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1 Introduction

Semidirect products and HNN extensions of groups resemble each other in the sense that both
have apresentation described by apseudo commutative law, however, no approach to unify
and generalize them has appeared so far. In [12], aunified treatment of semidirect products
and HNN extensions of groups are presented. In this paer, akey lemma in [12] is presented.

First of all, we explain the generalization of semidirect products and HNN extensions given
in [12]. Let $G$, $H$ be groups. Each generator $h$ of $H$ corresponds to an isomorphism $\phi_{h}$ of a
subgroup $A_{h}$ of $G$ onto asubgroup $B_{h}$ of $G$. Let $K$ be the group presented by

Gp(G, $H|ax=x(a\phi_{x})$ for $\forall a\in A_{x}$ , $\forall x\in X$ ), (1.1)

where $H$ is generated by $X$ . Is the natural homomorphism $\xi c$ of $G$ into $K$ an isomorphism?
Is the natural homomorphism $\xi_{H}$ of $H$ into $K$ an isomorphism?

It is shown in [12] that $G$ is strongly embedded into $K$ under acertain condition (we will
not touch on the embedding problem in this paper). The embedding problem is inherently
related to the algebraic system of partial automorphisms. The key idea is to apply inverse
semigroup theory to group theory. In this paper, we present the key lemma concerning E-
unitary coextensions of groups, which is crucial in [12]. Our approach is rather geometrical.
We use van Kampen diagrams, which are very powerful method in group theory.

2Inverse semigroups

Partial one to one mappings of anon-empty set constitute an algebraic system called the
symmetric inverse semigroup. Conversely any abstract inverse semigroup is embedded in the
symmetric inverse semigroup of acertain set (known as Wagner-Preston theorem). Thus, the
theory of inverse semigroups is an ideal tool to formalize and study algebraic structure of a
system of partial one to one morphisms and local properties of mathematical objects. As a
matter of fact, inverse semigroup theory was initiated to study local properties of manifolds by
Wagner [10]. Ehresmann [1] also considered inverse semigroups with some extra assumptions
in the context of topology and differential geometry under the name of pseudogroups. After
the introduction of the concept, numerous researches had been done mainly on its algebraic
structure. Against its first motivation, only alittle attention had been paid to the theory
of partial automorphisms of aspecific mathematical structure, such as groups, rings, vector
spaces, topological spaces, manifolds, or graphs. The significance of partial automorphisms
in other areas of mathematics has been rediscovered recently. For instance, the study on the
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relationship between $C^{*}$-algebras, groupoids, and inverse semigroups can be found in [8]. The
reader is referred to [3] for historical account and detailed information on the theory of inverse
semigroups.

An inverse semigroup is aregular semigroup in which every element has the unique inverse
(see [3]). The class of inverse semigroups forms avariety, and hence, every inverse semigroup
has apresentation. We should remark that an inverse semigroup presentation is given by aset
of generators and aset of relations which is asubset of $(X\cup X^{-1})^{+}\mathrm{x}(X\cup X^{-1})^{+}$ , whereas
agroup presentation is usually given by aset of generators and aset of relators which is a
subset of $(X\cup X^{-1})^{+}$ . We frequently consider agroup presentation by aset of generators and
aset of relations as $\mathrm{w}\mathrm{e}\mathrm{u}$ . Apresentation for agroup generated by $X$ subject to $R$ is denoted
by Gp(X $|R$), and apresentation for an inverse semigroup generated by $X$ subject to $R$ is
denoted by Inv(X $|R$) in this paper. The inverse semigroup $S$ presented by Inv(X $|R$) is the
freest inverse semigroup subject to the relation $R$ in the following sense.

If agroup $H$ is ahomomorphic image of an inverse semigroup $S$, then we say that $S$ is an
inverse semigroup coextension of $H$ . We say that an inverse semigroup coextension $S$ of $H$ has
the same set of generators as $H$ if both $S$ and $H$ are generated by $X$ and $\sigma\circ\iota s$ $=\iota H$ , where
$\iota s$ and $\iota_{H}$ are the natural mappings, and $\sigma$ is ahomomorphism of $S$ onto $H$.

An inverse semigroup coextension $S$ of $H$ is called $E$-unitary if $\sigma^{-1}(1)=E(S)$ . In such
acase, the group $H$ is the maximal group homomorphic image of $S$. We remark that the
maximal group homomorphic image $H$ of an inverse semigroup $S$ has the universal mapping
property: for any homomorphism $\rho$ of $S$ into any group $Q$ , there exists ahomomorphism $\nu$

of $H$ into $Q$ such that $\nu\circ\sigma=\rho$ . An inverse semigroup $S$ is called $E$-unitary if any element
above an idempotent is an idempotent (see [3]). It is easy to see that an inverse semigroup
is $\mathrm{E}$-unitary if and only if it is an $\mathrm{B}$-unitary coextension of its maximal group homomorphic
image.

Agroupoid is small category in which every morphism is invertible. Any inverse semigroup
$S$ can be endowed with agroupoid structure ([6, 9]) and we denote it by Gpd(5)$)$ in this paper.
The set of objects of Gpd(S) is $E(S)$ . For $e$ , $f\in E(S)$ , amorphism of $e$ to $f$ is any element
$s\in S$ such that $e=ss^{-1}$ and $f=s^{-1}s$ . The inverse of the morphism $s$ is given by $s^{-1}$ . If
$e\in E(S)$ , then $e$ is the identity morphism of the object $e$ . The trace product of an inverse
semigroup $S$ is the groupoid product in Gpd(S), that is, the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ product for si, S2 in $S$

is defined to be $s_{1}s_{2}$ if and only if $s_{1}^{-1}s_{1}=s_{2}s_{2}^{-1}$ in $S$ . Then $s_{1}s_{2}$ is amorphism from
$s_{1}s_{1}^{-1}$ to $s_{2}^{-1}s_{2}$ since $(s_{1}s_{2})(s_{1}s_{2})^{-1}=s_{1}s_{2}s_{2}^{-1}s_{1}^{-1}=s_{1}s_{1}^{-1}s_{1}s_{1}^{-1}=s_{1}s_{1}^{-1}$ and $(s_{1}s_{2})^{-1}(s_{1}s_{2})=$

$s_{2}^{-1}s_{1}^{-1}s_{1}s_{2}=s_{2}^{-1}s_{2}s_{2}^{-1}s_{2}=s_{2}^{-1}s_{2}$ . Using the terminology in semigroup theory, we define the
$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ product $s_{1}s_{2}$ if and only if there exists $e\in E(S)$ such that $s_{1}\mathcal{L}e\mathcal{R}s_{2}$, where $\mathcal{L}$ and 72
are Green’s relations (see [3]). We illustrate the morphism $s_{1}s_{2}$ in Gpd(S) and the location
of $e$ , $s_{1}$ , $s_{2}$ , $s_{1}s_{2}$ in $D$ class of $S$ in Figure 1. Furthermore, Gpd(5) is endowed with an order
structure, however, we do not touch on it.

$s1\underline{s_{1}^{-1}s_{1}^{-1}s_{1}--s_{2}s_{2}^{-1}s_{2}^{-1}}s_{2}$ .$\cdot$. .$\cdot$.

$s_{1}$ $s_{2}$
$s_{1}$ ...... $s_{1}\iota_{2}$

$e$ $\ldots$ $\ldots$ $\sim$

.$\cdot$. .$\cdot$.

$s_{1}$ ...... $s_{1}\iota_{2}$

Morphism $s_{1}s_{2}$ in Gpd(S) $D$ class of $S$

Figure 1: $\mathrm{T}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ product
Let $\tau$ be amapping of aset $X$ into an inverse semigroup $S$ . Let $w=h_{1}h_{2}\cdots$ $h_{n}$ be aword
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product in $S$ . The word $w$ is called acyclic trace product in $S$ with respect to $\tau$ if every cyclic
conjugate of $w$ is a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ product in $S$ with respect to $\tau$ . The language of all $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ products and
all cyclic $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ products with respect to $\tau$ are denoted by TRACE$(5, X,\tau)$ and LOOP $(S,X,\tau)$ ,
respectively. Note that LOOP(S, $X,\tau$) $\subset \mathrm{T}\mathrm{R}\mathrm{A}\mathrm{C}\mathrm{E}(5,X,\tau)\subset(X\cup X^{-1})^{+}$ in general, whereas
TRACE(G, $X,\tau$) $=\mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}(G,X,\tau)=(X\cup X^{-1})^{+}$ for any group $G$ and any mapping $\tau$ of $X$

into $G$ .

Lemma 2,1 Suppose $w=h\mathrm{x}h2$ $\ldots h$ $\in(X\cup X^{-1})^{+}$ and $\tau$ is a mapping of $X$ into an inverse
$sem\dot{lg}1vup$ $S$ .
(1) If $w$ lies in TRACE(S, $X,\tau$) and $w=w_{1}w_{2}$ , where $w_{1},w_{2}\in(X\cup X^{-1})^{+}$ , then $w_{1}^{-1}w_{1}=$

$w_{2}w_{2}^{-1}$ in $S$ under $\tau$ .
(fl) If $w$ lies in LOOP(S, $X,\tau$), then so does any cyclic conju gate of $w$ .
(3) If $w$ lies in LOOP(S, $X,\tau$) and $E(S)$ , then so does any cyclic conjugate of $w$ .
(4) Suppose $w\in \mathrm{T}\mathrm{R}\mathrm{A}\mathrm{C}\mathrm{E}(5,X,\tau)$ and $w=w_{1}1102$ $103$ , where $w_{1},\eta,w_{3}\in(X\cup X^{-1})^{+}$ . Then

$w_{1}w_{3}\in \mathrm{T}\mathrm{R}\mathrm{A}\mathrm{C}\mathrm{E}(S,\mathrm{X},\mathrm{r})$ if and only $\dot{l}fw_{2}\in \mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}(S,X,\tau)$ .
(5) Let $\phi$ be a mapping $ofX$ into $\mathrm{T}\mathrm{G}$ . $Ifw$ lies in TRACE(S, $X,\phi$), then we have $\mathrm{R}\mathrm{a}\mathrm{n}(\phi_{h}:)=$

$\mathrm{D}\mathrm{o}\mathrm{m}(\phi\iota_{+1}.)$ for every $:=1,2$, $\ldots$ , $n-1$ . If $w$ lies in LOOP(Tc, $X,\phi$), then Ran(\phi h)=
$\mathrm{D}\mathrm{o}\mathrm{m}(\phi_{h_{1}})$ . $\square$

Aword $w$ in $(X\cup X^{-1})^{+}$ is cffied Dycfc if it is the identity in the ffee group $\mathrm{F}\mathrm{G}(X)$ . Any
Dyck word on $X$ is an idempotent in any inverse semigroup generated by $X$ .

Lemma 2.2 (1) If $w=h\mathrm{x}h2$ $\ldots$ $h_{\mathfrak{n}}\in(X\cup X^{-1})^{+}$ lies in LOOP(S, $X,\tau$) and $E(S)$ under $\tau$ ,
then $w$ is the identity morphism of the object $\tau(h_{1})\tau(h_{1})^{-1}=\tau(h_{n})^{-1}\tau(h_{n})$ in Gpd(S) under

$\tau$ .
(1) Let $d=h_{1}h_{2}\cdots h_{n}$ be a Dyck word on X. If $d$ belongs to TRACE(S, $X$, $\tau$), then $d\in$

LOOP(S, $X,\tau$) and $d$ is the identity morphism of the object $\tau(h_{1})\tau(h_{1})^{-1}=\tau(h_{n})^{-1}\tau(h_{n})$ in
Gpd(5) under $\tau$ . $\square$

Lemma 2.3 Let $S$ be an inverse semigroup. Suppose a word $w\in(X\cup X^{-1})^{+}$ belongs to
$E(S)$ , and $w=w_{0}w_{1}\cdots w_{n}$ , where $w:\in(X\cup X^{-1})^{+}$ . If $\mathrm{q}$

. $\in E(S)$ for every $:=1,2$, $\ldots$ , $n$ ,
then $w0e_{1}w_{1}e_{2}\cdots$ $e_{\mathfrak{n}}w_{n}\leq w$ and $w0e_{1}w_{1}e_{2}\cdots$ $e_{n}w_{n}\in E(S)$ . $\square$

3Van Kampen diagrams and trace products

In this section, we investigate the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ product structure on boundary cycles of van Kampen
diagrams and give acondition for an inverse semigroup coextension of agroup to be $\mathrm{E}$ unitary.
This result is crucial in the embedding proble for groups (see [12]).

A $\mathrm{J}$-oemploe(or graph) $\mathrm{Y}$ consists of two sets Vert(l’) and Edge(Y), together with the
functions $\alpha$ : Edge(Y) $arrow \mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}(\mathrm{Y})$, $\omega$ :Edge(Y) $arrow \mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}(1 )$ and $\eta_{1}$ : Edge(Y) $arrow \mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}(\mathrm{Y})$ . We
$\mathrm{c}\mathrm{a}\mathrm{U}$ the elements of Vert(Y) vertices, and the elements of Edge(Y) dges. For $y\in \mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}(\mathrm{Y})$ ,
$\alpha(y),\omega(y),\eta_{1}(y)$ is called the initial $ve\hslash*$ the terminal vertex and the inverse edge, respec-
tively. A 2-complex (or amap) $M$ consists of a1-complex $M’$ , its l-skeleton’ together with a
set Face(M) and two functions aand $m$ defined on Face(M). We call the elements of Face(M)

faces (or $l$-cells). For each $F$ in Face(Af), $\partial F$ is the boundary cycle of $F$, and $\eta_{2}(F)$ is the
inverse of $F$ satisying $\eta_{1}(\partial F)=\partial(\varphi(F))$ . The geometric realization of avertex, an edge
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and aface of aplanar 2-complex is apoint, abounded subset homeomorphic to an open unit
interval and abounded subset homeomorphic to an open unit disk in the Euclidean space $\mathrm{E}^{2}$ ,
respectively. We denote the boundary cycle of aconnected and simply connected 2-c0mplex
$M$ by $\partial M$ . Here the boundary cycle of $M$ is the word that is read along the contour of $M$

counterclockwise starting and ending at the distinguished vertex. The subgraph consisting of
the boundary of $M$ is denoted by $\partial M$ as well. We denote the interior and the closure of a
topological space $Z\subset \mathrm{E}^{2}$ by $Z^{\mathrm{o}}$ and $\overline{Z}$, respectively.

Let $H$ be agroup presented by Gp(-Y $|R$), where $R$ is cyclicffiy reduced. Suppose $w$ is
afreely reduced word in $(X\cup X^{-1})^{+}$ and $w=1$ in $H$. Avan Kampen diagram for $w$ over
$H$ is afinite planar connected and simply connected 2-complex $M$ such that the boundary
cycle $\partial F$ of any face $F$ of $M$ is acyclic conjugate of arelator in $R$ and the boundary cycle
$\partial M$ of $M$ starting and ending at the distinguished vertex $\mathrm{m}$ is equal to $w$ as words. The
reader is referred to $[4, 7]$ for van Kampen diagrams and van Kampen’s lemma. We shall call a
maximal subcomplex homeomorphic to aclosed disk ageneralized face in this paper. Asta& of
avan Kampen diagram $M$ is asubpath consisting of edges $y_{1},y_{2}$ , $\ldots$ , $y_{k}$ and their initial and
terminal vertices such that every $y\dot{.}$ is disjoint from Af’. Note that $\overline{M^{\mathrm{o}}}$ is aunion of generalzed
faces of $M$ , and $\overline{M\backslash \overline{M^{\mathrm{o}}}}$ is aunion of stalcs of $M$ . Thus, any van Kampen diagram is aunion
of finitely many generalized faces and stalks.

Figure 2:

The ramification number of avertex $v$ (or ageneralized face $D$) of afinite planar connected
and simply connected 2-complex $M$ is the number of connected components of the topological
space $M\backslash \{v\}$ (or $M\backslash D$). Let $C$ be aconnected component of Af $\backslash \{v\}$ . Then $M_{1}=C\cup\{v\}$

is aconnected and simply connected 2-complex and called abranch of $M$ at $v$ . Abranch
at ageneralized face $D$ is similarly defined (see Figure 3and 4). Afinite planar connected
and simply connected 2-complex $M$ is caUed chain-shaped if any vertex and any generalized
face has ramification number at most two. In Figure 5, achain-shaped 2-complex with seven
generalized faces, in which the path P.$\cdot$ may be empty, is illustrated.

Figure 3: Several vertices and generalzed faces having ramification number 3

$\nearrow_{v}v\downarrow v\backslash$ $\nearrow_{vv}\backslash \mathrm{O}_{v}$

– $\backslash \nearrow$ $0$ $\backslash \nearrow$

(a) (b) (c) (d)
Figure 4: Branches in Figure 3
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Figure 5: Chain-shaped 2-c0mplex

Lemma 3.1 (Van Kampen [11]) Let $w\in(X\cup X^{-1})^{+}$ be a freely reduced word such that
$w=1$ in H. There $\dot{\varpi}sh$ a van Kampen diagram for $w$ over H. 0

Lemma 3.2 $Let\tau$ be a mapping $ofX$ into an inverse semigroup $S$ such that $R\subset \mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}(S, X, \tau)$ .
Suppose $M$ is a van Kampen diagram over $H$ for a freely reduced $wod$ $w\in(X\cup X^{-1})^{+}$ rep-
resenting 1in $H$ .
(1) Let $F$ be a face ofM. Then $\partial F$ belongs to LOOP(S, $X,\tau$). If $R\subset E(S)$ under $\tau$, then $\partial F$

belongs to $E(S)$ under $\tau$ .
(2) Let $D$ be a generalized face of M. Any word in $X\cup X^{-1}$ labeling a path in $D$ belongs to
TRACE$(5, X,\tau)$ . In particular, $\partial D$ belongs to LOOP(S, $X,\tau$).
(3) If $R\subset E(S)$ under $\tau$, then $\partial D$ belongs to $E(S)$ un&r $\tau$ for every generalized face $D$ of
$M$ .

Proof (1) Since the boundary cycle $\partial F$ of any face $F$ of $M$ is acyclic conjugate of arelator in
$R$, $\partial F\in \mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}(S,X,\tau)$ by Lemma 2.1 (2). If $R\subset E(S)$ , then $\partial F\in E(S)$ by Lemma 2.1 (3).
(2) Let $v$ be avertex in $D$ . Suppose $y_{1},y_{2}$ , $\ldots$ , $y_{n}$ are edges in $D$ entering $v$ and each $y_{\dot{1}}$ is
labeled by $h_{l}\in X\cup X^{-1}$ . It suffices to show that $\tau(k.)\tau(h_{\mathrm{j}})^{-1}$ is a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ product in Gpd(S),
equivalently, $\tau(h_{\dot{1}})^{-1}\tau(k.)=\tau(h_{j})^{-1}\tau(h_{j})$ in $S$ for all $1\leq:,j\leq n$ . Since $D$ is aplanar diagram,
we may assume $y_{1}$ , $y_{2}$ , $\ldots$ , $y_{n}$ are enumerated counterclockwise around $v$ in this order. Since
$D$ is homeomorphic to aclosed disc, there are two possible cases: (Case 1) $v$ lies in the interior
of $D$, and (Case 2) $v$ lies on the boundary of $D$ (see Figure 6).

(Case 1)

Figure 6: Vertex $v$ and edges entering it

(Case 1) The edges $y_{+1}$ and $\eta_{1}(y.\cdot$} with $1\leq:\leq n-1$ (and $y_{1}$ and $\eta_{1}(y_{||})$ ) form asubpath
of the boundary cycle of acertain face $F$ in $D$ . By (1), $\partial F.\cdot$ belongs to LOOP(S, $X,\tau$), and
hence, $\tau(h_{i+1})\tau(|4.)^{-1}$ belongs to TRACE(S, $X,\tau$) for every $|$

. as $\tau(l4.+1)\tau(|\mathrm{h}.)^{-1}$ is asubword
of $\partial F_{}$ . Hence, $\tau(\iota_{+1}.)^{-1}\tau(h+1)=\tau(h\iota)^{-1}\tau(|4.)$ for every :. It follows that $\tau(l\mathrm{h}.)^{-1}\tau(k.)=$

$\tau(h_{\mathrm{j}})^{-1}\tau(h_{j})$ for aU:, $j$ . (Case 2) We may assume without loss of generalty that $y_{1}$ and $y_{n}$

are on the boundary of $D$ . For each consecutive pair $y$ and $\mathfrak{R}+1(1\leq:\leq n-1)$ , there exists
aface in which $y$ and $\Re+1$ form asubpath of the boundary cycle, and hence, we can prove
$\tau(h_{i})^{-1}\tau(l4.)=\tau(h_{j})^{-1}\tau(h_{\mathrm{j}})$ for all:, $j$ as in (Case 1). It follows that any word labelng apath
in $D$ belongs to TRACE(S, $X,\tau$). Since any cyclic conjugate of $\partial D$ is apath in $D$ , $\partial D$ belongs
to LOOP$(5,X,\tau)$ .
(3) Suppose $R\subset E(S)$ under $\tau$ . Let $D$ be ageneralized face of $M$. We shall show that a
boundary cycle of any connected and simply connected subcomplex $L$ of $D$ belongs to $E(S)$

under $\tau$ using induction on the number $l$ of faces in $L$ . First we note that aconnected and
simply connected subcomplex $L$ with no faces is atree. Hence, the boundary cycle $\partial L$ is aDyck
word and belongs to $E(S)$ . Second, we suppose $L$ has only one face $F_{0}$ . Then $L$ is obtained
ffom $F_{\phi}$ by attaching finitely many trees to $F_{0}$ . Note that aboundary cycle of any tree is
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aDyck word. Therefore, the boundary cycle of $L$ is obtained ffom $\partial F_{0}$ by inserting finitely
many Dyck words, and hence, written as $w_{1}z_{1}(\partial T_{1})z_{2}(T_{2})\cdots$ $z_{n}(\partial T_{n})w_{2}$ , where $w_{1}w_{2}=\partial T_{0}$,
$\partial F_{0}=\mathrm{Z}1\mathrm{Z}2$ $\ldots z_{n}$ and $T_{0},T_{1}$ , $\ldots$ , $T_{n}$ are (maybe empty) trees. By Lemma 2.3, $\partial L\in \mathrm{E}(\mathrm{S})$ .
Now we suppose the claim is true for any positive integer less than $l$ and asubcomplex $L$ of
$D$ has $l$ faces. Suppose $L$ has at least two generalized faces. There exists avertex $v_{1}$ having
ramification number at least two and there exist at least two branches at $v_{1}$ such that each of
them contains at least one generalized face. Then the boundary cycle of $L$ starting and ending
at $v_{1}$ can be written as $(\partial L_{1})(\partial L_{2})$ for some subcomplexes $L_{1}$ and $L_{2}$ of $L$ having at least one
generalized face, where $\partial L_{1}$ and $\partial L_{2}$ axe the boundary cycles of $L_{1}$ and $L_{2}$ starting and ending
at $v_{1}$ , respectively (see Figure 7).

Figure 7: $L$ has at least two generalzed faces

By the inductive hypothesis, $\partial L_{1}$ and $\partial L_{2}$ belong to $E(S)$ . Thus, the boundary cycle of $L$

starting and ending at $v_{1}$ is written as $(\partial L_{1})(\partial L_{2})$ . By Lemma 2.1 (3), $\partial L\in E(S)$ . Next we
suppose $L$ has only one generalized face with no stalcs. Then we show that $\partial L$ lies in $E(S)$ .
There are two cases. (Case 1) At least two faces of $L$ have edges on the boundary of $L$ . In
such acase, $L$ is aunion of connected and simply connected subcomplexes $D_{1}$ and $D_{2}$ with
more than one generalized faces that have edges on the boundary $\partial L$ and $D_{1}^{\mathrm{o}}\cap D_{2}^{\mathrm{o}}$ is empty.
(Case 2) Only one face $F_{1}$ has the edges in $\partial L$ (see Figure 8).

(Case 1) (Case 2)
Figure 8: Decomposition of $L$

(Case 1) We can write $\partial L=\mathrm{S}1\mathrm{S}3$ , $\partial D_{1}=\mathrm{S}1\mathrm{S}2$ , $\partial D_{2}=s_{2}^{-1}s_{3}$ . Since $s_{2}s_{2}^{-1}$ is apath in $D$,
$s_{2}s_{2}^{-1}$ is aDyck word belonging to TRACE$(5, X,\tau)$ by the part (2). Hence, $s_{2}s_{2}^{-1}$ is the
identity morphism in Gpd(5) by Lemma 2.2 (2). Then we have SIS3 $=s_{1}s_{2}s_{2}^{-1}s_{3}$ under
$\tau$ . On the other hand, $\partial D_{1},\partial D_{2}\in E(S)$ under $\tau$ by the inductive hypothesis. It follows
that $\partial L=\mathrm{S}1\mathrm{S}3$ $=s_{1}s_{2}s_{2}^{-1}s_{3}=(\partial D_{1})(\partial D_{2})\in E(S)$ . (Case 2) We can write $\partial L=s_{1}$ ,
$\partial F_{1}=s_{1}ws_{2}^{-1}w^{-1}$ , $\partial D_{2}=s_{2}$ , where $D_{2}$ is aconnected and simply connected subcomplex of
$D$ . Note that $D_{2}$ has $l-1$ faces. By the inductive hypothesis, $\partial D_{2}$ belongs to $E(S)$ under $\tau$ .
Moreover, $\partial F_{1}$ belongs to $E(S)$ under $\tau$ as $R\subset E(S)$ . Since $ws_{2}^{-1}w^{-1}(ws_{2}^{-1}w^{-1})^{-1}$ is aDyck
word and lies in TRACE$(5, X,\tau)$ by the part (2), it is the identity morphism in Gpd(S) by
Lemma 2.2 (2). It follows that $s_{1}=s_{1}ws_{2}^{-1}w^{-1}(ws_{2}^{-1}w^{-1})^{-1}=(\partial F_{1})(\partial D_{2})\in E(S)$ and $\partial L$ is
an idempotent in $S$ . Hence, if $L$ has no stalks, then $\partial L$ lies in $E(S)$ . We now suppose $L$ consists
of ageneralized face $D$ and several stalcs. By the argument above, we have $\partial D\in E(S)$ . If
$\partial D=w\mathit{0}w_{1}\cdots w_{n}$ , them $\partial L=\mathrm{z}\mathrm{i}\mathrm{w}\mathrm{o}\mathrm{e}\mathrm{i}\mathrm{w}\mathrm{i}\mathrm{e}2\cdots$ $enwnz2$ , where each $\mathrm{q}$

. is the boundary cycle of
astalk and ZIZ2 is aboundary cycle of astalc. Since astalk is atree, its boundary cycle is
aDyck word. By Lemma 2.3, $\partial L\in E(S)$ under $\tau$ . This completes the induction, and hence,
$\partial D\in E(S)$ . $\square$

We remark that Lemma 3.2 (2) implies that TRACE$(5, X,\tau)$ includes the language ac
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cepted by the 1-skeleton $D’$ of any generalized face $D$ considered as an automaton in which ev-
ery vertex of $D$ is both an initial state and aterminal state. Furthermore, any word in $X\cup X^{-1}$

labeling aclosed path in $D$ belongs to $E(S)$ under $\tau$ . We briefly sketch the proof. Choose an
arbitrary maximal subtree (spanning tree) $T$ of the 1-skeleton $D’$ . Suppose $\mathrm{y}_{\mathrm{i}}$ , $y_{2}$ , $\ldots$ , $y_{n}$ is a
closed path in $D$ starting and ending at the vertex $v0$ and labeled by the word $w=h_{1}h_{2}\ldots$ $h_{n}$ .
There exists aunique geodesic from $v0$ to any vertex $v$ in $T$ . We denote the geodesic by $\mathrm{P}(v)$ .
Take an edge $y$ in $D$ . The subcomplex encompassed by $\mathrm{P}(\alpha(y))$ , $y$ , $\eta_{1}(\mathrm{P}(\omega(y)))$ is denoted by
Tri(y), where $\eta_{1}(\mathrm{P}(\omega(y)))$ is the inverse path of $\mathrm{P}(\omega(y))$ . By the argument above, the boundary
cycle $\partial’\mathrm{I}\mathrm{h}.(y)$ of Tri(y) starting and ending at $v\mathit{0}$ lies in $E(S)$ . Each $\eta 1(\mathrm{P}(\omega(y_{\dot{1}})))\mathrm{P}(\alpha(y:+1))$ is $\mathrm{a}$

Dyck word (as $\omega(y_{\dot{1}})=\alpha(y_{+1}.\cdot)$ ) and belongs to TRACE$(5, X,\tau)$ by Lemma 3.2 (2), and hence,

it is an identity morphism in Gpd(5) by Lemma 2.2 (2) under $\tau$ . Then, $h_{1}h_{2}\ldots$ $h_{n}$ is equal to
$h_{1}\eta_{1}(\mathrm{P}(\omega(y_{1})))\mathrm{P}(\alpha(y_{2}))h_{2}\cdots\eta_{1}(\mathrm{P}(\omega(y_{n-1})))\mathrm{P}(\alpha(y_{n}))h_{n}=(\theta \mathrm{I}\mathrm{h}.(y_{1}))(\partial’\mathrm{I}\mathrm{h}.(y_{2}))\cdots(\theta \mathrm{I}\mathrm{k}\mathrm{i}(y_{n}))$,
and hence, it belongs to $E(S)$ . Therefore, $E(S)$ includes the language accepted by the au-
tomaton $\theta$ in which the initial state and the terminal state is the same fixed vertex of $D$ .

Afinite planar connected and simply connected 2-complex $M$ is said to be good with respect
to a mapping $\tau$ of $X$ into an inverse semigroup $S$ if $\partial D\in \mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}(S,X,\tau)$ and $\partial D\in E(S)$

under $\tau$ for every generalized face $D$ of $M$ . In such acase, any cyclic conjugate of $\partial D$ belongs
to $E(S)$ under $\tau$ by Lemma 2.1 (3). Lemma 3.2 claims that any van Kampen diagram for a
freely reduced word representing 1in $H$ is good with respect to $\tau$ if $R\subset \mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}(S,X,\tau)$ and
$R\subset E(S)$ under $\tau$ .

Theorem 3.3 Let $H$ be a group presented by Gp(X $|R$), where $R$ is cyclically reduced. Suppose
$S$ is an inverse semigroup coextension of $H$ having the same set $X$ of generators as H. If
$R\subset \mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}(S,X, \iota_{S})$ and $R\subset E(S)$ , then $S$ is E-unitary.

Proof. We first note that $w=1$ in $H$ if and only if $\mathrm{N}\mathrm{F}(w)=1$ in $H$ for $w\in(X\cup X^{-1})^{+}$ , where
$\mathrm{N}\mathrm{F}(w)$ is the normal form for $w$ in FG(\"A). If we can prove $\mathrm{N}\mathrm{F}(w)\in E(S)$ for $w$ representing
1in $H$, then $to\in E(S)$ by Lemma 2.3. Therefore, we have only to show that $u\in E(S)$ for
every freely reduced word $u$ representing 1in $H$. This is equivalent to show that the boundary
cycle of avan Kampen diagram $M$ for afreely reduced word $u$ over $H$, where $u=1$ in $H$ , is an
idempotent in $S$ by Lemma 3.1. Since $R\subset \mathrm{L}\mathrm{O}\mathrm{O}\mathrm{P}$ $(S,X,\iota s)$ and $R\subset E(S)$ , any van Kampen
diagram over $H$ is good with respect to $\iota s$ : $Xarrow S$ by Lemma 3.2. We shall show that $\partial M$ is
an idempotent in $S$ for every good (finite planar connected and simply connected) 2-c0mplex
$M$ using induction on the number of generalized faces of $M$ .

Suppose $M$ consists of only one generalzed face $D$ and finitely many trees attached. There
are two possible cases: (Case 1) $v_{0}$ is in $\partial D$ and (Case 2) $v0$ is not in $\partial D$ (see Figure 9).
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$T_{1}$ meets $D$ at the vertex $v_{1}$ . Let $M_{1}$ be the subcomplex consisting of $(M\backslash T_{1})\cup\{v_{1}\}$ . By
(Case 1), the boundary cycle $\partial M_{1}$ starting and ending at $v_{1}$ lies in $E(S)$ . Then we can write
$\partial M=w_{1}(\partial M_{1})w_{2}$ , where $\partial T_{1}=w_{1}w_{2}$ . Since $\partial T_{1}$ is aDyck word, $\partial T_{1}\in E(S)$ . Hence,
$\partial M\in E(S)$ by Lemma 2.3. Therefore, the claim is true for any 2-complex with only one
generalized face. We now suppose the claim is true for any positive integer less than $n$ and
the number of generalized faces of $M$ is $n\geq 2$ . There are two possible cases: (Case 1) $\mathrm{m}$ is in
all generalized faces of $M$ and (Case 2) $v0$ is not in acertain generalized face of $M$ (see Figure
10).

(Case 1)

Figure 10: $M$ has more than one generalized faces
(Case 1) Suppose $v_{0}$ is in every generalized face of $M$. An generalized faces are adjacent each
other at $\mathrm{V}\mathrm{q}$ . Suppose $M_{1},M_{2}$ , $\ldots$ , $M_{s}$ are the branches at $v0$ and enumerated counterclockwise
around $v_{0}$ in this order and $\partial M=(\partial M_{1})(\partial M_{2})\cdots$ $(\partial M_{s})$ . Note that each M.$\cdot$ is aconnected
and simply connected 2-complex. Since $n\geq 2$ and every generalized face has $v_{0}$ , each $M_{}$ has
at most one generalized faces. Then $\partial M.\cdot\in E(S)$ by the inductive hypothesis for every:, where
$\partial M.\cdot$ is the boundary cycle of M.$\cdot$ starting and ending at $v0$ . Therefore, $\partial M\in E(S)$ . (Case
2) Suppose $v_{0}$ is not in ageneralized face $D_{1}$ . Since the number of generalzed faces of $M$ is
$n\geq 2$ , there exists at least one branch at $D_{1}$ . Suppose $M_{1},M_{2}$ , $\ldots$ ,Ma are branches at $D_{1}$

enumerated counterdodcwise around $D_{1}$ in this order. We may assume $M_{1}$ contains $\mathrm{v}\mathrm{o}$ . Let
$v_{1}$ , $v_{2}$ , $\ldots$ , $v_{s}$ be the vertices at which each $M_{\dot{1}}$ is adjacent to $D_{1}$ . We note that each consecutive
vertices $v$:and $v.\cdot+1$ may be equal. Then $\partial M=w_{1}z_{1}(\partial M_{2})z_{2}(\partial M_{3})z\mathrm{a}\cdots$ $z_{s-1}(\partial M_{s})z_{s}w_{2}$ , where
$\partial M\dot{.}$ is the boundary cycle of $M_{}$ starting and ending at $v.\cdot$ for $2\leq:\leq s$ , $\partial M_{1}=w_{1}w_{2}$

and $\partial D_{1}=z_{1}z_{2}\cdots z_{\epsilon}$ . By the inductive hypothesis, $\partial \mathit{1}\mathit{4}$ $\in E(S)$ for every $1\leq i\leq s$ and
$\partial D_{1}\in E(S)$ . Therefore, $\partial M\in E(S)$ by Lemma 2.3. Consequently $S$ is $\mathrm{E}$-unitary. 0
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