfect. .

3.3 Normality of inverse branches

We introduce a result by A.Hinkkanen and G.Martin.

Theorem 3.14 ([HM3]). Let G be a rational semigroup whose every el-
ement has degree at least 2. Suppose that any segence in G contains a
subsequence, say f;, such that each f; can be factorized as f;j = gj o ¢ for
rational functions g; and ¢ that need not be elements of G, where ¢ is in-
dependent of j and has degree at least 2. Let D C C be a domain. Let F be
a family of single-valued mermorphic functions in D such that each element
f of F is a branch of the inverse of some element of G in D. Then F is a
normal famaly.

Remark 11. Theorem 3.14 was used in [Bol] and [S5] to show the conver-
gence of the iteration of the operators B,. (See Theorem 2.9). K.Maegawa
investigated the normality of inverse branches of fibered rational maps in
higher dimension.([Mae]).

3.4 Wandering or no wandering domains

Next we define stable basin, type of the basins and wandering domains.-

Definition 3.15. Let G be a rational semigroup and U a connected com-
ponent of F(G).
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For each g € G, we denote by U,y the connected component of F(G)
containing g(U).

U is called a wandering domain if there exist infinitely many distinct
components U; of F(G) and elements g; of G such that g;(U) C U;.

We say that U is a stable basin if there is an element g € G \ AutC
such that g(U) C U. And we set

Gv ¥ {geG|g(U)cU}.

Given a stable basin U for G we say that it is

1. attracting if U is a subdomain of an attracting basin of each
g € Gy of degree at least two;

2. superattracting if U is a subdomain of a superattracting basin
of each g € Gy of degree at least two;

3. parabolic if U is a subdomain of a parabolic basin of each g € Gy
of degree at least two;

4. Siegel if U is a subdomain of a Siegel disk of each g € Gy of
degree at least two;

5. Herman if U is a subdomain of a Herman ring of each g € Gy
of degree at least two.

Definition 3.16 ([HM1]). Let G be a rational semigroup containing an
element g with deg(g) > 2. We say that G is nearly abelian if there is a
compact family of Mébius (or linear fractional) transformations ® = {¢}
with the following properties.

e o(F(G))=F(G) forallpc ®
e for all f, g € G there is a ¢ € ® such that fg = pgf

Theorem 3.17 ([HM1]). Let G be a nearly abelian rational semigroup
with an element in of degree at least two. Then for each g € G of degree at
. least two, we have J(G) = J(g).

Theorem 3.18 ([HM1]). Let G be a nearly abelian rational semigroup
with an element in of degree at least two. Then G has no wandering do-
mains.

There is an important example.

Theorem 3.19 ([HM1]). There ezists an infinitely generated polynomial
semigroup which has a wandering domain.

But here is a conjecture.
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Conjecture 3.20 ([HM1]). IfG is a finitely generated rational semigroup,
then there erists no wandering domain for the dynamics of G.

Theorem 3.21 ([HM1]). Let G be a rational semigroup with an element
in of degree at least two. Suppose G has no wandering domains. Let U
be any component of F(G). Then the forward orbit of U under G, that is,
{Ug}gea, contains a stable basin W satisfying that Gw is a cofineit index
subsemigroup of G.

Theorem 3.22 ([HM1]). Let G be a nearly abelian rational semigroup
with an element in of degree at least two. Let U be a stable basin. Then
U is either attracting, superattracting, parabolic, Siegel or Herman. In the
Siegel case the basin U contains a single cycle fized by each element of Gy.
If U is of Siegel or Herman type, then Gy is abelian.

One of conjectures in [HM1] was solved in [Hal] by T.Harada.

Theorem 3.23 ([Hal)). If G is a nearly abelian polynomial semigroup and
G contains some polynomials of degree at least two, then there exists a neigh-
borhood of oo on which G is analytically conjugate into (z — az" : |a| =
1, n=1,2,3,...).

3.5 Teichmiiller theory for rational semigroups

In this subsection we introduce the Teichmiiller theory for rational semi-
groups in [Ha2] by T.Harada. The following definitions are due to the paper
[MS].

Definition 3.24. Let X be a Riemann surface and G be a subsemigroup
of End(X). We denote by D(X,G) the set of triplets {(¢,Y, H)} where Y
is a Riemann surface, H is a subsemigroup of End(Y), ¢ : X - Y is a
quasi-conformal map, and they satisfy that ¢ o G o p~! = H. Two elements
(¢1, Y1, Hy) and (p9,Ys, Hs) of D(X,G) are said to be equivalent if there
exists a biholomorphic map h : Y7 — Y3 such that hop; = p2. We denote by
Def(X, G) the equivalence classes and this is called the deformation space
for (X, G). Further let M (X, G) be a space of all measurable Beltrami dif-
ferentials which is invariant under the action of G. It is a Banach space with
the sup norm. We denote by M;(X,G) the open unit ball centered at zero
in M(X,G). For a measurable set E included in X, we denote by M;(E, G)
the subspace of M;(X,G) that consists of all elements whose supports are
included in E.

Lemma 3.25. The map
DCf(X, G) 3 (CP,Y,H) gy € Ml(Xa G)

is bijective, where p, is the Beltrami differential of ¢.
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Definition 3.26. We define the q.c. automorphism group QC(X.G) as the
set of all quasi-conformal maps w from X to itself which satisfies woG ow™l =
G. This group acts on Def(X, G)

w:(pY,H)— (pow” 1YH)

for w € QC(X, G). Its normal subgroup QCo(X, G) is defined as the group of
all wp admitting a uniformly quasiconformal isotopy w; rel the ideal bound-
ary of X, such that w; =idx and

woGouw,'=G, (0<t<1).

The Teichmiiller space Teich(X,G) for (X, G) is defined as: Def(X, G)/QCo(X, G).

The modular transformation group Mod(X, G) is defined as a quotient group:
QC(X,G)/QCo(X,G).

Definition 3.27. Let G be a countable rational semigroup. We denote by
C(G) the set of critical points of some element of G. We denote by B(G)
the set of fixed points of grand orbit relation of G. We denote by Jo(G) the
grand orbit of C(G) U B(G) under G. We denote by J(G) the closure of
Jo(G). We set Q(G) = C\ J(G). We resolve Q(G) to two parts. We define
Q4i3(@) as all points which have the discrete grand orbit and Qf(G) as a
complement of 2%4(G). Sometimes (G) is omitted.

Theorem 3.28 ([Ha2]). Let G be a countable rational semigroup of which
Julia set has at least three points. Then

Teich(C, G) = My(J,G) x Teich(/*,G) x Teich(Q%*/G, ),

where Q% /G is a Riemann surface and the isomorphism is the one as com-
plez Banace manifolds. And Teich(C,G) has the unique complez structure
which makes the canonical projection

Def(X,G) — Teich(C,G)
is holomorphic.

Theorem 3.29 ([Ha2]). Let G be a finitely generated rational semigroup
of which Julia set has at least three points. Then Teich(C,G) is a finite
dimensional complez manifold.

Theorem 3.30 ([Ha2]). Let G be a finitely generated rational semigroup
of which Julia set has at least three points. Suppose G N Aut(C) = 0. Then
the action of Mod(C,G) to Teich(C,G) is properly discontinuous.

Remark 12. Most hope that there exists a nearly abelian finitely generated
rational semigroup G (not generated by one map) such that Q‘“’(G) is not
empty.
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From the point of view of Theorem 3.6, some may thlnk that the following
conjecture is true.

Conjecture 3.31. Let f and g be two rational maps of degree at least two.
Suppose J(f) # J(g) and J({f,g9)) = C. Let p be a Beltrami differential on
C with the norm less than one. Suppose 1 18 invariant under both f and g.
Then p = 0. :

Remark 13. From Theorem 3.29, we at least know that the space of Bel—
trami differentials on C with the norms less than one which are invariant
under both f and g is a finite-dimensional ball.

3.6 Sub, Semi-hyperbolicity

Definition 3.32. Let G be a rational semigroup. We set

P(G) = U{ critical values of 9} |
9€G

We call P(G) the post critical set of G. We say that G is hyperbolic if
P(G) C F(G). Also we say that G is sub-hyperbolic if {{ P(G) N J(G)} < oo
and P(G) N F(G) is a compact set.

We denote by B(z,¢) a ball of center z and radius € in the spherical
metric. We denote by D(z,¢) a ball of center £ € C and radius € in the
Euclidean metric. Also for any hyperbolic manifold M we denote by H(z,€)
a ball of center x € M and radius € in the hyperbolic metric. For any rational
map g, we denote by B,(z,¢€) a connected component of g~!(B(z,¢)). For
each open set U in C and each rational map g, we denote by c(U, g) the set
of all connected components of g~!(U). Note that if ¢ is a polynomial and
U = D(z,r) then any element of ¢(U, g) is simply connected by the maximal
principle.

For each set A in C, we denote by A’ the set of all interior points of A.

Definition 3.33. Let G be a rational semigroup and N a positive integer.
We set

SHy(G)

= {z €C|38(z) >0, Vg € G, VBy(z,5(x)), deg(g : By(z,8) - B(z,8)) < N}

and UH(G) = C\ (UnenSHN(G)).

Definition 3.34. Let G be a rational semigfoup. We say that G is semi-
hyperbolic (resp. weakly semi-hyperbolic) if there exists a positive integer
N such that J(G) C SHn(G)(resp.0J(G) C SHNn(G)).
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Theorem 3.35 ([S4]). Let G be a rational semigroup. Assume that G is
weakly semi-hyperbolic and there is a point z € F(G) such that the closure

of the G-orbit G(z) is included in F(G). Then for each z € F(G), G(z) C
F(G) and there is no wandering domain.

Definition 3.36. Let U be an open set in C. Let G be a semigroup gener-
ated by holomorphic maps from U to U. We say that a non-empty compact
subset K of U is an attractor in U for G (in the sense of this subsection) if
g(K) C K for each g € G and for any open neighborhood V of K in U and
each z € U, g(z) € U for all but finitely many g € G.

Definition 3.37. Let G be a rational semigroup. We set

Ao(G) = G({z € C| 3g € G with deg(g) > 2, g(z) = z and |¢’(2)| < 1.}),

A(G) = G({z € F(G) | 3¢ € G with deg(g) > 2, g(z) = z and [¢'(2)[ < 1.}),

AG)=G({z€C|3geC, g(z) =z and |¢'(2)| < 1}),

A(G)=G{z € F(G) 3 € G, 9() = z and [§ () < LD,
where the closure in the definition of Ag(G) and A(G) is considered in C.

Theorem 3.38 ([S4]). Let G = (fi1, fa2,--- , fm) be a finitely generated ra-
tional semigroup. Assume that F(G) # 0, there is an element g € G such
that deg(g) > 2 and each element of Aut C N G (if this is not empty) is
lozodromic. Also we assume all of the following conditions;

1. Ay(G) is a compact subset of F(G),

2. any element of G with the degree at least two has neither Siegel disks
nor Hermann rings.

3. {UH(G) N 8J(G)) < oo and all the fized points of elements in G
contained in UH(G) N 3J(G) are repelling.

Then Ao(G) = A(G) # 0 and for each compact subset L of F(G),
sup{d(f,-n . 'fi1 (Z), A(G)) ‘ z€ La (im see ’il) € {1’ R ,m}n} - 0,

as n — 0o, where we denote by d the spherical metric. Also A(G) is the
smallest attractor in F(G) for G. Moreover we have that if (hy,) s a sequence
in G consisting of mutually disjoint elements and converges to a map ¢ in
a subdomain V of F(G), then ¢ is constant taking its value in A(G).
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3.7 Conditions to be semi-hyperbolic

In this section we will show some conditions to be semi-hyperbolic.

Theorem 3.39 ([S4]). Let G = (f1, fa,-.- , fm) be a finitely generated ra-
tional semigroup. Let z9 € J(G) be a point. Assume all of the following
conditions:

1. there ezists a neighborhood U, of z in C such that for any sequence
(gn) C G, any domain V in C and any point ( € U1, we have that
the sequence (gn) does NOT converge to ¢ locally uniformly on V.

2. there exists a neighborhood Ua of zg in C and a positive real number &
such that if we set

T ={ceC| 3}, fj(c) =0, (GU{id})(fi(c)) Nz # 0}
then for each ¢ € TNC(f;), we have d(c, (G U {id})(f;(c))) > &.
3. F(G) #0.
Then z € SHy(G) for some N € N.

Now we get the sufficient and necessary condition to be semi-hyperbolic
for a finitely generated rational semigroup.

Theorem 3.40 ([S4]). Let G = (fi1, f2,... fa) be a finitely generated ra-
tional semigroup. Assume that there exists an element of G with the degree
at least two, that each element of Aut C N G (if this is not empty) is lozo-
dromic and that F(G) # 0. Then G is semi-hyperbolic if and only if all of
the following conditions are satisfied.

1. for each z € J(G) there exists a neighborhood U of z in C such that for
any sequence (gn) C G, any domain V in C and any point { € U, we
have that the sequence (gn) does NOT converge to ¢ locally uniformly
onV

2. for each j =1,... ,m each c € C(f;) N J(G) satisfies
d(e, (G U {id})(fj(c))) >0

Theorem 3.41 ([S4]). Let G = (f1, f2,- .. , fm) be a finitely generated sub-
hyperbolic rational semigroup. Assume that there ezists an element of G with
the degree at least two, that each element of Aut CN G (if this is not empty)
1s lozodromic, that there is no super attracting fized point of any element of
G in J(G) and F(G) # 0. Then G is semi-hyperbolic.
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3.8 Interior points of Julia sets

The Julia set of a rational semigroup may have non-empty interior points. In
this subsection, we discuss about when Julia set of a rational semigroup has
non-empty or empty interior points. Further we give a sufficient condition
for Julia sets of semi-hyperbolic rational semigroups to be of 2-dimensional
Lebesgue measure zero.

Firstable we give a sufficient condition for interior of Julia sets to be
non-empty. ‘

Theorem 3.42 ([HM2]). Let G be a rational semigroup. Suppose J(G) is
uniformly perfect. Further suppose that there exists an element g € G such
that g has a superatiracting fized point zo in J(G). Then 2o is an interior
point of J(G).

Hence by Theorem 3.9, we get the following Corollary. From this, we
can easily get many examples of rational semigroups of which Julia sets have
non-empty interior points.

Corollary 3.43 ([St3]). Let G = (gi : i € I) be a rational semigroup
generated by the maps {gi : i € I} such that the supremum of the Lipschitz
constants of g; with respect to the spherical metric in C is bounded. Assume
that $J(G) > 3. If a point zg € J(G) is a superattracting point of some
element of G, then zy is an interior point of J(G).

Now we give some sufficient conditions for interior of Julia sets to be
empty.

Theorem 3.44 ([S2]). Let G = (f1, fa,... fa) be a finitely generated ratio-
nal semigroup. We assume that the set U(,-,j):,-#f[l(J(G)) ﬂfJ-"l(J(G)) does
not contain any continuum. Then the Julia set J(G) has no interior points.

Definition 3.45. Let G = (f1, f2,--- , fm) be a finitely generated rational
semigroup. We say that G satisfies the open set condition with respect to
the generators fy, fo,... , fm if there exists an open set O such that for each
j=1,...,m, fj_l(O) C O and {f;l(O)}j:l,_N ,m are mutually disjoint.

Proposition 3.46 ([S4]). Let G = (f1, f2,... , fm) be a finitely generated
rational semigroup. Assume that G satisfies the open set condition with
respect to the generators fi, fo,... ,fm and O\ J(G) # @ where O is an
open set in the definition of the open set condition. Then J (G)’ = () where
we denote by J(G)* the interior of J(G).

Now we give a sufficient condition for Julia sets of semi-hyperbolic ra-
tional semigroups to be of 2-dimensional Lebesgue measure zero.

Theorem 3.47 ([S4]). Let G = (f1, f2,... , fm) be a finitely generated ra-
tional semigroup which is semi-hyperbolic, contains an element with the de-
gree at least two and satisfies the open set condition with respect to the
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generators fi, fa,..., fm. Let O be an open set in Definition 3.45. Assume
that §(00 N J(G)) < oo. Then the 2-dimensional Lebesgue measure of J(G)
1s equal to Q. , o

3.9 Hausdorff dimension of Julia sets

We introduce a result on an upper estimate of Haussdorff dimension of semi-
hyperbolic rational semigroups. Actually the key is the Theorem 2.19.

Definition 3.48. Let G be a rational semigroup and ﬁ a non-negativé num-
ber. We say that a Borel probability measure y on C is §-subconformal if
for each g € G and for each Borel measurable set A

u(g(A4)) < /A 9’ (2) s,

where we denote by || - || the norm of the derivative with respect to the
spherical metric. For each z € C and each real number s we set

Ss, 2)=>_ > gl

9€G g(y)=2
counting multiplicities and |
S(z) =inf{s| S(s, z) < oo}.
If there is not s such that S(s, =) < oo, then we set S(r) = co.Also we set
so(G@) = inf{S(z)}, s(G) = inf{4 | Eip : 5-subéonformal measure}

It is not difficult for us to prove the next result using the same method
as that in [Sul). '

Theorem 3.49 ([S2]). Let G be a rational semigroup which has at most
countably many elements. If there ezists a point z € C such that S(z) < oo
then there is a S(x)-subconformal measure. In particular, we have s(G) <

So(G).

Proposition 3.50 ([S4]). Let G = (f1, f2,..- , fm) be a finitely generated
rational semigroup. Assume that G satisfies the open set condition with
respect to the generators f1, fa,... , fm and O\ J(G) # @ where O is an open
set in the definition of the open set condition. If there ezists an attractor in

F(G) for G, then

s0(G) < 2.
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Theorem 3.51 ([S4]). Let G be a rational semigroup generated by a gen-
erator system {fa}aca such that Unea{f2} is a compact subset of End(C).
Let f be a rational skew product constructed by the generator system. As-
sume f is semi-hyperbolic along fibers and satisfies the condition C2. Then

we have
dimg (J(G)) < s(G).

Theorem 3.52 ([S4]). Let G = (f1, f2,... , fm) be a finitely generated ra-
tional semigroup which is semi-hyperbolic. Assume that G contains an ele-
ment with the degree at least two, each element of Aut C N G(if this is not
empty) is lozodromic and F(G) # 0. Then we have

dimy(J(@)) < 3(G) < 50(G).
Proof. By Theorem 3.51 and Theorem 3.49. O

Remark 14 (S2,S4). Let G = (f1, f2,... , fm) be a finitely generated hy-
perbolic rational semigroup which satisfies the strong open set condition (i.e.
G satisfies the open set condition with an open set O satisfying O D J(G).).
We assume that when n = 1 the degree of f is at least two. By the results
in [S4](Theorem 3.2 and the proof, Theorem 3.4 and Corollary 3.5), we have

0 < dimy J(G) = 3(G) = 30(G) < 2.

"Example 3.53 (S4). Let G = (f1, f2) where fi(2) = 22 + 2, fa(2) =
22 — 2. Since P(G) N J(G) = {2,-2} and P(G) N F(G) is compact, we
have G is sub-hyperbolic. By Theorem 3.41, G is also semi-hyperbolic.
Since f;1(D(0,2)) C D(0,2) for j = 1,2 andf; (D(0,2)) N f;(D(0,2)) =
@, G satisfies the open set condition. Also J(G) is included in B =
UZ_,f71(D(0,2)). Since BN 3D(0,2) = {2,-2,2i,-2i}, we get §(J(G) N
0D(0,2)) < oo. By Corollary 3.47, we have my(J(G)) = 0, where we de-
note by ms the 2-dimensional Lebesgue measure. By Theorem 3.52 and
Proposition 3.50, we have also

dimy(J(G)) < 3(G) < 30(G) < 2.

3.10 Using thermodynamical formalisms

Let G be a rational semigroup generated by {f1,..., fm}. Under the same
notation as those in subsection of Entropy, let f : £, x C = E;n x C be
the skew product map associated with the generator system {f1,...,fm}.
That is, f((w,z)) = (6(w), fw,(z)) where o is the shift map on £, and
w = (wy, we,...). }

In this section, we assume that f is expanding along fibers (see the
definition in subsection of semi-hyperbolicity in fibered rational maps.)

We recall the following sufficient condition to be expanding.
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Theorem 3.54 ([S2]). Let G = (f1, f2,... fm) be a finitely generated hy-
perbolic rational semigroup. Assume that G contains an element with the
degree at least two and each Mobius transformation in G is neither the iden-
tity nor an elliptic element. Then the skew product map f:EZmuxC = ZpuxC
associated with the generator system {f1,..., fm} is expanding along fibers.

Foreachj =1,...,m, let p; be a Holder continuous function on f, _l(J (Q)).

We set for each (w,z) € J, o((w,z)) = pw,(z). Then  is a Hélder con-
tinuous function on J. We define an operater L on C(J) = {¢ : J = C |
continuous } by

mwa)= 3 Ay,
f((w' y)=(w,x)

counting multiplicities, where we denote by P = P(f] j» ) the pressure of
(f19)-

Lemma 3.55. With the same notations as the above, let G = (f1, f2,-- - fm)
be a finitely generated ezxpanding rational semigroup. Then for each set of
Holder continuous functions {@;};=1,.. m, there ezists a unique probability
measure T on J such that

o L*r =,

e for each ¥ € C(J), ||[L™y — 7(¥)all;j = 0,n = oo, where we set
a = lim ;00 L(1) € C(J) and we denote by || - ||; the supremum
norm on J,

e ar is an equilibrium state for (f| jr )

Lemma 3.56. Let G = (fi, fa,--- fm) be a finitely generated ezpanding ra-
tional semigroup. Then there exists a unique number § > 0 such that if we
set pj(z) = —dlog(|lf;(@)I),4 =1,... ,m, then P=0.

From Lemma 3.55, for this § there exists a unique probability measure
7 on J such that LjT =7 where L; is an operator on C(J) defined by

P((w',y))
Lp((w,z)) = Y T V("
U e I (Fw) W

Also ¢ satisfies that

a'r(f) log(z =1 deg(f]))

6—f1<pad'r_ [5 padr

where o = limy_, LJ(I) we denote by hq(f) the metric entropy of (f, ar)
and @ is a function on J defined by @((w, z)) = log(|| 3, (z)|])-
By these argument, we get the following result. ‘
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Theorem 3.57 ([S7]). Let G = (f1, f2,--. fm) be a finitely generated ez-
panding rational semigroup and § the number in the above argument. Then

dimg (J(G)) < s(G) < 4.

Moreover, if the sets { {7 (J(G))} are mutually disjoint, then dimy (J(G)) =
0<2and0 < H;s(J(G)) < oo, where we denote by Hs the §-Hausdorff
measure.

Corollary 3.58 ([S7]). Let G = (f1, f2,.-- fm) be a finitely generated ez-
panding rational semigroup. Then

log(E — deg(f;))
log A

where A denotes the number in Definition 2.13.(See Theorem 3.54).

Example 3.59. Let G = (f1, f2) where fi(z) = 22 and f2(z) = 2.3(z—-3)+
3. Then we can see easily that {|z| < 0.9} C F(G) and G is expanding. By
the corollary 3.58, we get

dimg (J(G)) < —2&3

log1.8

In particular, J(G) has no interior points.

<2.

3.11 Lower estimate of Hausdorff dimension of Julia sets

Now we consider a generalization of Maiié’s result([Ma3]).

Lemma 3.60 ([S5]). Let G = (f1, f2,.-- fm) be a finitely generated ratio-
nal semigroup. Assume that the sets {f7(J(G))}j=1,..,m are mutually dis-
joint. We define a map [ :J(G) = J(G) by f(z) = fi(z) if z € f71(J(B))

(Note that J(G) = UR, f71(J(G)))- If u is an ergodic invariant probability
measure for f : J(G) - J(G) with hy(f) > 0, then fJ(G) log(lf'I) du > 0

and HD(u) = o 12g(f|ff'||) ) where we set
. HD(y) = inf{dimg(Y) | ¥ € J(G), u(Y) =1}.

The following result is shown from Lemma 3.60 and Theorem 2.9.

Theorem 3.61 ([S5]). Let G = (f1, f2,--. fm) be a finitely generated ratio-
nal semigroup. Assume that F(H) D J(G) where H = {h™! | h € Aut(C)n
G}(if H = 0, put F(H) = C.) Also assume that the sets {FFYI(B))}j=1,...m
are mutually disjoint. Then

og(E —, deg(f;))

Ty B IF) du’

where i = (m3)ufia, a = (%,..., %) and f(2) = £i(z) i = € £7(J(G)).

dlmH(J (@) >
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4 Semi-hyperbolic transcendental semigroups

An entire semigroup is a semigroup generated by non-constant entire func-
tions in C. In [KS] H.kriete and H.Sumi investigate a sufficient condition
to be semi-hyperbolic for (not necessarily finitely generated ) entire semi-
groups. The result is similar to that in the subsection of conditions to be
semi-hyperbolic for rational semigroups. In fact, originally the idea to get
the sufficient conditions to be semi-hyperbolic for finitely generated rational
semigroups has come from the idea in [KS].

5 Random holomorphic dynamics

There are so many pubulished articles concerning the random dynamical sys-
tems. (for example, [A],[K]). Very recently, some have been investigating the
random holomorphic dynamics. ([Br],[Bul], [Bu2], [BBR],[FS],[FW],[Ro],
[ZR]). We introduce some results of them.

5.1 Classification of sequences of polynomials

First we introduce the works of Biiger’s in which the classification of se-
quences of polynomials was given.

Definition 5.1 ([Bul]). Given a sequence (f,) of polynomials of one com-
plex variable with the degrees at least two, the Fatou set for the sequence is
the set of points in C each of which has a neighborhood where the sequence
is normal. The Julia set is the complement in C. For any connected com-
ponent V of the Fatou set of a sequence, we denote by L£(V') the set of all
limit functions. If all elements of £(V) are constant functions, we call V a
contracting domain, otherwise an expanding domain.

Definition 5.2 ([Bul]). Let (fs) be a sequence of polynomials of degree
at least two. We say that A hyperbolic domain M C C is called invariant,
if fo(M) C M for all n € N. We say that (f,) belongs to

1. - the class P; if there is an invariant domain M, co € M, such that

fao---0 fi = oco(n = 00), locally uniformly in M,

2. - the class Py if f0---0 fi = oco(n — 00), locally uniformly in some
neighborhood of oo, although there is no invariant domain M such
that oo € M,

3. - the class Pj, if co belongs to the Julia set of (fy).

We say (fn) belongs to class Q if for each n € N, there ex1sts a complex
number ¢, such that f,(2) = 2% + c,.
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Theorem 5.3 ([Bul]). If (fu) € P1, then the Julia set of the sequence
is equal to the boundary of the attracting basin of infinity. Moreover, the
attracting basin of infinity is equal to U o(fn o --- 0 fi)~1(M).

Definition 5.4 ([Bul]). Let (fs) be a sequence of polynomials. If for every
domain D which intersects the Julia set J of the sequence there is an integer
n such that (fpo---0 fi)"}(fao: -0 fi(DNJ)) = J, we call J self-similar.

Theorem 5.5 ([Bul)). If (fn) € P1, then the Julia set of the sequence is
self-similar. Moreover, the Julia set is perfect or finite. In the finite case
we can find n € N such that foo0--- o fi(J) consists of a single point.

Theorem 5.6 ([Bul]). Let (fn) be a sequence of polynomials

dn
fa(z) = Zaknzk, Gd,;n 0, dn 2> 2,
k=0

such that:
1. inf{|aq, n| : » € N} >0,

2. max{lo,|:0 < k < dn} = O(lag n)
Then (fy) is contained in Py. If, in addition, (f,) satisfies

3. log* |ag, n| = O(dn), then the Julia set is perfect.

Theorem 5.7 ([Bu2]). Let (f,) € Q, and (cn) be a sequence of complez
numbers such that fn(z) = 2% + cn. Then (fy) belongs to

1. class P, if and only if (cp) 18 bounded,
2. class Py, if and only if (cs) is not bounded, but log* |c,| = O(2"),
3. class Ps, if and only if limsup,,_,,(log™ |cn|)/2" = +o00.

In particular, Q is the disjoint union of 1N Q, P2NQ and P3N Q.
We investigate the class P;.

Theorem 5.8 ([Bu2]). 1. Let (fu) € P1N Q and V be a contracting
domain. Suppose V C C. Then L(V) is compact and L(V)N{z | |2| <

1/2} # 0.

2. For every compact set L C C which satisfies LN{z | |2] < 1/2} # 0
we can find a sequence (fn) € P1 N Q whose Fatou set contains a
contracting domain V such that L(V) = L.

Theorem 5.9 ([Bu2]). Let (fy) € P1NQ, and V be an ezpanding domain.
Then the set L(V) contains infinitely many functions.
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Next we investigate the class Ps.

Theorem 5.10 ([Bu2]). Let D C C be a bounded domain. Then we can
find a sequence (fn) € P2N Q such that D is included in the Julia set of

(fn)-

Theorem 5.11 ([Bu2]). 1. Let (fy,) € P2NQ, and V be a contracting
domain, L(V) # {oo}. Then L(V) is closed and oo € L(V).

2. For every closed set L C C, oo € L, which satisfies LN{|z| < 1/2} # 0,
there exists a sequence (fp) € P2 N Q whose Fatou set contains a
contracting domain V such that L(V) = L.

Theorem 5.12 ([Bu2]). There is a sequence (f,) € P2 N Q such that the
Fatou set contains an expanding domain.

Next we investigate the class P3.

Theorem 5.13 ([Bu2]). Let (f,) € PsN Q. Then (fpo--- o f1)converges
to oo locally uniformly in the Fatou set.

5.2 Results for generic sequences

In 1991 J.Fornaess and N.Sibony started to investigate the behavior of the
generic sequences for the random iteration of rational functions.

Notation. Let W be a connected open set in C. We consider a holomor-
phic function R : W x C — C such that for each ¢ € W, R.(z) := R(c,2) is a
rational function of degree d. In this subsection we will always assume that
R(c, z) is generic, i.e. that for every z € C, the function ¢ — R(c, z) is not
constant. For any point ¢ € W and any number § > 0 with D(cp,d) C W,
we set X(cg,0) = D(co,é)N. Let g : X(cp,8) = X(co,d) be the shift map.
We construct a fibered rational map f : X (cg,8) x C = X(co, 8) x C fibered
over g : X(cp,0) = X(co, d) defined as:

f(z,y) = (9(2), Re, (y))

for (x,y) € X(cp,8) xC, = = (z1,x2,...).
For any probability measure u on D(co, ) we set ji = @5, .

Theorem 5.14 ([FS]). Under the above, let co € W and suppose R, has
k attractive cycles, y1,...,v%, kK > 1. For each 1 < j < k let V; be a
neighborhood of ;. We will assume that V; is contained in the basin of
attraction of ;. Then, there is a 0o > 0 such that for each 0 < § < dy
there exist continuous functions hy, ..., hy defined on C with the following
properties:

1 0< hi(y) <1, T8 hiy) =1,
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2. for each y € C there exist disjoint open sets Ujy in K(co,0) with
A(Ujy) = hj(y) where X is the normalized Lebesgue measure on D(co, d),
and if x € U then for all large enough n €N, f7(y)(z) € V}.

Corollary 5.15 ([F'S]). Under the same condition of Theorem 5.14, let V
be a neighborhood of {11,...,7}. Then there exists 6o > 0 such that for
each < § < 8y there exists a set £ C K(co,0) of full measure with respect to
the measure \, where )\ denotes the normalized Lebesque measure in D(co, 6),
such that ifz € £, a.e. inC, fP(y) € V for all large enough n. In particular,

Jz is of Lebesgue measure 0 in C for z € €.

We next show an ergodic property of random iteration of rational func-
tions. Let cg € W. Let M(C) denote the set of Borel probability measures
on C. Fix a small § > 0 such that D(cg,6) C W. We define the operator

T : M(C) - M(C) by:
(Tv)(B) = / ey VB ),

where B is a Borel set in C and ) is the normalized Lebesgue measure on

D(co.d). Then the following holds.

Theorem 5.16 ([FS]). Under the above, Suppose R, has no superattract-
ing cycles. Then there is a lower semicontinuous function hs : C — (0, 00)
such that for every M (C) the sequence T™v converges to hso where o denotes
the normalized Lebesgue measure on C.

Moreover, for y € C, B C C Borel set, there ezists £,8 C X(co,0) of
full measure with respect to X such that for every T € &y,B we have

o1
Jim 2 > xs(f2) = /Bha do.
n<k
If R(c, 2) is regular, then hs : C = (0, 00) is continuous.

5.3 Random iteration of quadratic polynomials

Developing some ideas of random iteration of rational functions in [FS],
R.Briick, M.Biiger and S.Reitz investigated the case of random quadratic
polynomials in detail.

In this subsection we discuss about the following fibered quadratic poly-
nomials. Let K be a compact subset of C. Let X(K) = KNandg: X — X
be the shift map. We consider the following map f defined as:

f(.’L‘, y) = (g(x), y2 + .'131),

where (z,y) € X(K) xC and z = (21, 2,23, ... ). For a probability measure
pon K, we set fi = Q2 u.
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Theorem 5.17 ([BBR]). Under the above, let K = D(0,1/4) and X be a
Borel probability measure on K with the support equal to K. We denote by B
the set of points x € X(K ) satifying that the orbit {ms(f2(y))}nen is dense
in D(0,1/2) for all y € D(0, 1/2). Then we have

A(B) = 1.

Theorem 5.18 ([BBR],[Br]). Let K C C be a compact set. Suppose
int(K) N (C\ M) # 0, where M denotes the Mandelbrot set. Let p be a
Borel probability measure on K which is absolutely continuous with respect
to the Lebesgue measure on K and which satisfies int(supp(u))N(C\ M) # 0.
Then we have the Jollowing. '

1. Let R> 0. Then for every y € C there exists an open set Uy C X(K)
with the following properties:

() i(Uy) =1,
(b) for every x € Uy, there holds I‘ITE( 5(y))| > R for all sufficiently
large k.

In particular, for almost all x € X(K) with respect to ji we have that
the 2-dimensional Lebesgue measure of J, is equal to zero.

2. We denote by D, the set of points ¢ € X(K) satifying that J, has
infinitely many components. Then we have

(Do) = 1.

Theorem 5.19 ([Br]). Let K be a bounded set such that KN (C\ M) # 0.
We set:

Dy ={z € X(K) | J; has more than N components}, (4)
Do = {r € X(K) | J; has infinitely many components }, (5)
T ={z € X(K) | J; is totally disconnected }. (6)

Then
1. T is dense in X(K).

2. DN 1is an open and dense subset of X (K) for each N € N.

3. Do 1is a countable intersection of dense open subsets of X (K) and has
empty interior.

Question.

({Br]) Is T of the second Baire category in X (K) ?

(IBBR]) By zero-one law, we know that ji(7) is equal to 0 or 1. Which
is true?
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5.4 Rational semigroups and random iteration

We introduce a work of S.Rohde’s in which some relationship between ra-
tional semigroups and random iteration composed in the opposite way.

Let K be a closed disk centered at the origin. Let R(c,z): K xC - C
be a holomorphic family such that the degree of R.(z) := R(c, 2) is at least
two. In this subsection we always assume that there exists a point ¢cp € K
such that z — %%(co, z) is not identically zero.

For z € X(K) = KN, we denote by F; the set of points z € C satisfying
that z has a neighborhood where the sequence (Rz, © Rz, 00 Rz, )nen is
normal, where z = (z1,z2,...). We set J; = C\ F,. We call J; the opposite
Julia set for the sequence z. Let A be the normalized Lebesgue measure. We
set A = R A

Theorem 5.20 ([Ro]). Under the above, Let G be the rational semigroup
generated by {R. | ¢ € K}. Then J(G) contains interior points and for
almost x € X(K) with respect to A, the opposite Julia set J; is equal to
J(G).

Similarly, let K = {1,...n}.Let {Ry,... , Ry} be some rational functions
of degree at least two. We define the opposite Julia set Jz for z € X(K) =
KN as the above. Let X be any probability measure on K such that A(j) > 0
forany j=1,...,n. Weset A= ®p21A. Then we have the following.

Theorem 5.21 ([Ro]). Under the above, let G be the rational semigroup
generated by {Ry,... ,Rn}. Then for almostz € X (K) with respect to A the
opposite Julia set J, is equal to J(G).

6 Higher dimensional cases

6.1 Attracting currents and measures

We introduce the J.Fornaess and B.Weickert’s work([FW]) in which they
showed that for the random iteration which is generated by a holomorphic
family in P, there exists a positive closed (1,1) current and a measure on
P* which are invariant and which attract all positive closed (1,1) currents
and all measures, respectively, under normalized pull-back and averaging by
the maps.

Let K = D(0,8) C C*. Let R : K x P* — P* be a holomorphic family
such that R.(z) := R(c, ) is of degree d > 1 for each ¢ € K. We also assume
that ¢ = R(c, z) is finite-to-one and hence open. Let X (K) = KN. Let X be
the normalized Lebesgue measure on K. Let A = ®32, A.

Just as in the subsection ‘Potential theory and measure theory’ in the
section of fibered rational maps, we construct a family of Green functions
{Gz}zex(k) on CF*1. We denote by T the unique positive closed (1,1)
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current in P* such that 7*T, = dd*(G,) where 7 : C¥*+1\ {0} — P* is the
natural projection. _
Further, we set EG(y) = fX( k) Gz(y) dA(z). Then we can see EG is

plurisubharmonic and continuous on CK+1\ {0}. We also see that there
exists a unique positive closed (1,1) current T on P* satysfying that 7*T =
dd°(EG).

Let S be the space of positive closed (1,1) current S on P* such that
|S]| = 1. We define an operator © on S as:

em:%Lms

Similarly, define the measure y;, considered as a (k,k) current, on P*,
by the equation 7*p; = (dd°Gz)*. We set u = [ X (K) Mz Let P be the space
of Borel probability measure 7 on P, We define an operator ( on P as:

1 %
o) = z [ Een,

where R is the operator defined just as in the subsection ‘Potential theory
and measure theory’ in the section of fibered rational maps. Then we have
the following result.

Theorem 6.1 ([FW]). Under the above, we have the following.

1. T = [y T
2. 6(T) =T.

3. For any s € S, we have ©™(S) - T as n — oo in the weak topology
of currents.

4. Qp) = p.

5. For any n € P, we have Q™(n) — p as n — oo in the weak topology of
currents.

6. The support of T is equal to the Julia set of (Ry, o -+ - o Ry, )neN-
7. The support of T is equal to the Julia set of semigroup generated by
{R:| c€ K}.
6.2 Fibered holomorphic maps and semigroups

We introduce some works of K.Maegawa’s. ([Mae]).

Let X be a compact metric space.

Just as in the section of fibered rational maps in C-bundles, let f :
X x P¥ — X x P* be a fibered holomorphic map fibered over a continuous
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map g : X = X. We define fiberwise Fatou sets {F;} and Julia sets {J;}.
We use the same notations as those in the section of fibered rational maps.
We assume that the degree of f; is at least two for any € X. (Here we do
not assume that the degree of f, is constant with respect to z € X.)

Theorem 6.2 (Mae). Under the above,

1. Let x € X. We have that y € wpr(Fy) if and only if there exists a
neighborhood U of y in P*¥ such that there exists a saubsequence of
{f2}neN which converges to a map locally uniformly in U.

2. Suppose that X = KN for some compact subset K of the space of
all holomorphic maps on P*, that g : X — X is the shift map and
that f(x,y) = (g9(z), R(z1,y) where R(c,z) is a continuous family of
holomorphic maps on PX. Then we have that a point y € P* belongs to
the Fatou set of semigroup G generated by {R. | ¢ € K} if and only
if there exists a neighborhood U such that for each x € X(K), there
erists a subsequence of {fP}neN converging to a map locally uniformly
on U. In particular, we have

(| Jz) = J(G).

z€X

Remark 15. He generalized a result concerning the normality of the family
of inverse branches of maps in semigroups in [HM3] to higher dimensional
case also.([Mae])

6.3 Other works

In [ZR] W.Zhang and F.Ren discussed about the random iteration of holo-
morphic self-maps over bounded domains in C*. In [Hi] A.Hirachi discussed
about the skew product maps associated with finitely many Hénon maps on
C2. He constructed a family of Green function {G:}.

7 Problems

e Consider Collet-Eckmann and expansive fibered rational maps.

¢ Similarly, consider Collet-Eckmann and expansive rational semigroups.
Consider the dynamical behavior and get some estimate of Hausdorff
dimension of Julia sets of such rational semigroups, using Poincaré
series or ergodic theory. Use some ideas in Iterated function systems,
for example those in [MU1] and [MU2].

o Get some estimate of entropy of finitely generated semigroups with
respect to the some generator systems. Note that by Theorem 2.9,
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we have an upper estimate of that. What happens when the entropy
of a finitely generated rational semigroup with respect to a genera-
tor system is maximal i.e. attains the log of the sum of degrees of
generators.

e Develop the ergodic theory for fibered rational maps, like the works of
M.Denker and Urbanski’s.

e Investigate the non-constant limit functions of fibered rational maps
and investigate the ‘rotation domains.’ (See Theorem 2.18.)

e Construct the Teichmiiller theory for fibered rational maps.

e Develop the theory of random holomorphic dynamics to a more gen-
eral one. For example, take other measures than Bernoulli measures
or Lebesgue measures. Consider stochastic process with holomorphic
dynamics. What happens for pathwise dynamics and Julia sets? What
can we say about almost sure paths?

8 Note

In this note, we use the same notations as those in ‘Skew product maps
ralated to finitely generated rational semigroup’ by Hiroki Sumi. ([S5]) We
will give a precise proof of a statement in it.

Proposition 8.1. Let G = (f1,...,fm) be a finitely generated rational
semigroup. Let f : Ly, x C — Xy x C be the skew product map associ-
ated with the generator system {fi,..., fm}. Then we have the following.

J = Nn30f " (Zm x J(G)) (7)

15(J) = J(G). (8)

Proof. First we will show (8). Since J,, C J(G) for each w € %,,, we have
ms(J) C J(G). We set

R(G)={2€T|3g€G, g(z) = 2,¢'(z)| > 1}.

We consider several cases.

Case 1. §J(G) > 3. Then by Hinkkanen and Martin, we have R(G) =
J(G). Since we have R(G) C w@-(j) and ﬂf(j) is a compact set, we get
R(G) C n@(j). Hence we get (8).

Case 2. §J(G) = 0. Then it is trivial to see (8).

Case 3. J(G) = {a}. Then each element of G belongs to Aut(C). We have
for each g € G, g(a) = a. If there exists an element g € G with |¢'(a)| < 1,
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then the repelling fixed point b of g is different from a and b € J(G). It is a
contradiction. Hence we have for each g € G, | ¢'(a)| > 1. If each element of
G is elliptic, then each disc D C C satisfies diam g(D) = diam D and so G is
equicontinuous in C. This is a contradiction. Hence there exists an element
g € G such that a is a repelling or parabolic fixed point, then a € ﬂ@(j )
and (8) holds.

Case 4. J(G) = {a1,a2} and a; # a2. Then each element of G belongs
to Aut(C). Also we have g(J(G)) = J(G) for each g € G. From this, there
is no parabolic element in G. Since J(G) # @, We must have non-elliptic
element in G. Hence we have a loxodromic element g € G. We can assume
that a; is a repelling fixed point of g. Then we have

a; € Wﬁ(j). (9)

If there exists a number j such that fj(a2) = a1, then we have a3 € WE(j )
and so (8) holds. Now let us assume f;(az) = ap for each j =1,...m. If ay
is a repelling fixed point of some element in {f;}, then a; € wﬁ(j ) and (8)
holds. If | fJ'- (a2)| £ 1 for each j then we have f; is elliptic or loxodromic for
each j. Then there exists a disc D around a2 such that f;(D) C D for each
Jj- Then as € F(G) and this is a contradiction.

Now we will show (7). Since J,, C J(G) for each w € X,,, we have
J C Nn>0f ™(Em x J(G)). Let (w,z) € T x C be a point satisfying that
f*((w,z)) € = x J(G) for each n € N. Suppose (w,z) € F. We will show
it causes a contradiction. There exists a cylinder set U = {w' € Ty | w} =
wj, j =1,...n} and an open neighborhood V of z such that U x V' C F.
Then we have

ffUXV) =y X fu, 0-+-0 fu, (V) CF. (10)
In particular, we have T, X {fu, © -+ 0 fu, (z)} € F. By (8), we get fu,, o
-+« 0 fu,(z) € F(G). It is a contradiction. O
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