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Abstract

This paper introduces an application of the S-4 logic. There are two aims in this paper. Aim
1is to check the relation between our model and the S-4 logic. We 11 see the soundness and
completeness of the S-4 logic with respect to the model by using the concept of structure. Aim
2is to prove avariation of no trade theorem in the model.

1Introduction
The word “knowledge” and especialy “common knowledge” plays avery important role
in game theory. Intuitively, an event is common knowledge if everyone knows it, everyone
knows that everyone knows it, everyone knows that everyone knows that everyone knows
it and so on. Then how can we treat (common) knowledge fomffiy?

Aumann (1976) tried to solve this problem. He introduced the formal notion of com-
mon knowledge using set based and partitioned information structure and showed, so
caUd, agreeing to disagree $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}^{1}$

After Aumann, many papers have studied knowledge. Milgrom (1981), and Monderer
and Samet (1989) treated knowledge by different approaches. Milgrom (1981) applied ax-
iomatic approach 2 to modelng knowledge. Monderer and Samet (1989) used probabilty
appr0ach3. They managed to approximate knowledge with belief. We note that these
approaches also use partiotional information structure.

Samet (1990) have studied non-partitional information structure. He showed agreeing
to disagree theorem based on non-partitional information structure.

This paper also studies non-partitional information structure like Samet. We would
h.ke to prove kind of no trade theorem which is introduced by Milgrom and Stokey(1982)
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after showing the relation between the model and the logic. In section 5, we will see the
model is one of the $\mathrm{S}\ovalbox{\tt\small REJECT}$ logic. avariation of no trade theorem is proved in section 8.

2S-4 logic

S-4 logic is denoted as $\langle$ $Sy$, $S$, $AR$, Prove.
$Sy$ means symbols. Symbols consists of $N$, $PV$, logical connectives, and players’ modal

operators. $N$ means aset of players $i$ and $j$ . Now, we restrict the number of the players
to 2persons for simplicity. But we can extend the results to $n$ persons case easily. $PV$ is
aset of propositional variables, or atomic sentences. Logical connectives are $\wedge,$ $\vee,$ $arrow$ , $(, )$ ,
and $\neg$ . Players’ modal operators are $\coprod_{\dot{1}}$ and $\coprod_{j}$ .

The second element of S-4 logic is S. $S$ means aset of sentences, or aset of formulae.
$S$ is inductively constructed from $L$ inductively.

(S1) : $PV\subseteq S$

(SI) : $\phi,\psi\in S\Rightarrow\neg\emptyset$, $\phi$ $arrow\psi$ , $\phi$ $\wedge\psi$ , $\phi$ $\vee\psi,\square _{n}\phi\in S(n=i,j)$

(53) :Every sentence is constructed by affiite number of
applications of (SI) and (S2).

The third element of the S-4 logic is $AR$. All means axioms and rules. $AR$ consists
of $PL$, modal axioms and rules.

$PL$ is propositional logic, or aset of aU tautologies, that is, for all $\phi,\psi,\chi\in S$ .
(PLl) : $\phiarrow(\psiarrow\phi)$

(PL2) : $(\phiarrow(\psiarrow\chi))arrow((\phiarrow\psi)arrow(\phiarrow\chi)$

(PL3) : $(\neg\emptysetarrow\neg\psi)arrow((\neg\emptysetarrow\psi)arrow\phi)$

(PL4) $:wedge\psi$ $arrow\phi$

(PL5) : $\phi$ $arrow\phi\vee\psi$

(MP) : $\frac{\phiarrow\psi\phi}{\psi}$

$(\wedge-rule)$ : $\frac{\phiarrow\psi\phiarrow\chi}{\phiarrow\psi\wedge\chi}$

$(\vee-rule)$ : $\frac{\psi\phi\chiarrow\phi}{\psi\vee\chiarrow\phi}$

where $\phi,\psi,\chi\in S$ .
For modal part, we assume axioms $K,T,4$ and N. $K$ is, in other words, the Axiom

of Distribution. $T$ is the Axiom of Knowledge. 4is the Positive Introspection. And $N$ is
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the Necessitation rule.

(K) : $(\square _{1},(\phiarrow\psi)arrow(\square _{\hslash}\phiarrow\square _{n}\psi))$

(T) : $\square _{\mathfrak{n}}\phiarrow\phi$

(4) : $\square _{n}\phiarrow\square _{n}\coprod_{n}\emptyset$

(N) : $\frac{\phi}{\square _{n}\phi}$

where $\phi,\psi\in S$ and $n=i,j$

With these axioms and rules, we can deffie the provability Prov. of asentence in the
logic.

Definition 1. Aproof is afinite tree satisfying (PR1) and (PR2).

(PRl) :Asentence is associated with each node, and the sentence
associated with every leaf node is an instance of $(PL1)-(PL5)$ , $K$,
$T$, or 4.

(Pm) :Each adjoining node forms an instance of (MP), ($\wedge$ -rule),
$(\vee-mle)$ , or (N).

We say that $\phi(\in S)$ is provable in the S-4 logic if and only if there exist aproof which
root is associated with $\phi$ .

3Structure
Structure is $\langle\Omega, P_{}, P_{j}\rangle$ . $\Omega$ is anonempty finite state space. So $2^{\Omega}$ is called aset of events.
Players’ information functions $P_{}$ and $P_{j}$ is afunction fiom the state space $\Omega$ to the event
set $2^{\Omega}$ . The set $P_{n}(\omega)$ means the event which player $n$ recognize when the real state is $\omega$ .
The set $P_{n}(\omega)$ is called player n’s information set or possibilty set at $\omega$ .

We assume that each players’ information function satisfy the following.

$(P-1)$ : $\omega$ $\in P_{n}(\omega)$

$(P-2)$ : $d$ $\in P_{n}(\omega)\Rightarrow P_{n}(d)\subseteq P_{n}(\omega)$

for $\forall\omega,d$ $\in\Omega$ and $n=:,j$ .
P-l means the condition that aplayer never excludes the real state. When the real

state is $\omega$ , the playern thinks that $\omega$ may have occurred. Prom P-2, we have that if there
is astate $\xi$, so that $\xi\in P_{n}(d)$ and $\xi\not\in P_{||}(\omega)$ then $d$ $\not\in P_{n}(\omega)$ . So, P-2 says that player $n$

at $\omega$ can make consideration as follows: uThe state $\xi$ is excluded. If it were the state $d$ ,
Iwould not exclude $\xi$ . Thus it must be that the state is not $\omega^{\prime n}$.P-l and P-2 play very
important roles in the relation to the S-4 logic. We call these three tuples an information
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structure.

Partiotional information structure need to assume P-3: $d$ $\in P_{n}(\omega)\Rightarrow P_{n}(d)\supseteq P_{n}(\omega)$

forw, $\omega’\in\Omega$ .
To interpret P-3, consider the case that $d$ $\in P(\omega)$ and there is astate $\xi\in P(\omega)$ that

is not in $P(d)$ . Then, P-3 says that aplayer at $\omega$ can conclude, from the fact that he
(she) can not exclude 4, that the state is not $d$, astate at which he (she) would be able
to exclude 4.

Note the following proposition holds.

Proposition 1. Player $n’ \mathrm{s}$ information function $P_{n}$ satisfies P-l, 2, and 3if and only
if there is apartition of $\Omega$ such that for any $\omega\in\Omega$ the set $P_{n}(\omega)$ is the element of the
partition that contains $\omega$ .

Proof. Suppose that $P_{n}$ satisfies P-l, 2, and 3. If $P_{*}.(\omega)$ and $P_{r\iota}(d)$ intersect and $\xi\in$

$P_{n}(\omega)\cap P_{\iota}.(\omega’)$ then by P-2 and 3, we have $P_{l}.(\omega)=P_{n}(d)$ $=P_{n}(\xi)$ . By P-l we have
$\bigcup_{\omega\in\Omega}P_{n}(\omega)=\Omega$ . The other direction is obvious. Cl

We don’t assume P-3. Thus we treat anon-partitional information structure.

4Model
The model $\mathrm{M}$ consists of $Sy$, $S$ , an information structure, atruth assignment $\pi$, and a
validity $\models$ , i.e., $\mathrm{M}$ $=\langle Sy,S,\Omega, P_{\dot{\iota}}, P_{j},\pi, \models\rangle$ . Atruth assignment $\pi$ is afunction from
$PV\cross\Omega$ to the set $\{\mathrm{T}, [perp]\}$ . From this truth assignment, $\models \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{s}$ the valdity of the
sentences. For any sentence $\phi$ and $\psi$ , we define the validity as follows.

(VI): For any $v\in PV,$ $\models_{\omega}v\Leftrightarrow\pi(v,\omega)=\mathrm{T}$

(V2): $\models_{\omega}\neg\emptyset$ if and only if $\models_{\omega}\emptyset$ does not hold.

(V3): $\models_{\omega}\emptysetarrow\psi\Leftrightarrow\models_{\omega}\neg\emptyset$ or $\models_{\omega}\psi$

(V4): $\models_{\omega}\emptyset\wedge\psi\Leftrightarrow\models_{\mathrm{I}\theta}\phi \mathrm{a}\mathrm{n}\mathrm{d}\models_{\omega}\neg\emptyset$

(V5): $\models_{d}‘\emptyset\vee\psi\Leftrightarrow\models_{\mathrm{I}\theta}\phi \mathrm{o}\mathrm{r}\models_{\omega}\psi$

(V6): $\models_{\omega}\square _{n}\phi\Leftrightarrow P_{n}(\omega)\subseteq\{\xi\in\Omega:\models_{\zeta}\emptyset\}$ for $n=i,j$

5Soundness and Completeness
With these preparations of logic, structure, and model, we can prove the following the
orem, This theorem is well known by logicians as soundness and completeness (of the
S-4 logic). The theorem insists that asentence is provable in the logic if and only if the
sentence is vald at every state in any $\mathrm{S}$ $4$ model
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Theorem 1. A sentence $\phi$ is $p.m$vable in the S-4 logic $\Leftrightarrow\models_{\omega}\phi$ for $\forall\omega\in\Omega$ in the
model M.
sketch of the proof For soundness $(\Rightarrow)$ , we can verify that each sentence 4 in $AR$ is valid
at $\forall\omega\in\Omega$ in the model using the properties P-l and P-2. For completeness $(\Leftarrow)$ , first,
we can constmct the canonical $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{5}$. Second, we can see that asentence $\phi$ is valid in
the canonical model if and only if the sentence $\phi$ is provable in the S-4 logic. Third, we
can easily show that if asentence $\phi$ is valid in any S-4 model then the sentence $\phi$ is valid
in the canonical model, because the canonical model is also amodel. These arguments
show the completeness, that is, asentence is provable if it is vald. 0

6Knowledge
Hrom this section, we analyze the model, S-4 logic model. Since no trade Theorem treats
an epistemic condition for no trade, we have to define the concept of knowledge formally.
This section defines the knowledge, common knowledge and mutual knowledge.

Definition 2. Player $n$ knows an event $E(\in 2^{\Omega})$ at $\omega$ if and only if $P_{n}(\omega)\subseteq E$ . $(n=i,j)$ .

From the meaning of the infomation function, the player $n$ knows that some state in
$P_{1l}(\omega)$ has occurred. Hence if $P_{n}(\omega)\subseteq e$ , (of course) the player $n$ know the state in $E$ has
occurred. With this interpretation, we have defined the player’s knowledge.

Before defining common knowledge, we define the self-evident event.

Definition 3. An event $F(\in 2^{\Omega})$ is aself evident between:and $j$ if and only if $\omega$ $\in F\Rightarrow$

$P_{n}(\omega)\subseteq F$ for $n=:,j$ .
$F$ is aself-evident event among $S$, if whenever it occurs players $i$ and $j$ know that it

occurs. Now we define common knowledge.

Definition 4. An event $E$ is common knowledge at $\omega$ between $i$ and $j$ if and only if there
exist aself evident event $F$ between :and $j$ such that $\omega\in F\subseteq E$ .

$E$ is common knowledge between:and $j$ , if there is aself-evident event between $i$ and
$j$ containing $\omega$ whose occurrence implies $E$ .

Here, we define mutual knowledge, concept between knowledge and common knowl-
edge. Intuitively, an event is mutual knowledge when all players know the event. The
formal definition is as follows.
Definition 5. Let $R:=P.\cdot(\omega)\cup P_{j}(\omega)$. An event $E$ is rnutual knowledge at $\omega$ between $i$

and $j$ if and only if $R\subseteq E$ .
It is obvious that the following proposition holds.

Proposition 2. If an event $E$ is mutual knowledge at $\omega$ between $i$ and $j$ , player $i$ knows
$E$ at $\omega$ . And if an event $E$ is common knowledge at $\omega$ between :and $j$ , $E$ is mutual
knowledge at $\omega$ between :and $j$ .

$4\mathrm{A}$ rule $\not\in$ must be modified by asentence $\phi$ $arrow\psi$.
\epsilon &Chellas (1980), Hughes and Cresswell (1996)
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7Economy
In this section, we consider apure exchange economy where the players interact. Pure
exchange economy is awell known concept in economics literature. It is denoted as
($\mathrm{N}$ , $P_{},$ $P_{\mathrm{j}},$ $C,e,$ $U_{\dot{1}},$ $U_{j},\mu\rangle$ . $N$ is aset of players. ($\Omega,P_{\dot{1}}$ , $P_{j}\rangle$ is an information structure.
Here, there are $l$ kind of commodities, and $C:=\Re_{+}^{l}$ is acommodity space, $e=(\mathrm{q}., e_{j})$ :
$\Omegaarrow C\cross C$ is an initial endowment of commodities for players. \^U $Uj$ : $\Omega \mathrm{x}Carrow\Re$

is aplayer’s utility function. We assume that each player’s utilty function is strictly
increasing with respect to $C$. We suppose the existence of aprior and it is common for
both players. (So, aprior is called common prior.) Let the cornrnon prior be aprobabilty
measure on $\Omega$ , $\mu$ . We denote the common prior to $E$ as $\mu(E)$ . And we assume $\mu(E)>0$

for any event $E$.
In this economy, given $x$ : $\Omegaarrow C\cross C$ , players compute expected utility $ex$ ante,

interim, and $ex$ post
$\bullet$ player $n’ \mathrm{s}ex$ ante expected utilty is $\sum_{\omega\in\Omega}\mu(\{\omega\})U_{n}(\omega, x_{n}(\Omega))$

.

$\bullet$ player $n’ \mathrm{s}$ interim expected utility at $\omega$ is $\sum_{d\in P_{\mathfrak{n}}(\omega)}\frac{\mu(\{d\})U_{*}(\omega’,x_{n}(d))}{\mu(\{P_{n}(\omega)\})}$

.
$\bullet$ player $n’ \mathrm{s}ex$ post expected utilty at $\omega$ is $U_{n}(\omega,x_{*},(\omega))$

8No Trade Theorem
To show no trade theorem, we have to define trade, feasible trade, and Pareto optimalty.

Definition 6(trade and feasible trade). Atrade $t=(t:, t_{j})$ is afunction from $\Omega$ to
$\Re^{l}\cross\Re^{l}$ . Atrade $t$ is feasible if and only if for all $\omega\in\Omega$ ,

$e_{n}(\omega)+t_{n}(\omega)\geq 0$ $\forall n\in N$

and

$t_{:}(\omega)+t_{\mathrm{j}}(\omega)\leq 0$ .

Feasibilty of atrade means that each player’s trade have to be within the budget of
his (her) own initial endowment and that trade does not make any commodity.

Definition 7(Pareto optimality). $x$ : $\Omegaarrow C\mathrm{x}C$ is ($ex$ ante) Pareto optimal if and
only if there does not exist $y$ : $\Omegaarrow C\mathrm{x}C$ such that

$\forall n\in N,E_{n}[U_{n}(y_{n})]\geq E_{n}[U_{n}(x_{*}.)]$

and

$\exists n\in N,E_{n}[U_{n}(y_{n})]>E_{n}[U_{n}(x_{n})]$ .
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Pareto optimalty is one of the most famous normative concept in economics.
With these preparations, we can prove the following theorem.

Theorem 2(No Trade Theorem). Suppose that an initial endowment $e$ is $ex$ ante
Pareto optimal and that $t$ is a feasible trade. Then, if it is mutual knowledge at $\omega$ that
each player $ex$ post weakly prefers $t$ to $e$ , every player at $\omega$ is interim indifferent berween

$t$ and the zero trade, that is,

$\sum_{d\in P_{\hslash}(\omega)}\frac{\mu(\{d\})U_{n}(d,\mathrm{e}_{n}(d)+t_{n}^{*}(\omega’))}{\mu(\{P_{1*}(\omega)\})}=\sum_{d\in P_{n}(\cdot)}\frac{\mu(\{d\})U_{ll}(\omega,e_{n}(d))}{\mu(\{P_{n}(\omega)\})}$ , $n=i,j$.

The result says that the trade $t$ is meaningless for every player at $\omega$ with his (her)
infomation. So Iwould like to think this as some stabilty, or an equilbrium. Hence, no
trade theorem shows an epistemic condition for an equilbrium.

Proof Denote $R:=P_{\dot{1}}(\omega)\cup P_{\mathrm{j}}(\omega)$ . Rrom the condition of mutual knowledge, $\forall\omega’\in$

$R,\forall n\in N$ ,
$U_{n}(\omega’,e_{n}(\omega’)+t_{n}(\omega’))\geq U_{*}.(\omega’,e_{n}(\omega’))$ . (1)

Now, define $t_{n}^{*}:=tnlR$ for $\forall n\in N^{6}$. ( $1_{R}(d)$ $=1$ if $d$ $\in R$, and $1_{R}(d)$ $=0$ otherwise.)
Viewing $t^{*}ex$ ante

$\sum_{d\in\Omega}\mu(\{\omega’\})U_{1*}(\omega’,e_{\mathfrak{n}}(\omega’)+t_{\iota}^{*}.(\omega’))$

$= \sum_{d\in\Omega}\mu(\{\omega’\})U_{n}(\omega’,e_{n}(\omega’)+t_{n}(\omega’)1_{R}(\omega’))$

$= \sum_{d\in\Omega}\mu(\{\omega’\})1_{R}(\omega’)U_{n}(\omega’,e_{n}(\omega’)+t_{n}(\omega’))+\sum_{d\in\Omega}\mu(\{\omega’\})1_{R}\sigma(\omega’)U_{n}(\omega’,e_{\mathfrak{n}}(\omega’))$

$= \sum_{d\in R}\mu(\{\omega’\})U_{n}(\omega’,e_{n}(\omega’)+t_{n}(d))+\sum_{d\in R^{G}}\mu(\{\omega’\})U_{n}(\omega’,e_{n}(\omega’))$

$\geq\sum_{d\in R}\mu(\{\omega’\})U_{1}.(\omega’,e_{n}(d))+\sum_{d\in R^{C}}\mu(\{\omega’\})U_{*}.(d, e_{n}(\omega’))$

$= \sum_{d\in\Omega}\mu(\{\omega’\})U_{n}(\omega’,e_{n}(\omega’)+t_{n}^{*}(\omega’))$
(2)

where $p$ denotes the complement of $R$, and the inequalty follows&0m (1).

Suppose that the inequalty of (1) is strict for $\exists n\in N$ and $\ovalbox{\tt\small REJECT}$ $\in R$ . Then the
inequality of (2) must be strict for $\exists n\in N$. This contradicts our assumption that the
initial endowment $e$ is Pareto optimal. Hence,

$U_{1}.(\omega’, e_{n}(\omega’)+t_{n}(\omega’))=U_{n}(\omega’, e_{\mathfrak{n}}(\omega’))$, $\forall d\in R,n=:,j^{7}$. (3)

$\iota f$ is also feasible.
\mbox{\boldmath $\tau$}Ea&player at $\omega$ is $ex$ post indifferent between $t$ and the zero trade.
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Rom $P\dot{.}(\omega)\subseteq R$ and $P_{j}(\omega)\subseteq R,.(3)$ implies;

$\sum_{d\in P_{n}(\omega)}\frac{\mu(\{d\})U_{n}(d,e_{n}(d)+t_{n}^{*}(d))}{\mu(\{P_{n}(\omega)\})}=\sum_{d\in P_{\hslash}(\omega)}\frac{\mu(\{d\})U_{n}(\omega,e_{n}(d))}{\mu(\{P_{n}(\omega)\})},n=:,j$.

Therefore, each player at $\omega$ is interim indifferent between $t$ and the zero trade. $\square$

Note that common knowledge is not necessary for our theorem, while the original no
trade theorem in Milgrom and Stokey need common knowledge. For this point, our as-
sumption is weaker than the original, since common knowledge means mutual knowledge.
Also note the original needs the word $u$ each player interim weakly prefers $t$ to $en$ but
does not need the word $u$ each player $ex$ post weakly prefers $t$ to $e.$

” For this point, our
assumption is more strong because if aplayer $ex$ post weakly prefers $t$ to $e$ he interim
weakly prefers $t$ to $e$ in this case.
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