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Van Kampen Diagrams and E-unitary Coextensions

Akihiro Yamamura (U4t BA5L) *

1 Introduction

Semidirect products and HNN extensions of groups resemble each other in the sense that both
have a presentation described by a pseudo-commutative law, however, no approach to unify
and generalize them has appeared so far. In [12], a unified treatment of semidirect products
and HNN extensions of groups are presented. In this paer, a key lemma in [12] is presented.

First of all, we explain the generalization of semidirect products and HNN extensions given
in [12]. Let G, H be groups. Each generator h of H corresponds to an isomorphism ¢ of a
subgroup Aj, of G onto a subgroup B, of G. Let K be the group presented by

Gp(G, H | az = z(a¢,) for Va € A,, Vz € X), (1.1)

where H is generated by X. Is the natural homomorphism &g of G into K an isomorphism?
Is the natural homomorphism £y of H into K an isomorphism?

It is shown in [12] that G is strongly embedded into K under a certain condition (we will
not touch on the embedding problem in this paper). The embedding problem is inherently
related to the algebraic system of partial automorphisms. The key idea is to apply inverse
semigroup theory to group theory. In this paper, we present the key lemma concerning E-
unitary coextensions of groups, which is crucial in [12]. Our approach is rather geometrical.
We use van Kampen diagrams, which are very powerful method in group theory.

2 Inverse semigroups

Partial one-to-one mappings of a non-empty set constitute an algebraic system called the
symmetric inverse semigroup. Conversely any abstract inverse semigroup is embedded in the
symmetric inverse semigroup of a certain set (known as Wagner-Preston theorem). Thus, the
theory of inverse semigroups is an ideal tool to formalize and study algebraic structure of a
system of partial one-to-one morphisms and local properties of mathematical objects. As a
matter of fact, inverse semigroup theory was initiated to study local properties of manifolds by
Wagner [10]. Ehresmann [1] also considered inverse semigroups with some extra assumptions
in the context of topology and differential geometry under the name of pseudogroups. After
the introduction of the concept, numerous researches had been done mainly on its algebraic
structure. Against its first motivation, only a little attention had been paid to the theory
of partial automorphisms of a specific mathematical structure, such as groups, rings, vector
spaces, topological spaces, manifolds, or graphs. The significance of partial automorphisms
in other areas of mathematics has been rediscovered recently. For instance, the study on the
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relationship between C*-algebras, groupoids, and inverse semigroups can be found in [8]. The
reader is referred to [3] for historical account and detailed information on the theory of inverse
semigroups.

An inverse semigroup is a regular semigroup in which every element has the unique inverse
(see [3]). The class of inverse semigroups forms a variety, and hence, every inverse semigroup
has a presentation. We should remark that an inverse semigroup presentation is given by a set
of generators and a set of relations which is a subset of (X UX~1)* x (X UX~!)*, whereas
a group presentation is usually given by a set of generators and a set of relators which is a
subset of (X UX~!)*. We frequently consider a group presentation by a set of generators and
a set of relations as well. A presentation for a group generated by X subject to R is denoted
by Gp(X | R), and a presentation for an inverse semigroup generated by X subject to R is
denoted by Inv(X | R) in this paper. The inverse semigroup S presented by Inv(X | R) is the
freest inverse semigroup subject to the relation R in the following sense.

If a group H is a homomorphic image of an inverse semigroup S, then we say that S is an
inverse semigroup coextension of H. We say that an inverse semigroup coextension S of H has
the same set of generators as H if both S and H are generated by X and o o g = ¢, where
ts and g are the natural mappings, and o is a homomorphism of S onto H.

An inverse semigroup coextension S of H is called E-unitary if 0~(1) = E(S). In such
a case, the group H is the mazimal group homomorphic image of S. We remark that the
maximal group homomorphic image H of an inverse semigroup S has the universal mapping
property: for any homomorphism p of S into any group Q, there exists a homomorphism v
of H into Q such that v oo = p. An inverse semigroup S is called E-unitary if any element
above an idempotent is an idempotent (see [3]). It is easy to see that an inverse semigroup
is E-unitary if and only if it is an E-unitary coextension of its maxlmal group homomorphlc
image.

A groupoid is a small category in which every morphism is invertible. Any inverse semigroup
S can be endowed with a groupoid structure ([6, 9]) and we denote it by Gpd(S) in this paper.
The set of objects of Gpd(S) is E(S). For e, f € E(S), a morphism of e to f is any element
s € S such that e = ss™! and f = s™!s. The inverse of the morphism s is given by s~1. If
e € E(S), then e is the identity morphism of the object e. The trace product of an inverse
semigroup S is the groupoid product m Gpd(S), that is, the trace product for s;, sy in S
is deﬁned to be s3s9 if and only if sT gy = sgs; in S. Then slsz is' a morphism from
s18] ! to sy 15, since (3132)(3132) = 31828, 131 1= 8187 18131 1= = 8187 ! and (s182)"(s182) =
S5 131 lg189 = 85 13232 Sg = 85 l5,. Using the terminology in semigroup theory, we define the
trace product s;s; if and only if there exists e € E(S) such that s; LeR s3, where £ and R
are Green’s relations (see [3]). We illustrate the morphism s;3; in Gpd(S) and the location
of e, 31,582,812 in D class of S in Figure 1. Furthermore, Gpd(S) is endowed with an order
structure, however, we do not touch on it.

s18; 31_131 = sgsi'l S5 82
2 °

sl 82 81 | 00000 eeeees al‘:

Morphism s;s2 in Gpd(S) D class of §
Figure 1: Trace product
Let 7 be a mapping of a set X into an inverse semigroup S. Let w = hyhg - - - h,; be a word
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in (X UX~1)*. Then w is called a trace product in S with respect to 7 if 7(h1)7(h2) - - 7(hn)
is a trace product in Gpd(S), that is, every consecutive pair of 7(h;) and 7(hi+1) forms a trace
product in S. The word w is called a cyclic trace product in S with respect to 7 if every cyclic
conjugate of w is a trace product in S with respect to 7. The language of all trace products and
all cyclic trace products with respect to 7 are denoted by TRACE(S, X, 7) and LOOP(S, X, 1),
respectively. Note that LOOP(S, X, 7) € TRACE(S, X,7) C (X UX~!)* in general, whereas
TRACE(G, X, 7) = LOOP(G, X, 7) = (X UX™!)* for any group G and any mapping 7 of X
into G.

Lemma 2.1 Suppose w = hyhy -+ -hq € (XUX 1) and 7 is a mapping of X into an inverse
semigroup S.

(1) If w lies in TRACE(S, X, 7) and w = wyws, where wy, w2 € (X UX~1)*, then wilw, =
wgw;1 in S under 1.

(2) If w lies in LOOP(S, X, 7), then so does any cyclic conjugate of w.

(3) If w lies in LOOP(S, X, 7) and E(S), then so does any cyclic conjugate of w.

(4) Suppose w € TRACE(S, X, 1) and w = wywaws, where wy,ws, w3 € (XUX~Y)*. Then
wyws € TRACE(S, X, 7) if and only if wy € LOOP(S, X, 7).

(5) Let ¢ be a mapping of X into Tg. Ifw lies in TRACE(Tg, X, ¢), then we have Ran(¢n,) =
Dom(¢n,,,) for every i = 1,2,... ,n—1. If w lies in LOOP(Tg, X, ), then Ran(¢s,) =
Dom(¢h1)' a

A word w in (X UX~1)* is called Dyck if it is the identity in the free group FG(X). Any
Dyck word on X is an idempotent in any inverse semigroup generated by X.

Lemma 2.2 (1) If w = hiha-+-hn € (XU X 1)t lies in LOOP(S, X, 7) and E(S) under 7,
then w is the identity morphism of the object T(h1)T(h1)™! = 7(ha)~'7(ha) in Gpd(S) under
T.
(2) Let d = hihy---hn be a Dyck word on X. If d belongs to TRACE(S, X, ), then d €
LOOP(S, X, 7) and d is the identity morphism of the object 1(h)7(h1)™! = 7(ha) 1 7(hn) in
Gpd(S) under 7. O

Lemma 2.3 Let S be an inverse semigroup. Suppose a word w € (X U X™1)* belongs to
E(S), and w = wow, - - - Wn, where w; € (XUXY)*t. Ife; € E(S) for everyi=1,2,...,n,
then woeiwies - - - enwn < w and woerwies - - - enWn € E(S). a

3 Van Kampen diagrams and trace products

In this section, we investigate the trace product structure on boundary cycles of van Kampen
diagrams and give a condition for an inverse semigroup coextension of a group to be E-unitary.
This result is crucial in the embedding proble for groups (see [12]).

'A 1-complez (or graph) Y consists of two sets Vert(Y) and Edge(Y), together with the
functions & : Edge(Y) — Vert(Y), w : Edge(Y) — Vert(Y) and n; : Edge(Y) — Edge(Y). We
call the elements of Vert(Y) vertices, and the elements of Edge(Y) edges. For y € Edge(Y),
a(y),w(y),m(y) is called the initial vertez, the terminal vertez and the inverse edge, respec-
tively. A 2-complez (or a map) M consists of a 1-complex M’, its 1-skeleton, together with a
set Face(M) and two functions  and 7 defined on Face(M). We call the elements of Face(M)
faces (or 2-cells). For each F in Face(M), OF is the boundary cycle of F, and 7;(F) is the
inverse of F satisfying m(0F) = 8(n2(F)). The geometric realization of a vertex, an edge
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and a face of a planar 2-complex is a point, a bounded subset homeomorphic to an open unit
interval and a bounded subset homeomorphic to an open unit disk in the Euclidean space E2,
respectively. We denote the boundary cycle of a connected and simply connected 2-complex
M by OM. Here the boundary cycle of M is the word that is read along the contour of M
counterclockwise starting and ending at the distinguished vertex. The subgraph consisting of
the boundary of M is denoted by OM as well. We denote the interior and the closure of a
topological space Z C E? by Z° and Z, respectively. '

Let H be a group presented by Gp(X | R), where R is cyclically reduced. Suppose w is
a freely reduced word in (X UX~!)* and w = 1 in H. A van Kampen diagram for w over
H is a finite planar connected and simply connected 2-complex M such that the boundary
cycle OF of any face F of M is a cyclic conjugate of a relator in R and the boundary cycle
OM of M starting and ending at the distinguished vertex vp is equal to w as words. The
reader is referred to [4, 7] for van Kampen diagrams and van Kampen'’s lemma. We shall call a
maximal subcomplex homeomorphic to a closed disk a generalized face in this paper. A stalk of
a van Kampen diagram M is a subpath consisting of edges y1,2,... , Uk and their initial and
terminal vertices such that every y; is disjoint from M°. Note that M ° is a union of generalized
faces of M, and M \ M° is a union of stalks of M. Thus, any van Kampen diagram is a union
of finitely many generalized faces and stalks.

Figure 2: Van Kampen diagram with 8 faces and 3 generalized faces

The ramification number of a vertex v (or a generalized face D) of a finite planar connected
and simply connected 2-complex M is the number of connected components of the topological
space M \ {v} (or M \ D). Let C be a connected component of M \ {v}. Then M; = CU {v}
is a connected and simply connected 2-complex and called a branch of M at v. A branch
at a generalized face D is similarly defined (see Figure 3 and 4). A finite planar connected
and simply connected 2-complex M is called chain-shaped if any vertex and any generalized
face has ramification number at most two. In Figure 5, a chain-shaped 2-complex with seven
generalized faces, in which the path P; may be empty, is illustrated.

A &S e o

(c) (d)

Fxgure 3: Several vertices a.nd generalized faces having ramification number 3

| Q / /

AN e — o O

(a) (b) (c) (d)
Figure 4: Branches in Figure 3
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P P P ' Py Py P

Figure 5: Chain-shaped 2-complex

Lemma 3.1 (Van Kampen [11]) Let w € (X U X™1)* be a freely reduced word such that
w =1 in H. There ezists a van Kampen diagram for w over H. a

Lemma 3.2 Let 7 be a mapping of X into an inverse semigroup S such that R C LOOP(S, X, 7).
Suppose M is a van Kampen diagram over H for a freely reduced word w € (X U X~1)* rep-
resenting 1 in H.

(1) Let F be a face of M. Then OF belongs to LOOP(S, X, 7). If R C E(S) under 7, then 8F
belongs to E(S) under 7.

(2) Let D be a generalized face of M. Any word in X U X! labeling a path in D belongs to
TRACE(S, X, 7). In particular, 8D belongs to LOOP(S, X, 7).

(3) If R C E(S) under 7, then OD belongs to E(S) under T for every generalized face D of
M. .

Proof. (1) Since the boundary cycle OF of any face F of M is a cyclic conjugate of a relator in
R, OF € LOOP(S, X, 7) by Lemma 2.1 (2). If R C E(S), then 8F € E(S) by Lemma 2.1 (3).
(2) Let v be a vertex in D. Suppose y1,¥2,--. ,Yn are edges in D entering v and each y; is
labeled by h; € X U X!, It suffices to show that 7(h;)T(h;)™! is a trace product in Gpd(S),
equivalently, 7(h;)~17(h;) = 7(h;)"'7(h;)in S forall 1 < 4, j < n. Since D is a planar diagram,
we may assume ¥, ¥, .- - ,Yn are enumerated counterclockwise around v in this order. Since
D is homeomorphic to a closed disc, there are two possible cases: (Case 1) v lies in the interior
of D, and (Case 2) v lies on the boundary of D (see Figure 6).

ﬂ
h
| 8D -

h
(Case 1) v is in D°, where n =4 (Case 2) v lies in 8D,lwhere n=4

Figure 6: Vertex v and edges entering it

(Case 1) The edges yi+1 and m(y:) with 1 < i < n—1 (and 3 and 7 (yn)) form a subpath
of the boundary cycle of a certain face F; in D. By (1), 8F; belongs to LOOP(S, X, 7), and
hence, 7(hi4+1)7(h;)~! belongs to TRACE(S, X, ) for every i as T(hi+1)7(h;)~! is a subword
of OF;. Hence, T(hit1) " 7(hi+1) = T(hi)~17(h;) for every i. It follows that 7(h;)~'7(h;) =
7(hj) 17 (h;) for all 7,j. (Case 2) We may assume without loss of generality that y; and yn
are on the boundary of D. For each consecutive pair y; and g4, (1 < i < n— 1), there exists
a face in which y; and y4+; form a subpath of the boundary cycle, and hence, we can prove
7(hi)~7(h;) = T(hj) " 7(h;) for all i, j as in (Case 1). It follows that any word labeling a path
in D belongs to TRACE(S, X, 7). Since any cyclic conjugate of 3D is a path in D, 8D belongs
to LOOP(S, X, 7). :

(3) Suppose R C E(S) under 7. Let D be a generalized face of M. We shall show that a
boundary cycle of any connected and simply connected subcomplex L of D belongs to E(S)
under 7 using induction on the number [ of faces in L. First we note that a connected and
simply connected subcomplex L with no faces is a tree. Hence, the boundary cycle 4L is a Dyck
word and belongs to E(S). Second, we suppose L has only one face Fy. Then L is obtained
from Fy by attaching finitely many trees to Fy. Note that a boundary cycle of any tree is
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a Dyck word. Therefore, the boundary cycle of L is obtained from 8Fp by inserting finitely
many Dyck words, and hence, written as w;21(971)22(T2) - - - 2n(0T)w2, where wywe = 8T,
OFy = 2123+ -z and Ty, Th,... , T, are (maybe empty) trees. By Lemma 2.3, 8L € E(S).
Now we suppose the claim is true for any positive integer less than ! and a subcomplex L of
D has [ faces. Suppose L has at least two generalized faces. There exists a vertex v; having
ramification number at least two and there exist at least two branches at v, such that each of
them contains at least one generalized face. Then the boundary cycle of L starting and ending
at v, can be written as (8L,)(8L3) for some subcomplexes L, and Ly of L having at least one
generalized face, where 8L, and 8L, are the boundary cycles of L; and L, starting and ending
at vy, respectively (see Figure 7).
Ly L,

O ().
NI
Figure 7: L has at least two generalized faces

By the inductive hypothesis, dL; and 0L, belong to E(S). Thus, the boundary cycle of L
starting and ending at v; is written as (0L;)(6L2). By Lemma 2.1 (3), 8L € E(S). Next we
suppose L has only one generalized face with no stalks. Then we show that JL lies in E(S).
There are two cases. (Case 1) At least two faces of L have edges on the boundary of L. In
such a case, L is a union of connected and simply connected subcomplexes D; and Dy with
more than one generalized faces that have edges on the boundary L and D N Dj is empty.
(Case 2) Only one face F; has the edges in 8L (see Figure 8).

%! Dy, | Dy 7 . @ 5

% )
(Case 1) D; and D> have edges in L. (Case 2) Only F; has edges in L
Figure 8: Decomposition of L

(Case 1) We can write OL = s183, D) = 5189, 8Dy = 35133. Since 323;1 is a path in D,

285" is a Dyck word belonging to TRACE(S, X,7) by the part (2). Hence, 8285 ! i3 the
identity morphism in Gpd(S) by Lemma 2.2 (2). Then we have s;33 = 313285 1g3 under
7. On the other hand, 8Dy,0D2 € E(S) under 7 by the inductive hypothesis. It follows
that L = s183 = 81828; 's3 = (8D1)(8D;) € E(S). (Case 2) We can write L = s,
OF, = sywsy lw=1, 8Dy = sy, where D, is a connected and simply connected subcomplex of
D. Note that D, has | — 1 faces. By the inductive hypothesis, 8D, belongs to E(S) under 7.
Moreover, OF; belongs to E(S) under 7 as R C E(S). Since ws; 'w™!(ws; w™!)~! is a Dyck
word and lies in TRACE(S, X, 7) by the part (2), it is the identity morphism in Gpd(S) by
Lemma 2.2 (2). It follows that s; = syws; 'w™(ws; 'w™1)~! = (8F,)(8D:) € E(S) and 8L is
an idempotent in S. Hence, if L has no stalks, then 4L lies in E(S). We now suppose L consists
of a generalized face D and several stalks. By the argument above, we have 8D € E(S). If
0D = wow; -+ - wy, then 8L = zjwpejwi ez « - - eawn 22, where each e; is the boundary cycle of
a stalk and 2;2; is a boundary cycle of a stalk. Since a stalk is a tree, its boundary cycle is
a Dyck word. By Lemma 2.3, 0L € E(S) under 7. This completes the induction, and hence,
0D € E(S). ' O

We remark that Lemma 3.2 (2) implies that TRACE(S, X, 7) includes the language ac-
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cepted by the 1-skeleton D’ of any generalized face D considered as an automaton in which ev-
ery vertex of D is both an initial state and a terminal state. Furthermore, any word in XUX !
labeling a closed path in D belongs to E(S) under 7. We briefly sketch the proof. Choose an
arbitrary maximal subtree (spanning tree) T' of the 1-skeleton D’. Suppose y1,¥2,...,¥n is 2
closed path in D starting and ending at the vertex vp and labeled by the word w = hihg ... hy.
There exists a unique geodesic from vg to any vertex v in T'. We denote the geodesic by P(v).
Take an edge y in D. The subcomplex encompassed by P(a(y)), ¥, m(P(w(y))) is denoted by
Tri(y), where m; (P(w(y))) is the inverse path of P(w(y)). By the argument above, the boundary
cycle 8Tri(y) of Tri(y) starting and ending at v lies in E(S). Each m (P(w(y)))P(a(yit1)) is a
Dyck word (as w(y:) = @(yi+1)) and belongs to TRACE(S, X, ) by Lemma 3.2 (2), and hence,
it is an identity morphism in Gpd(S) by Lemma 2.2 (2) under 7. Then, hihs. ..k, is equal to
him(P(w(11)))P(c(y2))h2 - - - m(P(w(yn-1)))P(@(yn))hn = (8Tri(11))(OTxi(y2)) - - - (FT¥i(yn)),
and hence, it belongs to E(S). Therefore, E(S) includes the language accepted by the au-
tomaton D’ in which the initial state and the terminal state is the same fixed vertex of D.

A finite planar connected and simply connected 2-complex M is said to be good with respect
to a mapping T of X into an inverse semigroup S if 8D € LOOP(S, X, 1) and 8D € E(S)
under 7 for every generalized face D of M. In such a case, any cyclic conjugate of D belongs
to E(S) under 7 by Lemma 2.1 (3). Lemma 3.2 claims that any van Kampen diagram for a
freely reduced word representing 1 in H is good with respect to 7 if R C LOOP(S, X, ) and
R C E(S) under 7. .

Theorem 3.3 Let H be a group presented by Gp(X | R), where R is cyclically reduced. Suppose
S is an inverse semigroup coextension of H having the same set X of generators as H. If
R C LOOP(S, X,t5) and RC E(S), then S is E-unitary.

Proof. We first note that w = 1 in H if and only if NF(w) = 1in H for w € (XUX™)*, where
NF(w) is the normal form for w in FG(X). If we can prove NF(w) € E(S) for w representing
1in H, then w € E(S) by Lemma 2.3. Therefore, we have only to show that u € E(S) for
every freely reduced word u representing 1 in H. This is equivalent to show that the boundary
cycle of a van Kampen diagram M for a freely reduced word u over H, where 4 =1in H,is an
idempotent in S by Lemma 3.1. Since R C LOOP(S, X,¢s) and R C E(S), any van Kampen
diagram over H is good with respect to tg : X — S by Lemma 3.2. We shall show that OM is
an idempotent in S for every good (finite planar connected and simply connected) 2-complex
M using induction on the number of generalized faces of M.

Suppose M consists of only one generalized face D and finitely many trees attached. There
are two possible cases: (Case 1) v is in 8D and (Case 2) v is not in 8D (see Figure 9).

V1 Yo

Ay ]
(Case 1) v is in D (Case 2) v is not in D
Figure 9: M consists of one generalized face and trees
(Case 1) Suppose v is in 3D and trees T3, T, ... , Tk are attached to D. Then OM is written
as wo(0T1)w1(8T2)ws - - - (OTk)wk, where 8D = wowywz---wg. Note that 8T; € E(S) for
every T; as any boundary cycle of a tree is a Dyck word. Since 8D € E(S) (as M is good),
o (8T w1 (8T2)ws - - - (0T )wx, € E(S) by Lemma 2.3. Thus, M € E(S). (Case 2) Suppose
vg is not in D and trees T}, Ty, . . . , T) are attached to D. We may assume vg is in T;. Suppose
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Ty meets D at the vertex v;. Let M; be the subcomplex consisting of (M \ T1) U {v1}. By
(Case 1), the boundary cycle dM; starting and ending at v; lies in E(S). Then we can write
OM = w,(0M;)ws, where 8Ty = wywa. Since 8Ty is a Dyck word, 0Ty € E(S) Hence,
OM € E(S) by Lemma 2.3. Therefore, the claim is true for any 2-complex with only one
generalized face. We now suppose the claim is true for any positive integer less than n and
the number of generalized faces of M is n > 2. There are two possible cases: (Case 1) vg is in
all generalized faces of M and (Case 2) vy is not in a certain generalized face of M (see Figure
10).

M;

(Case 1) ’ (Case 2)

Figure 10: M has more than one generalized faces

(Case 1) Suppose vy is in every generalized face of M. All generalized faces are adjacent each
other at vg. Suppose My, My, ... , M, are the branches at vy and enumerated counterclockwise
around vp in this order and M = (8M;)(OMz) - - - (OM,). Note that each M; is a connected
and simply connected 2-complex. Since n > 2 and every generalized face has vy, each M; has
at most one generalized faces. Then OM; € E(S) by the inductive hypothesis for every ¢, where
OM; is the boundary cycle of M; starting and ending at vy. Therefore, dM € E(S). (Case
2) Suppose vg is not in a generalized face D;. Since the number of generalized faces of M is
n > 2, there exists at least one branch at D;. Suppose M;, M,,... ,M, are branches at D,
enumerated counterclockwise around D; in this order. We may assume M; contains vg. Let
v1,v9, ... ,Vs be the vertices at which each M; is adjacent to D;. We note that each consecutive
vertices v; and v;4; may be equal. Then M = w1 21(0M2)z2(0M3)z3 - - - 25—1(0M,)zsw2, where
OM; is the boundary cycle of M; starting and ending at v; for 2 < @ < 3, OM; = wwy
and 8D; = z122-+-2s. By the inductive hypothesis, dM; € E(S) for every 1 < i < s and
0D, € E(S). Therefore, dM € E(S) by Lemma 2.3. Consequently S is E-unitary. 0
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