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1 Introduction

Aknot is an oriented simple closed curve embedded in the -dimensional Euclidian space $\mathrm{E}^{3}$ . A

mutually disjoint union of knots is called a $b_{l}.A$ We say that two h.nk are \eta uiv&nt if one can be
transformed to the other by some homeomorphism in $\mathrm{B}^{3}$ . If two links $L_{1}$ and $L_{2}$ are equivalent, then we
write $L_{1}\sim L_{2}$ . By $\mathcal{L}$, we denote the set of equivalence classes of Inks. We usually identify alink with

its equivalence class. So an element of $\mathcal{L}$ is $\mathrm{a}\theta \mathrm{u}\mathrm{a}\mathbb{I}\mathrm{y}$ an equivalence class of Inks, but it is simply called a
link. To handle Inks, we usually project them on the 2- imensional plane (see Fig.l). Alink projected

on the $\mathrm{a}\mathrm{d}\mathrm{i}.\mathrm{e}\mathrm{n}\cdot \mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ plane is called alink $d_{\dot{1}ag}1nm$ of it. The link diagram of aInk $L$ is denoted by
$D(L)$ . Remark that there are infinitely many link diagrams of alink

ffivial knot

Fig.l

The following defonnations of apart of aInk diagram are called the Wet moves.

(Type 1)

$\sim$ $\sim$

(Type 2)

$\sim$ $\sim$

(Type 3)
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In the Ink (or knot) theory, the following result is fundamental.

Result 1.1 Two links are equivalent $f$ and only $|.f$ there is a finite sequence of the $R\dot{\alpha}demeskr$ moves
such that a link diagram of one of them can be deformed to a link diagram of the other one.

In this paper, we assume that for each link one fixed component is chosen and afixd point on this
component is given. For each link $L$ , afixed point on achosen component of $L$ is called amarked point of
$L$ . Aproduct of two links $L_{1}$ and $L_{2}$ , denoted by Li#L2, is defined as follows. Let $a_{1}$ and a2 be marked
points of $L_{1}$ and $L_{2}$ , respectively. If the orientations of $D(L_{1})$ at $a_{1}$ and $D(L_{2})$ at a2 are opposite, then,

remove asmall arc from $D(L_{1})$ containing $a_{1}$ and asmall arc from $D(L_{2})$ containing $a_{2}$ . Let $\alpha$ and $d$

(resp. $\beta$ and $\beta’$) be two end points of $D(L_{1})$ (resp. $D(L_{2})$ ) removed the small arc. Then attach $D(L_{1})$

and $D(L_{2})$ at these points identifying $\alpha$ with 4and $\alpha’$ with $\beta’$ .

Fig.2

If the orientations of $D(L_{1})$ at $a_{1}$ and $D(L_{2})$ at a2 agree, apply the deformation (Type 1) to $D(L_{1})$

at $a_{1}$ or $D(L_{2})$ at a2, then the orientations of $D(L_{1})$ at $a_{1}$ and $D(L_{2})$ at a2 become opposite. And then
attach $D(L_{1})$ and $D(L_{2})$ as in the above way (see Fig.3).

Fig.3

Remark that the above product does not depend on the choice of the marked points, but depends on
the choice of components and orientations. It is easy to see that the above product is $\mathrm{w}\mathrm{e}\mathrm{U}$-defind, that
is, for any Inks $L_{1}$ , $L_{2}$ , $L_{S}$ and $L_{4}$ , if $L_{1}\sim L_{2}$ and $L_{3}\sim L_{4}$ , then $L_{1}\# L_{3}\sim L_{2}\# L_{4}$ . Further it satisfies
the associative law and the commutative law and the trivial knot acts as the identity element in $\mathcal{L}$ . Thus
$C$ forms acommutative monoid.

In this PaPer, we represent links as words over the four letters $(, )$ , [and 1, and consider relations
between them. This method is given by Manturov in [2] and we reformulate his result. For more
information about links (or knots), we refer to [1]
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2Regular bibradcets and chord diagrams

Let $\Sigma$ be an alphabet consisting of the four letters $(, )$ , $[, ]$ . Aword $A$ over $\Sigma$ is called abibrackets A

bibracket $A$ is called $(,)-[] \mathrm{w}ular$ (resp. $[,]-\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{u}\mathrm{h}\mathrm{r}$ ) if the number of opening and closing parentheses (resp.

square brackets) are equal in $A$, and in every proper prefix of $A$, the number of opening parentheses (resp.

square brackets) is larger than or equal to the number of closing parentheses (resp. square brackets).

Abibracket is caUd regular if it is both $(,)$ regular and $[,]-\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$. Aproduct of regular bibrackets is

defined by aconcatenation of words over C.

To construct aregular bibradcet from alink, we need the following notion. Achord diagram is drawn

on the plane as follows. First draw circle and give afixed point on the circumference, then draw straight
$\underline{[j\mathrm{n}}\mathrm{a}\mathrm{e}$ (resp. curves) inside (resp. outside) the cirde connecting two points not equal to the fixed point on
the circumference in such away that each pair of straight lnes and curves do not intersect (see Fig.4).

For achord diagram $C$, straight Ones inside (resp. curves outside) the circle are called inner (resp. outer)

chords of $C$.

Fig.4

With each chord diagram $C$, we associate aregular bibracket $A$ as bUows. We $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ the circle of
$C$ starting&0m the fixed point in the counterdodcwise direction. If we encounter the first end point

of an inner (resp. outer) chord, then we rite an opening parenthesis (resp. square bracket) and, if we

encounter the second end of it, we write adoeing parenthesis (resp. square bracket). We proceed in this

my and when we reach the start point, we speU out abibracket $A$ (see Fig.5) and it is easy to verify that

it is actually aregular bibracket. Conversely, for agiven regular bibracket $A$, we can easily construct a

chord diagram $C$ with which $A$ associates.

– $[$ $(((][)))]$

Fig.5

Next we construct achord diagram&0m agiven Ink $L$. We may suppose $L$ is alink diagram on the

plane. Split every crcming in $L$ by the rule givenv in Fig.6.

Fig.4
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We assume that arcs a and c are parts of acircle of achord diagram and b is an (inner or outer) chord.
If we get only one circle when we split all the crossings, then we can get achord diagram (see Fig .

Fig.7

But the above case is exceptional, that is, when we split all the crossings, many $\mathrm{c}\dot{\mathrm{u}}$dae may occur in
general (see Fig.8).

$arrow$

Fig.8

In this case, applying the deformation of TyPe 2, we can obtain achord diagram as seen in Fig.9.

Fig.9

Thus, we obtain achord diagram and aregular bibracket associated with it&0m alink diagram.
Conversely, applying the above process in areverse way, we can construct aInk diagram from agiven

regular bibradcet. Remark that the Ink diagram constructed from aregular bibracket is unique, but
there are many different regular bibradcets, which are constructed from aInk diagram. For each regular

bibracket $A$ , the Ink uniquely constructed from $A$ is denoted by $L(A)$ and is called the Ink represente
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3Representation of the monoid of links

As we have seen in the previous section, every $\underline{[j\mathrm{n}\mathrm{k}}$ (or link $\mathrm{d}\mathrm{i}\mathrm{a}\Psi \mathrm{m}$) can be represented by some

regular bibradcet. In this section, we shall find a relationship between regular bibradcets which represent

equivalent Inks. To this end, due to Result 1.1, it is sufficient to find relations between regular bibradcets

which are transformed by the Reidemeister moves to each other. But since the Reidemeister moves are

local deformations of links, we must consider the global situations where the Reidemeister moves apply.

The global Reidemeister moves can be obtained by closing end points of the Reidemeister moves with

some parts of Inks as shown in Fig.lO. These parts are denoted by $A$, $B$ and $C$.

$\sim$

Fig.lO

As described before, to obtain aregular bibracket from alink diagram, we may have to aPply the

deformation Type 2, but the way of the application is not unique. Accordingly we must consider the

following three situations.

Fig.ll

In Fig.ll, $A$, $B$ and $C$ are parts of Inks, but without loss of generality, we may consider that $A$, $B$ and

$C$ are bibrackets though they may not be regular. Then, from the leftmost equivalence of the Inks in

Fig.11, we obtain the relation

$A$ $[$ $(]B)=A(B[)]$

through the process described in Fig .

$arrow \mathrm{A}$ $[$ ( $]\mathrm{B}$ $)=\mathrm{A}(\mathrm{B} [ )]$

Fig.lO
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Similarly we obtain other relations between regular bibrackets from the other equivalences in Fig.ll.

Next, we see the relations corresponding to the other types of the global Reidemeister moves. For
example, in Fig.13, the equivalence at the top is the global Reidemeister moves of Type 3. At the second

and third levels, the Inks are transformed to the chord diagrams. Finally, at the bottom, we have a
relation between the regular bibrackets which associate with these Inks. In the same my, we can obtain

all the relations from the other global Reidemeister moves, but details are omitted.

$\sim$

$\sim$

$\mathrm{f}$ $

$\sim$

A( $\mathrm{B}$ ((C) [)[)1] A $(\mathrm{B} (\mathrm{C} [ )[[ )]]$ $1$

Fig.13

To describe the defining relations of the regular bibracket monoid, we need the following notions. For

any regular bibradcet $A$, $\overline{A}$ is aregular bibracket, which is obtained from $A$ by changing all opening

parentheses to opening square bradcets, closing parentheses to closing square bradcets and vice versa. It

is easy to verify that links determined by $A$ and Iare equivalent. Thus we have arelation $A=\mathrm{Z}$.
Next, for any regular bibradcet of the form AB, where both $A$ and $B$ are bibradcets, the regular

bibradcet $B’A’$ is obtained in the following my. If $BA$ is aregular bibracket, then $B’A’$ is equal to $BA$.
If $BA$ is not aregular bibradcet, then there exists an opening parenthesis or an opening square bradcet

in $A$ such that acorresponding closing parenthesis or square bradcet is in $B$ . If there is an opening

parenthesis (resp. square bradcet) in $A$ such that the corresponding closing parenthesis (resp. square

bracket) is in $B$ , then we change this opening parenthesis (resp. square bracket) in $A$ to the closing

parenthesis (resp. square bracket) and the closing parenthesis (resp. square bracket) in $B$ to the opening

parenthesis (resp. square bradcet). Applying the above replacement to au such pairs of parentheses and

square brackets in $BA$, $BA$ is transformed to aregular bibradcet, which is denoted by $B’A’$. Since the

product of Inks does not depend on the choice of amarked point, the Inks represented by AB and $B’A’$

are equivalent. Thus we include the relation $AB=B’A’$ .
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Now we have our main theorem.

Theorem 3.1 Let $A$ and $B$ be two $|\mathrm{W}\mathrm{u}1\mathrm{a}r$ b.bm&g. Then truo links $L(A)$ and $L(B)$ are equivalent if
and only if one $ofA$ and $B$ can $k$ obtained from the other one by applying the following relations finitely
many times.

1. A $=\mathrm{Z}$, other A is regular,

$t$. $AB=B’A’$, where $A$, $B$ are bibrackets and AB is regular,

S. $A$ $[$ ( $]B)=A(B [ )]$, where $A$, $B$ are $(,)-[] wular$ and AB is regular,

4. $A$ $((B) C [)$ $]=A(B(C) [ )]$, where $A$, $B$ , $C$ are $(, )-[] \mathrm{w}\mathrm{u}\mathrm{l}\mathrm{a}r$ and $ABC$ is $[] wular$,

5. $A$ $(BC [)]=A(C’B’ [ )]$ , where $A$, $BC$ are $(,)-[]\eta ular_{1}B$, $AC$ are $[,]-[]\eta ula$’and $ABC$ is
$[] w[] br$,

5. $()=1$ where 1 is the empty word,

7. $A$ $(B[[ )]$ $(])=AB$, where $A$, $B$ are $(,)-[] \mathrm{w}\mathrm{u}lar$ ated AB is regular,

8. $A$ $( B ((C) [)[)$ $]]=A(B(C [)[[ )]$ $]]$ , where $A$, $B$, $Ca|$ $(,)$ -ngular and f( is
$|\mathrm{W}^{\mathrm{u}lar}$,

9. A $([ (B] C))=A$ $[ ([ B]]C)$, where $A_{1}BC$ are $(,)-[] \mathrm{w}ular$, $B$, $AC$ are $[,]-[] \mathrm{w}ular$ and $ABC$

$\dot{\mathrm{u}}|\eta ular$,

1 $\theta$. $A$ $(B$ ( $C$ ( $[[$ ) [)]][ $)$ ]] $=A$ $[$ (( $]$ $B)C)$, where $A$, $B$, $Car\epsilon$ $(,)-[] \mathrm{w}ular$ and $ABC$ is
regular,

11. $A$ ( $[ (B]$ $C[ [ )]]=A[([$ $B((]$ )) $]C$ ), $whm$ $A$, $BCa|\mathrm{e}(,)- m2kr$, $B$ , $AC$ are $[,]$ regular

and $ABC\dot{u}[] \mathfrak{B}ular$,

12. A $($ [ ( $B$ ] $C[[$ )]] $)=A$ $[ ([ B]((]))C)$, where $A$, $BC$ are $(, )-[]\eta \mathrm{u}lar$, $B$ , $AC$ are
$[,]-|\mathrm{w}ular$ and $ABC$ is $[]\eta uhr$.

where 3, 4and 5come from the equivalences in Fig.ll, 6is from the Reidemeister moves of Type 1, 7is

&0m Type 2and 8-12 are&0m Type 3.
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