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No trade theorem in an S-4 logic model

B T ]
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¥ Fn# (Kaguki Hirase) '

Abstract

This paper introduces an application of the S-4 logic. There are two aims in this paper. Aim
1 is to check the relation between our model and the S-4 logic. We’ll see the soundness and
completeness of the S-4 logic with respect to the model by using the concept of structure. Aim
2 is to prove a variation of no trade theorem in the model.

1 Introduction

The word “knowledge” and especially “common knowledge” plays a very important role
in game theory. Intuitively, an event is common knowledge if everyone knows it, everyone
knows that everyone knows it, everyone knows that everyone knows that everyone knows
it and so on. Then how can we treat (common) knowledge formally?

Aumann (1976) tried to solve this problem. He introduced the formal notion of com-
mon knowledge using set based and partitional information structure and showed, so
called, agreeing to disagree theorem?!

After Aumann, many papers have studied knowledge. Milgrom (1981), and Monderer
and Samet (1989) treated knowledge by different approaches. Milgrom (1981) applied ax-
jomatic approach ? to modeling knowledge. Monderer and Samet (1989) used probability
approach®. They managed to approximate knowledge with belief. We note that these
approaches also use partiotional information structure.

Samet (1990) have studied non-partitional information structure. He showed agreeing
to disagree theorem based on non-partitional information structure.

This paper also studies non-partitional information structure like Samet. We would
like to prove a kind of no trade theorem which is introduced by Milgrom and Stokey(1982)
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1This theorem insists that if players’ posteriors for a given event are common knowledge, then these
must be equal, even though they are based on different information.

2This is the approach which defines the set of all states in which a player knows a gwen event. Aft,er
Milgrom’s paper, many papers have been written by this approach.

3Probability approach defines the event in which player n believes E with probability at least p.
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after showing the relation between the model and the logic. In section 5, we will see the
model is one of the S-4 logic. a variation of no trade theorem is proved in section 8.

2 S-4 logic

S-4 logic is denoted as (Sy, S, AR, Prov).

Sy means symbols. Symbols consists of NV, PV, logical connectives, and players’ modal
operators. N means a set of players ¢ and j. Now, we restrict the number of the players
to 2 persons for simplicity. But we can extend the results to n persons case easily. PV is
a set of propositional variables, or atomic sentences. Logical connectives are A,V, =, (,),
and —. Players’ modal operators are [J; and [J;.

The second element of S-4 logic is S. S means a set of sentences, or a set of formulae.
S is inductively constructed from L inductively.

(S1): PV CS
(S2): 9, ES=> 4,0 > Y, oA, ¢VY, 0 €S (n=14,j)

(S3) : Every sentence is constructed by a finite number of
applications of (S1) and (S2).

The third element of the S-4 logic is AR. AR means axioms and rules. AR consists
of PL, modal axioms and rules.
PL is propositional logic, or a set of all tautologies, that is, for all ¢,%,x € S .

(PL1): ¢ = (¥ — ¢)

(PL2) : (¢ > (Y = X)) > (¢ = 9¥) > (6= x)
(PL3): (mp = ) = ((—¢ = ¢) = ¢)

(PL4) : ¢ A —

(PL5):¢ > VY

% ¢
Mp): 2+ %
(MP) ¢
P2y =X
(A —rule) : ey
| Yord x—¢
(V —rule) : TV x =

where ¢,%,x € S.

For modal part, we assume axioms K,T,4 and N. K is, in other words, the Axiom
of Distribution. 7 is the Axiom of Knowledge. 4 is the Positive Introspection. And N is



154

the Necessitation rule. ,
(K) : (On(¢ = ) = ([Tt = Ony))
(T):Ondp— ¢
(4) : Ougp — CaDng

9
0.4

where ¢, € Sand n =1, j

(N):

With these axioms and rules, we can define the provability Prov. of a sentence in the
logic.

Definition 1. A proof is a finite tree satisfying (PR1) and (PR2).

(PR1) : A sentence is associated with each node, and the sentence
associated with every leaf node is an instance of (PL1) — (PL5), K,
T, or 4.

(PR2) : Each adjoining node forms an instance of (M P), (A — rule),
(V — rule), or (N).

We say that ¢(€ S) is provable in the S-4 loglc if and only if there exist a proof which
root is associated with ¢.

3 Structure

Structure is (2, P;, P;). Q is a nonempty finite state space. So 2% is called a set of events.
Players’ information functions P; and P; is a function from the state space 2 to the event
set 2%, The set P,(w) means the event which player n recognize when the real state is w.
The set P,(w) is called player n’s information set or possibility set at w.

~ We assume that each players’ information function satisfy the following.

(P-1):we€ P(w)
(P—-2): W € Pa(w) = Po(v/) C Pa(w)
for Vw,w/ € 2 and n = i,7.

P-1 means the condition that a player never excludes the real state. When the real
state is w, the playern thinks that w may have occurred. From P-2, we have that if there
is a state &, so that £ € P,(v/) and ¢ ¢ P,(w) then /' ¢ P,(w). So, P-2 says that player n
at w can make consideration as follows: “The state £ is excluded. If it were the state «/,
I would not exclude £. Thus it must be that the state is not w’.” P-1 and P-2 play very
important roles in the relation to the S-4 logic. We call these three tuples an information
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structure.

Partiotional information structure need to assume P-3: ' € P,(w) = Po(v') 2 Pa(w)
forw,w € Q.

To interpret P-3, consider the case that o’ € P(w) and there is a state { € P(w) that
is not in P(w'). Then, P-3 says that a player at w can conclude, from the fact that he
(she) can not exclude &, that the state is not «/, a state at which he (she) would be able
to exclude &.

Note the following proposition holds.

Proposition 1. Player n’s information function P, satisfies P-1, 2, and 3 if and only
if there is a partition of  such that for any w € Q the set P,(w) is the element of the
partition that contains w.

Proof. Suppose that P, satisfies P-1, 2, and 3. If P,(w) and P,(«/) intersect and £ €
P.(w) N P,(w') then by P-2 and 3, we have P,(w) = P,(w') = Pa(§). By P-1 we have
Uwea Pr(w) = Q. The other direction is obvious. 0O

We don’t assume P-3. Thus we treat a non-partitional information structure.

4 Model

The model M consists of Sy, S, an information structure, a truth assignment =, and a
validity |, i.e., M = (Sy,S,Q, P, P;,7,|=). A truth assignment 7 is a function from
PV x Q to the set {T,L}. From this truth assignment, = decides the validity of the
sentences. For any sentence ¢ and v, we define the validity as follows.

(V1): Foranyv e PV, |, v < w(v,w)=T

(V2): [, —¢ if and only if |=, ¢ does not hold.

(V3): Fud ¢ <=, doru ¥

(VA): bw ¢ A <= b ¢ and |,

(V5): Fu ¢ VY <= Fudor ¢

(V6): = Ongp <= Pa(w) C{6€Qil¢ g} forn=14,5

5 Soundness and Completeness

With these preparations of logic, structure, and model, we can prove the following the-
orem, This theorem is well known by logicians as soundness and completeness (of the
S-4 logic). The theorem insists that a sentence is provable in the logic if and only if the
sentence is valid at every state in any S-4 model.
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Theorem 1. A sentence ¢ is provable in the S-4 logic <= =, ¢ for Yw € Q in the
model M.

sketch of the proof. For soundness (=), we can verify that each sentence ¢ in AR is valid
at Vw € Q in the model using the properties P-1 and P-2. For completeness (<), first,
we can construct the canonical model.’ Second, we can see that a sentence ¢ is valid in
the canonical model if and only if the sentence ¢ is provable in the S-4 logic. Third, we
can easily show that if a sentence ¢ is valid in any S-4 model then the sentence ¢ is valid
in the canonical model, because the canonical model is also a model. These arguments
show the completeness, that is, a sentence is provable if it is valid. O

6 Knowledge

From this section, we analyze the model, S-4 logic model. Since no trade Theorem treats
an epistemic condition for no trade, we have to define the concept of knowledge formally.
This section defines the knowledge, common knowledge and mutual knowledge.

Definition 2. Player n knows an event E(€ 2%) at w if and only if P,(w) C E. (n =14, j).
From the meaning of the information function, the player n knows that some state in
P,(w) has occurred. Hence if P,(w) C e, (of course) the player n know the state in E has

occurred. With this interpretation, we have defined the player’s knowledge.
Before defining common knowledge, we define the self-evident event.

Definition 3. An event F(€ 2?) is a self evident between i and j if and only if w € F =
P(w) C F forn=1,j.

F is a self-evident event among S, if whenever it occurs players ¢ and j know that it
occurs. Now, we define common knowledge.

Definition 4. An event E is common knowledge at w between i and j if and only if there
exist a self evident event F' between i and j such that w e F C E.

E is common knowledge between i and j, if there is a self-evident event between i and
j containing w whose occurrence implies E.

Here, we define mutual knowledge, concept between knowledge and common knowl-
edge. Intuitively, an event is mutual knowledge when all players know the event. The
formal definition is as follows.

Definition 5. Let R := P,(w) U Pj(w). An event E is mutual knowledge at w between i
and j if and only if R C E.
It is obvious that the following proposition holds.

Proposition 2. If an event E is mutual knowledge at w between i and j, player ¢ knows
E at w. And if an event E is common knowledge at w between ¢ and j, E is mutual
knowledge at w between i and j.

4A rule % must be modified by a sentence ¢ — 9.
5See Chellas (1980), Hughes and Cresswell (1996).
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7 Economy

In this section, we consider a pure exchange economy where the players interact. Pure
exchange economy is a well known concept in economics literature. It is denoted as
(N,Q, P, P;,C,e,U;,U;, ). N is a set of players. (Q2, P;, P;) is an information structure.
Here, there are ! kind of commodities, and C := R is a commodity space. e = (e;,¢;) :
2 = C x C is an initial endowment of commodities for players. U;,U; : 2 x C = R
is a player’s wutility function. We assume that each player’s utility function is strictly
increasing with respect to C. We suppose the existence of a prior and it is common for
both players. (So, a prior is called common prior.) Let the common prior be a probability
measure on 2, u. We denote the common prior to E as u(FE). And we assume u(E) > 0
for any event E.

In this economy, given z : @ — C x C, players compute expected utility ez ante,
interim, and ez post.

e player n’s ez ante expected utility is Z p({w})Un(w, za(R2)).

weN

e player n’s interim expected utility at w is Z p{/ DU, 20(w))
R

o player n’s ez post expected utility at w is Up(w, zp(w))

8 No Trade Theorem

To show no trade theorem, we have to define trade, feasible trade, and Pareto optimality.

Definition 6 (trade and feasible trade). A trade t = (t;,t;) is a function from Q to
R x R!. A trade t is feasible if and only if for all w € Q,

en(w)+t(w) >0 VYneN
and
t.'(w) + tj((JJ) S 0.

Feasibility of a trade means that each player’s trade have to be within the budget of
his (her) own initial endowment and that trade does not make any commodity.

Definition 7 (Pareto optimality). z : Q@ — C x C is (ez ante) Pareto optimal if and
only if there does not exist y : 2 — C x C such that

Vn € N, Ep[Un(yn)] 2 En[Ua(zn)]

and

In € N, Ea[Un(yn)] > EnlUs(zn))-
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Pareto optimality is one of the most famous normative concept in economics.
With these preparations, we can prove the following theorem.

Theorem 2 (No Trade Theorem). Suppose that an initial endowment e is ex ante
Pareto optimal and that t is a feasible trade. Then, if it is mutual knowledge at w that
each player ex post weakly prefers t to e, every player at w is interim indifferent between
t and the zero trade, that is,

> p{ DU, en(w) + 87 (W) _ > p{NUn(w, en(w)) . .

({Pa@)}) Ja, T W@y T

W’ €Pp(w) '

The result says that the trade ¢ is meaningless for every player at w with his (her)
information. So I would like to think this as some stability, or an equilibrium. Hence, no
trade theorem shows an epistemic condition for an equilibrium.

Proof. Denote R := P;(w) U Pj(w). From the condition of mutual knowledge, V' €
R,Yn €N,

Un(/, €a(w') + ta(w)) 2 Un(w/, €a(w'))- (1)
Now, define t* := t, 1 for Vn € N6 (1z(«’) =1 if ' € R, and 1g(w’) = 0 otherwise.)
Viewing t* ez ante,

> B{W DU, en(w) + t (W)

wEN
= 3 W{ DU, enle) + ta(w)1a()
w'EN
= 3 MW D1RW)Un(, ea(@) + tal@)) + 3 ({0 N1ro (W )Un(w, €(s))
w’' €N . wEeR
= Y b{I DU, en(@) +ta(@)) + Y 5{' DU, en(w)
' €R w’€RC
2 Y w{WHUa(s ea@)) + Y s({w' DU, en(w)
«wER w/'€RC
= 3 W{ DU eal@) +52()  (2)
' EeN

where RC denotes the complement of R, and the inequality follows from (1).

Suppose that the inequality of (1) is strict for 3n € N and 3w’ € R. Then the
inequality of (2) must be strict for 3n € N. This contradicts our assumption that the
initial endowment e is Pareto optimal. Hence,

Un(W', ea(0”) + ta(W")) = Up (W, €n(v')), Y/ € Ryn=14,j.7 (3)

6¢* is also feasible.
TEach player at w is ez post indifferent between ¢ and the zero trade.
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From P;(w) C R and Pj(w) C R, (3) implies;
)3 p{ DU, en(w) + () _ )3 p({w'}Un(w, ea(w))

y,R=1,].

PA®)) L2 W@

Therefore, each player at w is interim iﬁdjﬂ'erent between ¢ and the zero trade. |

w’EPn(w)

Note that common knowledge is not necessary for our theorem, while the original no
trade theorem in Milgrom and Stokey need common knowledge. For this point, our as-
sumption is weaker than the original, since common knowledge means mutual knowledge.
Also note the original needs the word “ each player interim weakly prefers ¢ to e ” but
does not need the word “ each player ez post weakly prefers t to e .” For this point, our
assumption is more strong because if a player ez post weakly prefers ¢ to e he interim
weakly prefers £ to e in this case.
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