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Abstract

Recently, a remarkable correspondence has been unveiled between a certain class of ordi-
nary lincar differential equations (ODE) and integrable models. In the first part of the report,
we survey the results concerning the 2nd order differential equations, the Schrédinger equa-
tion with a polynomial potential. We will observe that fundamental objects in the study of
the solvable models, e.g., Baxter’s Q— operator, fusion transfer matrices come into play in
the analyses on ODE. The second part of the talk is devoted to the generalization to higher
order linear differential equations. The correspondence found in the case of the 2nd order
ODE is naturally lifted up. We also mention a connection to the discrete soliton theory.

1 Introduction

Recent studies(1]-[7] reveal an unexpected connection between a certain category of ordinary
differential equations (ODE) and mtegrable models (IM) with quantum group symmetry. We
call this ODE/IM correspondence . The success inherits the fruitful results from the exact WKB
analysis[8]-[16] and progress in the study of integrable structure [17]-[20]. '

The aim of the present talk is two-fold, the survey on the 2nd order ODE case, and the brief
preview on the generalization to higher order cases.

Firstly, we will review the results on the 2nd order differential equations, the Schrﬁdinger
equation with a polynomial potential,

d%y

d2+wy Ey.

We will mainly follow the argument in [2] but employ some simplifications and add some ma-
terials. Motivated by the success of the exact WKB method, we regard the coordinate z as a
complex variable. The complex z plane is conveniently divided into sectors. See section 2. Each
sector possesses two (= the order of the equation ) linear independent solutions. We call them
a fundamental set of solutions (FSS). The relations among FSS of different sectors are of our
interest. To be precise, we would like to evaluate the Stokes multiplier which characterizes the
connection rule. In this view point, it is natural to regard that the problem consists of two
coupled equations, the original differential equation and the difference equation for the Stokes
multiplier. It will be then shown that fundamental objects in the study of the solvable models,
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e.g., Baxter’s Q— operator, fusion hierarchy of transfer matrices based on Uq(A(ll)) and their
functional relations naturally come into play in the analyses on ODE. Especially, (unfused)
transfer matrix is identified with the Stokes multiplier. Reflecting the ODE/IM correspondence,
the Stokes multiplier has two representations, the Wronskian representation, which arises from
ODE, and the DVF representation, originated from IM. They both play a role in generalizing
the results in the second part of the talk.

Physically, the Stokes multiplier may be less interesting. Rather, the quantity of importance
is the spectral determinant, D(E) = det(H — E) or eigenvalues themselves. Remarkably, D(F)
also belongs to the fusion hierarchy. Thus the result provides a unified view of Stokes multipliers
and spectral determinant.

In the second part, a generalization to higher order ODE will be addressed,

dn+1y

dxn+1

In [6], functional relations were derived among Stokes multipliers and their generalizations.
These are identical to functional relations among transfer matrices of solvable models with
Uq(Ag)) symmetry, which generalizes the observation for n = 1. The relations were evolved by
use of the machinery in the solvable models, a quantum analogue of the Jacobi-Trudi formula.
Here we will give an alternative, much simpler derivation, resulting from the Wronskian repre-
sentation of the Stokes multipliers. We also note that the possible connection of the relations to
discrete soliton equations (the Hirota-Miwa equation)[21, 22].

The parallelism to IM will be further exploited. The eigenvalues of transfer matrices possess a
universal structure called the dressed vacuum form (DVF). The universality has a deep origin in
analyticity of their expressions under Bethe ansatz equations and the Yang-Baxter integrability.
We will show that Stokes multipliers also assume the same DVF.

The paper is organized as follows. The asymptotic form for n + 1—-th ODE will be discussed
in section 2. Several notations and symbols, such as sectors, Stokes matrices, are introduced
for n general. In the next three sections, we restrict ourselves to the n = 1 case. The recursion
relations and functional relations for the Stokes multiplier and its generalizations are derived in
section 3. Under certain assumptions, one transforms the algebraic relations to a set of integral
equations modulo one unknown parameter. Remarkably, the integral equations take identical
forms to thermodynamic Bethe ansatz equations. We shall discuss the DVF representation for
the Stokes multiplier in section 4. The spectral problem is addressed in section 5. Utilizing the
previous results, spectral determinants are identified and the one missing parameter in section 3
will be determined. The extension to arbitrary n is the topics of sections 6 and 7. We conclude
the paper with a brief summary and discussion in section 8.

While preparing the manuscript, I find the preprint [23] appearing on e-print. The content of
the paper largely overlaps with the second part of the present manuscript. They actually treated
a more general set of ODE but without the argument of the functional relations.

+ xey = Fy.

2 Asymptotic Expansion, FFS and Stokes multipliers

The details of the present section can be found in (24, 25, 26].
We first discuss the asymptotic behavior of a slightly generalized differential equation,

"y + (-1)"P(z)y =0 (1)
4
P(z) = Zaja:e_j
7=0

where a; are complex numbers and a; = 1. Note that the factor (—1)" is not essential. It can be
adsorbed into re-definition of the angle of z. For later convenience, we will include this factor
throughout out this report. ‘
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Now that z = oo is an irregular singular point of the equation, analytic properties of the
solutions are different for different angle regions in complex z plane. Let S be a region in the

plane satisfying
™

k< ————
+ I_€+'n+1

for z € Si, where § = 2_4-21?1:71' We first analyze the asymptotic behavior of a subdominant solution
in Sy. Following [25, 24|, we define by(h = 1,2, --) by the relation,

|argz

£ 00
1+ Z agz ®)/(+1) — 1 4 Z bz "
h=1

k=1

A key function E(z,a) is defined by by,

E(z,a) := /1+thx )2t/ ) g

_ 1l e/ Z _ b ymeon
{4+ n+ 1 hel n_+1 —h+1
where hy = N for £ = N(n+1) — 3,(j = 1,--- ,n). a stands for (a1, a2, - ,as)

In addition, we introduce an exponent vy by

%g, for { #0mod n +1

%l+(n+1)bh,+1, for{=0modn+1.

(2)

Vyp =

Theorem 1. In Sy, there ezists a subdominant solutzon to (1) y(x,a) which has the asymptotic
behavior,

y(x, a) ~ C——lm-—w/(n+1)e—E(z,a). - (3)

A normalization factor C is introduced for convenience in the later discussion,

2
n+1

chtl = exp(—%z) H (w —w'), w:=exp(—
0<i<j<n

i).

As argued in [6], the range of the validity of the asymptotic form is wider if one forgets the
subdominance. Explicitly, it is valid for |argz| < é—:—l:—?—l
The intriguing feature in the differential equation (1) is a certain symmetry in rotating x

plane.

Theorem 2. if y(z,a) is the prescribed solution, then
ye(z,a) := y(zg~*, G*)(a))g"/?
is also a solution to (1).

The parameter g signifies exp(if) = exp(iﬁzn%). The operation G*¥)(a) is defined by
G®(a) = G(G¥~N(a)),k > 2 and G(a) = (a1/g,a2/¢%,- - ar/¢").

From now on, we restrict our discussion to a single potential term case ,
P(z) =zt +ag, ag= "L

One immediately verlﬁes that by,+1 = 0 and thus vy = nf/2 for £ > n + 1. Under the operatlon
of G, G(ar) = agqgt = agg™*!. In term of ), the action of G is simply given by G®I(\) = Agk.
Consequently, yx = ¢"¥/2y(zq*, AgF).
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A set of fundamental solutions (FSS) in S is formed by by (Y, Yk+1," ** » Yk+n). We introduce
a (n+1) x (n + 1) matrix ®x(z)

Yk Yk+1, Tty Yk+4n .
Oyk, OYk+1, ***» OYkin

Qi (x) := : ) (4)
Myk, ™Yk41, s OUktn

We denote the Wronskian, the determinant of ®x(z), by Wy. Note that the above asymptotic
expansion is valid for yx4j,(j = 0,---,n) in the common sector Sy;1/2 U Sg_1/2. As Wy is
constant in z, one easily checks the linear independence of these solutions by using the asymptotic
expansion (3) at the sector. Due to the present normalization of yx, we have Wy = 1.

A Stokes matrix Sy connects FFS of S and Sg41

Ppt1(x) = B (x)Sk- (5)
The linear independence of solutions demands Sy in the following form,
T]Q)(Aqk% 17 0’ 07 R 0
7-52) (Aqk)7 O’ lv Ov Ty 0
Sk = : : (6)
Tl(n) (Aqk)3 Oa 0, 01 Tty 1
Tl(n+1)()‘qk)a 0’ Oa 0) R} 0

We call elements 7 Stokes multipliers. .
By the Cramer’s formula, one represents 7'1(J )()\qk) as

' Ye+1, Ye+22 s Yks s Yk+n+l
7 (Ag¥) = det : (7)
O"yk+1, "Yrs2, o+ Yk, v, Yktn41
that is, (yk,OYk, -+ ,0"yk) is inserted in the j—th column in the denominator. Evidently

WD) = (=1 Wesa /Wi = (-1)".
The above representation (7) of Stokes multipliers will be referred to as the Wronskian

representation.
Determinants of such structure will be hereafter abbreviated to, by specifying only the first
TOW, [Yk+1,Yk+2""* »Yks*** » Yk+n+1]. Generally,
Yiis Yiz» ttt Yin
[yiuyizv"' ayin] =
an—lyl,l, an—lyiz, e, an—l,yz,n

We have prepared materials needed for study on general n. In the next few sections, however,
we confine ourselves to the n = 1 case. There are two reasons for the separated argument. First,
only for n = 1 case, we have a clear bridge between the connection problem and the spectral
problem. Second, the second order ODE may be the most relevant to physics.

3 Fusion Stokes matrices for the 2nd order ODE

The ingenious idea in [2] lies in the introduction of the generalized (or fusion) Stokes matrices
connecting the second neighboring sectors, the third neighboring sectors, and so on. We denote

by S,(cj ) the fusion Stokes matrices connecting two FSS, ®; and &, ;
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&) = Dpp,; ST
Obviously, the recursion relation holds,

59 =59 VsV, (8)

Theorem 3. S,(cj ) has an eTpression

1
S0 — ( T}(ll))(/\q"), Tjgfil)(/\qm) )
—TiDi(AGF), —Ti (A )
where we adopt Tél)(/\) = 1,791)()\) = 0. Thanks to the condition Ypiork = —Yk, Te(l)()\) =
—Tlg)z()\) =1 and Téi)l()\) = 0. Naturally, 7'](1), (7 > 2) are referred to as the generalized Stokes
multipliers. Due to (8) they satisfy relations,

T (@) V) =7 (V) +712; (2N, (9)
example
For ¢ =1, ,
Pz
-y +ay =Ny,

it is well known that the eigenfunction is given by Airy function y = Ai(z). The above connection
rule then fixes the Stokes multiplier for Airy function Tl(l) =1.

Let TJ(”()\) = Tj(l)(,\q(j“)ﬁ). One can then prove

using (9) and the mathematical induction. These functional relations ezxactly coincide with those

among fusion transfer matrices of Uq(A(ll)). In the latter context, the suffix j specifies the spin
7/2 assigned to the auxiliary space. They are the closed set of equations among finitely many
unknown functions Tj(l), (3 =0,1,--- ,¢). Thus they may be of significance in the estimation
of the quantity of our original interest, 7'1(1)()\). Actually, with additional assumptions on the
analyticity and asymptotic behavior of TJ(I) (A), one can fix 7‘1(1) (M) via coupled nonlinear integral
equations resulting from ( 10). To see this, we conveniently put Y;(A) = Tj;1(\)Tj—1()\) and

A = e/(t+2) Now the functional relations read

K ¥ .
GO+iY0-i7) = 1+ Y 10)(1+Y51(0), j=1,2,6-1 (1)
where h = £. Note that Yy =Y; = 0.

Assumption :
(logY;(6))" ((log(1 + Y;())') are analytic, nonzero and have constant asymptotic behavior
(ANZC) in the strips Imf € [- %, %], Imf € [-0T, 0F] respectively.
The validity of this assumption will be discussed in section 5.
Once this is granted, one immediately derives from (11) [2, 29, 30],

h—1

€;(0) = mjrexp6 — %r- Z &5k * L(0) (12)
k=1
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where m; = sin(nj/h)/sin(n/h), Y;(8) = exp(e;(6)) and L;(6) = log(1 + 1/Y;(0)). The
asterisk denotes the convolution, A x B(6) = [ A(0 — ¢')B(¢")dd'.

This type of coupled integral equations is known as thermodynamic Bethe ansatz equa-
tion(TBA). One finds them in various branches of IM, e.g., the thermodynamics of 1D spin
chains or the perturbation theory of CFT. The kernel, ¢;, is related to the two particle S-
matrix S of quantum field theory based on Ap_; by @4(0) = —i0 log S;(f) and

min(j,k)—2
Sik@® = I {i-kl+25+1},
j=0
. __sinh(6/2 + im/2h)
eh=-DE+1. @)= GrGm i)

Theorem 4. The set of equations (12) fizes Y;(8) for a given r.

To determine the factor r, it needs an independent ingredient from the spectral theory. We
will come back to this point in section 5.

We have a remark. For the later use in the spectral problem, we have introduced generalized
Stokes matrices and derived functional relations (10) from the obvious recursion relation (8).

They can be also easily extracted from the following Wronskian representation of TJ(I)(E),

7)(E) = det (z(,‘: z{:i) . (13)
’ J

For n > 1, the situation is different. The generalized Stokes matrices can be defined similarly.
Their elements, however, do not contain nice generalization of Tl(a) ’s. The formal definition of

the Wronskian type like (13) still works efficiently. See the discussion in section 6.

4 Dressed Vacuum Forms of Stokes multipliers

As shown in the previous section, the Stokes multipliers share same functional relations with
the transfer matrices of IM. Below we will discuss if this correspondence carries forward.

The eigenvalues of the transfer matrices in solvable models exhibit a universal structure often
referred to as the dressed vacuum form (DVF). We shall explain DVF for the simplest the A(ll)
case with the dimension of the auxiliary space being 2.

Obviously, the highest weight state (= vacuum) is the trivial eigenstate of the transfer matrix.
Its eigenvalue consists of two terms, reflecting the dimensionality of the auxiliary space. Each
of them is given by the simple product of the local weights which is termed as the vacuum

expectation value,
Tvacuum ()\) = fl ()‘) + fZ(/\)

This expression must be modified for general eigenvalues. The quantum inverse scattering
method yields the exact expression. The result tells that Tacyum(A) must be modified by ”dress-
ing ” the vacuum expectation values with ratios of Baxter’s Q) operator (or its eigenvalue) which
commutes with T, [T, Q] = 0,

Q(\g) Q(A\g™Y)

T = fl()\)m + f2()\)w- (14)

The fact that the eigenvalue must be pole free results the famous Bethe ansatz equation
(BAE),
A _ Qe
fa(X) Q(A9)
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where Q(A;) = 0. This kind of representation is called DVF.

Clearly, eq( 14) has an interpretation as the second order difference equation (Baxter’s T-Q
relation),

TV AQM) = ANQAD) + (NQO™).
Thus two independent solutions exist which we call Q.

In [27, 28], it is shown that DVF is universal for models based on general U,(g) under certain
assumptions. The key ingredient in the argument is the analyticity under BAE. Thus we may
conclude that DVF embodies the BAE or Yang-Baxter integrable structure.

Now we turn to the n = 1,k = 0 of (5). The Stokes multiplier 7'1(1)()\) is given by y's in two
manners,

_ Yo+
oY = :
11 h

|z=0- (15)

Originally, the rhs can be evaluated at any z yielding the same 7'1(1) (A). We adopt a convention
to enumerate them at the origin for the later convenience. See section 5.

By comparison of (14) and (15) and the identification, Tl(l)()\) 1)()\q) made after (9) , we
deduce y; o« Q- (A¢’) and yJ o« @+(Ag?). Precisely, the argument in the next section concludes
y; = ¢?Q-(A¢), and yj = ¢79/2Q, (A¢?).

The linear independence of FSS implies that 71(1)()\) is pole-free. On the other hand, y(0, )
can generally be zero for some A\ = A;. Thus we have BAE for Stokes multipliers.

It is interesting that dy/dx, which is by no means a solution to the original ODE, now
appears as the second ”solution” to the difference equation. This issue will be further pursued
in a later section.

The coincidence is not only for the spin 1/2 case, but also for cases of arbitrary spins. This
can be easily seen as they share the same initial condition and the functional relations. One can
also verify this directly using the Wronskian representation. For this we rewrite the condition
Wi =1 in the form,

yk+1 g'k_: 1
Yk+1 Yk YeYk+1

yky;c-}—l ykyk+1 =1=

With use of this, one obtains

!
1 Yirt Y +1-k Yi g
7—§ ) = yoijrl(y{+1 =) = Yoyt 12 Ytk _ Yok |

Yo k=1 Yi+1-k Yj—k
= YoYj+1
7 kz:ly] kYj— Ic+1

which coincides with the known expression for the transfer matrix. Actually the discussion like
above has been firstly found as the operator identity under the name of the quantum Wronskian
form. We follow the discussion in [19, 20] for reproducing the DVF for the spin j/2 case.

Before closing the section, we present simplest examples (¢ = 1,2 ) where explicit solutions
are available by elementary functions [1, 2, 4, 12, 15]. We shall use E instead of A (E = X2?) and
adopt same symbols, y, 7 etc as the function of E.

The case £ =1
This is a well known example in quantum mechanics. The wave function y is given by the Airy
function.

On the other hand, for ¢ = 1, we have 7'1(1) =1 (theorem 3). Thus T — Q relation simplifies,

Q-(E) = ¢ Y2Q_(Eq™?) + ¢ ?Q_(Eq®)
Q+(E) = ¢"?Q+(Eq™?) +q Y2Q(Ed?). (16)
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These relations coincide with the 3-solution dependence relation for the Airy function[12],
¢ Ai(g7 E) + Ai(E) + qAi(gE) = 0
¢ ’Bi(¢"'E) + Bi(E) + ¢°Bi(qE) = 0 (17)

where Bi(z) := d—'tii}:ﬂ.

To check this, we use ¢ = 1 in the arguments in the first of (16),
Q-(E) = ¢ '’Q-(Eq) + ¢'*Q_(Eq™"),
and substitute ¢ = —¢~!/2 in the coefficients of the first relation in (17),
-2 Ai(¢™1E) + Ai(E) — ¢~ /2Ai(qE) = 0, => Ai(E) = ¢~ '/2Ai(qE) + ¢"/?Ai(¢"'E).

The second relations can be checked similarly.
The case £ = 2
The case with the harmonic oscillator is slightly complicated as the asymptotic formula must
be modified. We utilize known facts on the Weber’s function D,(z),
d?Dy(2) 1

2
V4
1.2 (n+ 3~ Z)D"(z) =0,

which has an asymptotic behavior for  # 0, integer,

Dy(2) ~ 2" exp(—2?%/4).

It has the 2nd order irregular singularity at co and regular elsewhere.
The FSS consists of {Dy(2),D_y-1(iz)} or {Dy(—2), D_y-1(—iz)}. The connection rule
reads,

v2r .,, . .—n :
'I:mDn(Z) =1 D_n_l(’lZ) +1 D_n_l(—zz). (18)
There exist recurrence relations,
Dy (z) = 2/2Dy(2) — Dpy1(2) = —2/2Dy(2) + nDy—1(2). (19)

Obviously, y(z, E) is given in terms of D,(z). In order to cancel the phase factor arising from
the asymptotic behavior, we define precisely

= Q/2+R/2E Dy, (V22q¥)
) 2m/2+/27

where E; = Eq?*, 2n; + 1 = E} and 5 = 1. They constitute our FSS.
By definition, Tfl)(E)yo = Y1 + y-1. Remembering ¢ =i sothat my =n_y = —-n -1, we
rewrite this into the form,

Yk

i Dn(2) =1"D_1_n(i2) +i7"D_1_p(-i2),

with z = v/2z. By comparing this with (18) we conclude

Tl(l)(E) = on+l VT _ oE/2+1/2 VT

I'(n+1) I(E/2+1/2)

which coincides with the result from CFT|2, 4]. The expectation values of Q. (E) are proportional
to Weber’s function and its derivative at the origin. Thanks to the recursion relations (19), we
can replace the latter by again Weber’s function with the unit shift in 7,

Q-(E) x Dy(0),  Q+(E) < Dp41(0).
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We shall utilize the following integral representation for D,(z),

Dn(z) = .Il(_g_%ﬂ ——z2/4Ae—t2/2—zt(_t)—(n+1)dt,

where C surrounds the positive real axis counterclockw1se The evaluation at z = 0 is then

straightforward, /2 /7 2E-1/4 sz
DO = ra—nm T TG na
Hence,
1 1
B s “P < ma-mm 20)

For general values of ¢, the representations of Tl(l) or Q1 by elementary functions are not
known. Still, we can evaluate them, e.g., from solutions to TBA (12). To fix one missing param-
eter r there, we next consider the spectral problem.

5 Spectral Determinants and Stokes multipliers

The final section for the n = 1 case is devoted to the spectral problem for £ = 2M and M bemg
an integer. We will still use E' instead of .
We ﬁrst put some remarks on elementary facts. Let H(z) be a our Hamiltonian operator,

H(z) = d$2 +z2M,

Definition 1. We call (x) the eigen-function and E, the eigenvalue of H(z) if H(z)yg(z) =
Eyg(z) and Yg(z) is a vector in the Hilbert space satisfying, e.g., ||¢(z)|| < oco.

Definition 2. Let P be a spatial inversion operator such that Pf(z) = f(—z) for any operators
or vectors.

Obviously, [H(z), P] = 0. Thus if H(z)¥g(z) = Evge(z) then Pyg(z) = pyg(z). Since P2
is an identity operator, PYg(z) = ¥g(—z) = ¢ g(z). Consequentially, we have
Lemma 1. If H(z)¢Ye(z) = EYg(x) then Yp(z =0) =0 or ddez(w)Iz:g =0.

The above lemma does not require the boundary condition lim,_, 1 [¥g(z)| = 0 imposed
by our potential.

Two conditions can not be satisfied simultaneously. Or otherwise, wgl) (x = 0) = 0 for
arbitrary n, resulting a trivial ¥. Thus a lemma, follows.

Lemma 2. Figenvalues are classified by the parities of the associated eigenfunctions. We denote

d¢E+()
=0 =0 and Ej if hp-(z =0) =0
M)

Ef if

On the positive real axis, Yg(z) = yo + a(E)y; up to normalizations. We have [¢g(z), yo] =
a(E) from the obvious asymptotic behavior, lim; oo YE(z)/y1 = a(E). As the eigenfunction
must be bounded, a(E) = 0 if F € {E;r} U {E; }. Conversely, if a(E') = 0 for some E' then
YE (z) is proportional to yo. Thus ¥ g (z) is bounded as £ — 400 and it is recessive as ¢ — —oo
due to the parity argument. In addition, it is a solution to the eigenvalue equation. Then, by
definition, E’ belongs to the set of eigenvalues. We conclude,

Lemma 3. IfYg(z) = yo+a(E)y1 on the positive real azis, then a(E) < D(E) := D, (E)D_(E)
where D4 (E) := [[;(1 - E/Ef)

Finally we quote results from the WKB analysis,
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Lemma 4. For the potential 2™, the energy levels Ey and the spectral determinant D(E)
behave asymptotically as

bo(Ex)* ~ 2m(k+1/2), k— o (21)
b
In D(E) Tomn E (22)
M+1 /20 (5h2)
T A VN (2
2M 2

We shall apply the above general observation to results obtained in the preceding sections.
The connection rule enables a representation of D(F) in terms of yg. To check this, we consider
the Stokes matrix S(()MH). It connects FSS on the positive and the negative real axes. We
start from the negative real axis. If E takes an eigenvalue, then ¥g(r) = ym+1 apart from a
normalization. The connection rule demands it behave on the positive axis,

$(x, Ea) ~ =74 (PEa)yo + 77 (Ea)y1.

Lemma 3 tells 7{}) < D(E).

On the other hand, we consider the j = M case of (13). Note that ¢M*! = -1, and ypr4; =
1y(—z, E). Then 7'1(\,}) = i(y(z, E)y' (—-x,E) — y(—z, F)y'(z, E)). Since the lhs is independent
of z and the rhs is not singular at z = 0, we conveniently put £ = 0 in the rhs and find
‘r](\,}) x y(0,E)y'(0, E)|z=0. Thus, as a function of E, yoygle=0 has only zeros at eigenvalues.
Then the above lemma leads to their identification with D*(E). The choice of the evaluation at
z = 0 here and in the previous section is now clear.

Summarizing, we have a theorem.

Theorem 5. The fusion hierarchy contains D(E) as its M — th member,
TI(\,}) x D(E), equivalently T,(\})(E) x D(—E).

A base of FSS and its derivative at the origin are proportional to spectral determinants depending
on parities,
y(0,E) x D_(E), %'(0,E) x D (FE).

The previous explicit result (20) for M = 1(¢ = 2) is quite consistent with this. Q+(E)’s
are nothing but D4 (F) here. They are vanishing at known spectra of the harmonic oscillator,
E = 2n + 1, where n =(even/odd) corresponds to the parity = (even/odd).

These identifications lead to the expression for Tl(l) via spectral determinants,

/2D+(Eq2) + —1/2D+(Eq_2) _ —1/2D—(Eq2) +q1/2D—(Eq_2)_

Wy =
T, (E)=¢' D.(E) 1 D.(E) 1! D_(E) D_(E)

More significantly, we have BAEs,

D, (quZ)

= —(¢F, €= =+.
De(qu_2) 7

These equations, combined with the WKB result, are efficient enough to determine the spectral
determinants, being transformed into coupled nonlinear integral equations. We, however, take a
different route here and utilize them as a tool to investigate TBA (12).

Let us revisit to the assumption 3 raised in section 3. Suppose all energy levels are enumerated
exactly so that Dy (FE) are constructed. Then Tl(l) (E) is estimated. By the use of the analogue of
the relation(9), we can successively generate T]m(E) and check the validity of the assumption.
Strictly speaking, as we have infinitely many levels, this procedure can not be accomplished. One
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Figure 1: the contourplot for M =3, |eE/7T2(1)(E)|

however knows that the WKB approximation is fairy accurate for higher energy levels. Thus
we input first 100 exact energy levels and approximate rests by the WKB results, to evaluate
DL (FE).

Our numerical results indicate the remarkable patterns,

Conjecture 1. Zeros of TJ-(I)(E) are of the first order and always distribute on the negative real
FE axis.

This supports the assumption, although by no means a proof. As an example, the contourplot
for M = 3, |eE/ 7T2(1)(E)| is depicted in Fig.1. These patterns imply that the state corresponds
to "the vacuum” (the ground state) in IM [1, 4].

There is also an independent support to this conjecture [2, 31, 32]. As shown in [2], ze-
ros of Tj(l)(E) coincide with negative of eigenvalues associated to P7T-symmetric Hamiltonian
p? + 2% (iz)€ with e = 2M — 2j. The numerical and analytical studies on the P7 -symmetric
Hamiltonian in [31, 32] conclude positive and real eigenvalues for M > 1, which is consistent
with the conjecture. The studies reveal, at the same time, the breakdown of the conjecture,
when M being continued to a real number less than 1 [2, 31, 32].

We assume that the validity of integral equations (12). Then all we have to do is fix r in
evaluating Stokes multipliers and spectral determinants. The theorem 5 tells TIS)(—EIC) = 0,
which results Y (—Erg?) = —1 or logYar(6x + i%) = (2k + 1)mi. Remember E = exp(0/p).
For large values of 8, numerical data concludes that the contribution form the integral is neg-
ligible so that we have an approximation, log Yas(0) ~ mps exp(6). Thus TI(V})(—E]-) = 0 means
ma exp(6k) = my B} = (2k + 1) for large enough j. Comparing this with the WKB result, we
conclude mpsr = by, which derives the desired quantity. , ,

Summarizing the results for 2nd order ODE, we have the following correspondence,

energy <> spectral parameter
Stokes multipliers, D(E) <= fusion transfer matrices
Ylz=0,Y'lz=0 <= (vacuum) expectation values of Q4

In the next two sections, the higher order ODE will be briefly discussed. Our results indicate
a natural extension of the ODE/IM correspondence examined for n = 1 above.

6 Functional relations in Stokes multipliers

As in the case of n = 1, we can introduce generalized Stokes matrices connecting disjoint sectors
for arbitrary n. The obvious recursion relation leads to functional relations, however, among
complex objects corresponding to Young tableaux of the hook shape. Then the restriction of
relations among Young tableaux of the rectangular shape results the desired relation [6]. This
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procedure requires some technique in integrable models e.g., quantum analogue of the Jacobi-

Trudi formula.
We derive the same relation in a simpler way using the Wronskian representation of Stokes

multipliers. Let auxiliary functions 79 (A) be

7'1'(7‘:)()‘) = [yl, Y2, " Ya—1,Y0; Ya+m> Ya+m+1 - * yn+m]- (24)

Note that we adopt the abbreviation defined in section 2.
Due t0 yn+1+¢ = (=)o, T,(,f)(/\) =0form > £+ 1,¢£+2,.---. This is an analogue to the
quantum group reduction. Remark that the set contains the original Stokes multipliers as m =1

cases.
Then the claim is the following functional relations ,

Theorem 6.

DN (Ag) = TE M) re-D (Ag) + 79, (V)7 (Ag) (@)

where 'rl(o) = l,Téa) = (=1)°"1,
We utilize a lemma in [33] for the proof of the above theorem.

Lemma 5.

[flaf?)"'fNaao,all[fl’f%'"fN?a'2aa'3] - (26)
[flsf2""fNaa'O,aQ][fl’f?)'"fN)alaa‘3] + (27)
[fl)f?)"'fNaa'O,a3][f11f2,'"fN,a11a2] =0. (28)

When N = 1, this relation follows from the Laplace expansion of the trivial relation,

f ay ‘a1 0 as as
ff ey af 0 ay af
» a”0 a”l O a”2 a 3
0 = det f

0 0 a f a2 a3

0 0 daf f day a

O 0 a” 1 f” a” 2 a” 3
With the similar argument, the validity of the above lemma is verified for arbitrary N.

Proof. of theorem 6 :
We shall adopt identifications,

(flaf2a"‘ ’fN) < (yla"‘ 1 Ya—1>Ya4+m+1,° " )yn+m)
(a0,a1,a2,a3) (Y0, Ya>Yatm) Ynt+m+1)-

For a = 1, the left hand side of the first relation should read as (y2,: - ,yn+1)- The six elements
in eq.(28) are interpreted as

—2t), (12D (),
(), (-1)" 17 (Ag),
-Drer@ ), (-1 19 (Ag)

respectively. This immediately leads to the theorem. O
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We have a note. The substitutions 7.2 (A) — (—1)*1T (Ag(e+™)/2) brings the equation to
the form known as the T— system for As,l) in solvable models,

T® (A2 T (Ag~12) = TED NTL D) + T (VT (V). (29)

This observation supports the ODE/IM correspondence for n arbitrary. In view of the solvable
models, T,(,f )()\) should be understood as the (eigenvalues of) transfer matrix associated to the
auxiliary space AS) (A). ( As the module in classical Lie algebra, @ )(A) is isomorphic to mA,,
of which Young diagram takes a rectangular shape.)

The relation also finds a connection to a discrete soliton system. We parameterize A = gP/?
and denote f(p,a,m) = ,(1:1 )()\). Let D;,i = 1,2,3 be Hirota operators acting on ¢ th variable.
Then the eq (29) reads

(expD; —exp Dy —expDs3)f - f = 0.

This equation is known as the Hirota-Miwa equation with Z; = —Z; = —Z3 =1 [21, 22]. The
present construction imposes the periodicity and boundary conditions,

f(€+n+13a7m) = f(oaaam) .
fp,-1,m) = f(p,n+2,m)=f(p,n+1,¢+1)=0.

7 DVF for arbitrary n

The DVF in the Stokes multipliers are also found for arbitrary n.
Let us check this for ’rl(l)()\) . The following lemma is useful for this purpose.

Lemma 6. For m > 2 we have a recursion relation among ratios of determinants,

[o,v2, - Yml _ [wo,y2," Ym-1] + Yo, y1, -+ Ym—1lly2, -+ » Ym) (30)

[yh"' aym] B [ylv'” 1ym—l] [yla"' 7ym][y1)"' ,Z'/m—l] ’

We should interpret [y1] = y1 and [yo, 1, Ym—1] = Yo for m = 2.

Proof. The lemma is equivalent to

[y07 Y2, ym][yla Y ym—l] = [yO-) Y2, ym—l][yl, te 1ym] + [yOa Y1, ym—l][y2’ M} ym] (31)
Since (31) is linear in y((,j ), it suffices to show the equality of the coefficients of them in the both
sides. First consider the coefficient of yy, We need to show the equality,

Wi s Yma1] [ Y) = W20 UmlW, Y] + W1 Uml 020 Y- (32)

To verify this, we prepare a matrix M

Y1, Y2 te Ym
Y1 Yo Ym
M= : :
-1 -1 -1
S Dy
Denote by
]1 ) ]2, e
the minor, the determinant of a matrix obtained by deleting 1,42 - - - rows and j;, j2,- - - columns

from M. Then eq.(32) is represented as,

ofa o[l =2l o] e 5]
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where D = det M. Obviously this is the Jacobi identity. Thus the equality of coefficients of yg in

both sides is established. The equalities are similarly proven up to those of y(()m—z). For y(()m_l)
case, the first term of the rhs in (31) does not contribute. We can check , however, the equality
of the reminding terms. Thus the lemma is proved. O

Next we will show

Theorem 7. Tl(l)()\) can be represented in the following DVF

0y = 2,93, s yni] | [y2:98, mllyo, y1, - Y]
[ylay2’ e 7yn] [y17y2, e ayn—l][y17y21 v ayn]

ooy 2o sllvo. i, ve]  fvoyilye | wo

1, v2llv1,y2,93]  [ynwelyn i

(33)

Proof. Firstly we substitute 7'1("+1) = (-—1)" to eq.(5) and obtain

Y, Y2 s Yn () Yo — (—1)"ynt+1

vio e s e | AP0 | o (FD)"Wm

T RRY CONRTTINY O A OTPN ) — (1)),
The application of Cramer’s formula yields ‘rl(l) in the form,

T(l) — [y23y3"" ,yn+1] + [yo:y?f” ayn].
! [y, 92, »¥n]  [W1:¥2, " »Yn]

We use Lemma 6 to the second term in the rhs to obtain,

(1) _ [y2’y3a' v ayn-f-l] [y(), Y1, 7yn—l][y2ay3a" : ,yn—l] [yan27' v ayn—l]
) = + + .
[yl,y21"' ayn] [yl,y2"" ayn][ylay21"' 7yn—l] [ylayZa"' ayn—l]

It is now obvious that repeated applications of Lemma 6 to the last term results the expression
(33). a

We mimic the case of n = 1 and introduce D functions

[Wir- » Uksg]llemo = g R kDG +E/2)/2 p(k+1) () gi+E/2),

Then the a + 1-th term in (33) reads,

[yz’ Y3, o, ya+1][y0’ Y1,° " ,ya] _ qa_n/2 D(a+1) (Aqa/2)D(a) (Aq(a+3)/2)
i, y2, -, ¥allyn, vz, -+, Yat1] D(a+1) (\g(a+2)/2) Dla) (\g(a+1)/2)”

The DVF consists of n + 1 terms for the solvable Uq(Agl) ) model of which auxiliary space is
A; as a classical module. It is characterized by Baxter’s Q operators of n species,

Q(")()\q("“)/z) Q(n)(/\q(n-—3)/2)Q(n—l)()‘qn/2)

" (g 72y T I 1 G (A D72 Qi D (agln-D/2)
Q(a+1)()‘q(a—2)/2)Q(a)(,\q(a+1)/2)

" QE (Mg 2) Q) (Ag@-D7?)

QP 2)QW(g) . @V

QPR (xg) T Q)

TN () 4.

1

Clearly, we have
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Theorem 8. Under the identification, 7'1(1)()\) > Tl(l)()\q),
QW) « DOW), faer g/ (34)
two DVFs coincide.

The pole-free property of 7'1(1) (M), required from the linear independence of FSS, results BAE,

Q(a 1)()\(‘1) —1/2)Q(a)()\(a) )Q(a+1)(/\(a) —1/2)
Q(a 1)(/\(‘1) 1/2)Q(a)()\(a) _1)Q(a+1)()\(a) 1/2)

._q_1

where Q@ (%) = 0 and QD) = QO = 1.

Thus we have verified the common algebraic structure for arbitrary n.

The representation (33) or the identification (34) is , however, not unique. One easily rec-
ognizes this by remembering the simplest case (n = 1) where two different expressions are
available for Tl(l). This originates from the simple fact that both y and its derivative are solu-
tions to Baxter’s T — @) relation. The situation is also true for n > 1. One can show that the
identification

& ’
Q(a) ()\qa—f-k) And _[yk-l-l, Yk+2," - ,yk+a]|z-_—07j =0,1,--- (35)

(1)

works and we have a variety of representations for the same 7;"’. This is shown by using formulas
analogous to Lemma 6, and the detail will be published elsewhere.

Before closing the section, we comment on T, (o ), (a > 1). The corresponding DVFs are known
in the integrable models, but explicit forms are quite involved. Still, one can parameterize them
by analogue of Young tableaux[28]. We utilize the ”tableaux” representation in proving the

equivalence of the DVF in integrable models and Stokes multipliers 7'( %) for a,n and m general.
This point may be further discussed in a separate publication.

8 Summary and discussions

In the present report, we discuss a curious connection between n+1 the order ODE and integrable
models. When n = 1, the connection is efficient enough to derive analytic equations which yields
estimations of eigenvalues and Stokes multipliers.

For higher n, the correspondence is still at the algebraic relation level. Unfortunately, the
definition of the eigenvalue problem is not necessary clear for higher order differential equations.
The characterization of the eigenspace (it is the Hilbert space for n = 1) is not obvious. More
technically, there are several subdominant solutions in each sector. This obscures the identifica-
tion of D(E) in the general Stokes matrices. The lack of the connection prevents us from writing
down the integral equations and evaluating parameters like ”r” for n = 1. We however comment
some progress made in [3, 23]

The observation made in the last few sections may be interesting. Suppose that the ODE/IM
correspondence even occurs at the construction of models. Then one may find the variable z
also in IM. Once if one of Baxter’s Q(1) is constructed, the other independent Q(!) functions are
found in derivatives of the Q1) with respect to the hidden variable z. Moreover, one can generate
higher Q functions, i.e., Q(®,a > 2 mere by taking determinants of fundamental Q(1). The other
Q(9)’s are again obtainable via taking derivatives. On the other hand, construction of @ functions
via the standard ”pair-propagation” argument [17] seems to be far more complicated for n > 1.
To the authors’ knowledge, the explicit construction of @ is done only for cases corresponding
n =1 [17, 34, 35, and the procedure is already involved. The systematic construction found in
ODE is not obvious in IM. The present results for ODE may be a clear guide for analyses in the
analogous issue in IM, but it needs further research.
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Finally, we comment that the ODE/IM correspondence is still at the ” phenomenological”
stage. The fundamental question as to the origin of the correspondence is still open. The com-
plete classification of the ODE tractable with the IM approach may need the answer to this
fundamental question.

I hope to clarify these issues in future publications.
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