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ABSTRACT. We present communication process according to aprotocol which
is associated with an awareness and belief model. In the model we impose none
of the requirements for player’s knowledge as those in the standard model with
partitional information structure. We show that consensus on the posteriors
for an event among all players can still be guaranteed in the communication if
the protocol contains no cycle.

1. INTRODUCTION

Geanakoplos and Polemarchakis [5] investigated acommunication process in
which two players announce their posteriors to each other. In the process players
learn and revise their posteriors and they reached consensus.

Krasudci [6] investigated the communication process according to aprotocol in
which value of function are communicated privately through messages among at
least three players. He showed that in the process that in the process, consensus
on the values of adecision function can be guaranteed if the protocol contains no
cycle. They both extend the agreement theorem of Aumann [1]. The information
structures of players for their model are given by partitions.

Bacharach [2] showed that the model with the partitional information structure
is equivalent to his knowledge operator model with the three axioms for operators:
Kl axiom of knowledge, K2 axiom of transparency and K3 axiom of wisdom.
Matsuhisa and Kamiyama [7] introduced the lattice structure of knowledge for
which non requirements is not imposed such as the three axioms. In lattice
structure Aumann’s notion of common-knowledge is the same as their notion of
common-belief. Matsuhisa and Usami [9] presented an awareness structure in
which the players are not required to have logicaly omniscient. Matsuhisa and
Usami obtained an extension of the ’Agreeing to disagree’ that Aumann showed
in the awareness model.

The purpose of this paper is to introduce the revision process of the values
of acommon decision function through the communication associated with the
awareness structure. The main result of ours is an extension of Krasucki [6] as
follows:
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Theorem 1. In the communication process associated with awareness stmcture,
consensus can be guaranteed if the communication protocol is an acyclic graph.

This paper organizes as follows: Section 2defines an awareness belief model,
associated information structure with awareness structure and communication
process. Further we present the notion of consensus of the values of adecision
function. Section 3ilustrates Theorem 1by using asimple example. In section 4
we show that consensus of the value of adecision function that satisfies the sure
thing principle and is preserved under difference can still be guaranteed in this
communication process if the protocol contains no cycle.

2. THE Model

Let $\Omega$ be anon-empty finite set called astate space, $N$ aset of finitely many
players at least two, and let $\mathcal{F}$ denote the field $2^{\Omega}$ that is the family of au subsets
of Q. Each member of $\mathcal{F}$ is called an event and each element of $\Omega$ called astate.

2.1. Belief and Common-Belief. A belief structure is atuple $\langle\Omega, (B:)_{i\in N}\rangle$ in
which $\Omega$ is astate pace and $(B_{i})$ is aclass of $\mathrm{z}’ \mathrm{s}$ belief operators on $2^{\Omega}$ . The
mutual belief operator $B_{E}F$ on $2^{\Omega}$ is defined by

$B_{E}F= \dot{.}\bigcap_{\in N}B.\cdot F$
.

Acommon-belief operator is an operator $B_{C}$ on $\Omega$ satisfying the fied point prop-
erty

FP $B_{C}F\subseteq B_{E}(F\cap B_{C}F)$ for every $F$ of $\mathcal{F}$.
The interpretation of $B\{F$ is the event that $‘ i$ believes $F,$ ’whereas $B_{E}F$ is

interpreted as the event that ‘everybody believes F.’ We say that an event $E$ is
common-belief at $\omega$ if $\omega$ belongs to $B_{C}E$ .

2.2. Awareness and Belief. We present amodel of awareness according to
Matsuhisa and Usami [9]. This model follows from E. Dekel, B. L. Lipman and
A. Rustichini [3]. Adifferent approach of awareness models is discussed in R.
Fagin, $\mathrm{J}.\mathrm{Y}$. Halpern, Y. Moses and $\mathrm{M}.\mathrm{Y}$ . Vardi [4].

An awareness stmcture is atuple $\langle\Omega, (\mathrm{A}\mathrm{i})\mathrm{i}\mathrm{e}\mathrm{N}, (B:)_{i\in N}\rangle$ in which $\langle\Omega, (B:)_{i\in N}\rangle$ is
abelief structure and $(A_{i}):\in N$ is aclass of $\mathrm{z}’ \mathrm{s}$ arnareness operators on $\mathcal{F}$ such that
Axiom PL (axiom of plausibility) is valid:

PL $B_{:}F\cup B_{i}(\Omega\backslash B_{:}F)\subseteq A\{F$ for every F in $\mathcal{F}$.

The mutual awareness operator $A_{E}$ on $\mathcal{F}$ is defined by

$A_{E}F=\cap A_{i}Fi\in N^{\cdot}$

An awareness structure is called finite if the state space is afinite set.
The interpretation of $A_{:}F$ is the event that $‘ i$ is aware of $F,$ ’whereas $A_{E}F$ is

interpreted as the event ‘everybody is aware of F.’ The axiom PL says that $i$ is
aware of $F$ if he believes it or if he believes that he dose not believe it.l

lThe axiom PL dues to E. Dekel, B. L. Lipman and A. Rustichini [3]
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We say that an event $F$ is self-aware of $i$ if $F\subseteq A_{:}F$ and it is said to be publicly
aware if $F\subseteq A_{E}F$ . An event $T$ is said to be $i’ s$ evident belief if $T\subseteq B_{:}T$, and it
is said to be public belief at state $\omega$ if $\omega$ $\in T\subseteq B_{E}T$ . An event is public belief (or
respectively, it is publicly aware) if whenever it occurs all players believe it (or
they are ffi aware of it.) We can think of public belief as embodying the essence
of what is involved in all players making their direct observations.

2.3. Associated Information Structure. M. Bacharach [2] introduces the strong
epistemic model that is just the Kripke semantics corresponding to the modal
logic $\mathrm{S}5^{2}$. Further he defines the information partition of the state space induced
from the knowledge operator.’ Following his line we generalze the notion of
information partition to the associated information structure as below.

The associated information structure $(P\dot{.}):\in N$ with an awareness structure
$\langle$

$\Omega$ , (Ai), $(B:)\rangle$ is aclass of the mappings $P\dot{.}$ of $\Omega$ into $\mathcal{F}$ defined by

$P_{\dot{1}}(\omega)=\cap\{T|\omega T\in 2^{\Omega} \in T\subseteq B:T\}$
.

(If there is no event $T$ for which $\omega$ $\in T\subseteq B_{:}T$ then we take P.$\cdot(\omega)$ to be non-
defined.) We call $P.\cdot(\omega)$ the $i$ ’s evidence set at $\omega$ .

An evidence set is interpreted as the basis for all $i’ \mathrm{s}$ evident beliefs since each
$i’ \mathrm{s}$ evident belief $T$ is decomposed into aunion of all evidence sets contained in
$T$ .
Remark 1. The strong epistemic model in M. Bacharach [2] can be interpreted
as an awareness structure $\langle$

$\Omega$ , (Ai), $(B:)\rangle$ such that $B_{:}$ satisfies $\mathrm{N}$ , $\mathrm{K}$, $\mathrm{T}$ , 4 and 5
and so Ais the trivial awareness operator; i.e. Ai(E) $=\Omega$ for every $E\in \mathcal{F}$ .

This says that an awareness structure is an extension of the strong epistemic
model.

2.4. Posterior Revised. We improve on the notion of posterior as follows: Let
$\langle$

$\Omega$ , (Ai), $(B:),\mu\rangle$ be an awareness structure with acommon-prior $\mu$ . For every
real number $q_{\dot{1}}$ , we denote

$[q\dot{.}]=\{\omega\in\Omega|\mu(X\cap \mathrm{A}.(X)|P.\cdot(\omega))=q:\}$ .
We say $q_{}$ to be the $i$ ’s posterior of $X$ at $\omega$ if $\omega$ belongs to $[q:]$ . We denote by $q$

the profile $(q_{\dot{1}}):\in N$ . An event $[q]$ is the intersection of the sets $[q_{\dot{1}}]$ for aU $i$ of $N$ ;
that is,

$[q]= \bigcap_{\in N}[q.\cdot]$
.

We say that the players commonly believe their posteriors $q_{}$ of $X$ at $\omega$ if $[q]$ is
common-belief at $\omega$ ;that is, $\omega$ $\in B_{C}([q])$ .

$2\mathrm{T}\mathrm{h}\mathrm{e}$ strong epistemic model is atuple ($\Omega$ , (K.$\cdot$ ) $:\in N\rangle$ , in which 0is astate space and K.$\cdot$ is
an $i$ ’s knowledge operator satisfying the following axioms: For every $E,F$ of $2^{\Omega}$ ,

$\mathrm{N}$ $K\dot{.}\Omega=\Omega$ ; $\mathrm{K}$ $K.\cdot(E\cap F)=K_{\dot{1}}E\cap K_{}F$; $\mathrm{T}$ $K.\cdot F\subseteq F$;
4 $K.\cdot F\subseteq K.\cdot K_{\dot{1}}F$ ; 5 $\Omega\backslash K.\cdot F$ $\subseteq K\dot{.}(\Omega\backslash K.\cdot F)$ .

$3\mathrm{T}\mathrm{h}\mathrm{e}$ $i$ ’s information partition $\mathrm{n}_{:}$ induced from the knowledge operator K.$\cdot$ is defined by
$\mathrm{n}_{:}(\omega)=\bigcap_{T}\{T\in 2^{\Omega}|\omega \in K\dot{.}T\}$ .
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An interpretation of $\mu(X\cap \mathrm{A}.(X)|P.\cdot(\omega))$ is the conditional probabilty of the
$i’ \mathrm{s}$ awareness section of $X$ under his evidence set at $\omega$ . For the above example,
letting $A_{:}(E)=B:(E)\cup B:(\Omega\backslash B.\cdot(E))$ we obtain that A2{{a} $)$ $=\{\beta\}$ . Therefore
it follows that the player 2’s improved posterior of $\{\alpha\}$ at state $\alpha$ is $\mu(\{\alpha\}\cap$

$A_{:}(\{\alpha\})|P_{\dot{1}}(\alpha))=0$ , as desired.

2.5. Decision Function 4. Let $Z$ be aset of decisions for all players in $N$. An
$\mathrm{z}’ \mathrm{s}$ decision function is amapping $f_{}$ of $\mathcal{F}$ into $Z$ . It is said to satisfy the sure
thing principle if it is preserved under disjoint union; that is, for every pair of
disjoint events $S$ and $T$ such that if $f\dot{.}(S)=f(T)=d$ then $f_{}(S\cup T)=d$.

Adecision function $f_{}$ is said to be preserved under difference if for all events
$S$ and $T$ such that $S\subseteqq T$, $f\dot{.}(S)=f.\cdot(T)=d$ then we have $f_{}(T\backslash S)=d$ .

If $f\dot{.}$ is intended to be aposterior probability, we assume given aprobabilty
measure $\mu$ which is common for all players and some event $X$ . Then $f.\cdot$ is the
mapping of the domain of $\mu$ into the closed interval $[0, 1]$ such that

$f\dot{.}(E)=\mu(X\cap A_{i}(X)|E)$ ,

where $\mu(E)\neq 0$ . We plainly observe that this $f$ satisfies the sure thing principle
and is preserved under difference.

2.6. Communication with Awareness Structure. We assume that players
communicate by sending messages. Aprotocol is amapping $\mathrm{P}\mathrm{r}$ of the set of non-
negative integers $\mathbb{Z}_{+}$ into the product set $N\cross N$ that assigns to each $t$ apair of
players $(s(t), r(t))$ . Here $t$ stands for time and $s(t)$ and $r(t)$ are, respectively, the
sender and the recipient of the communication which takes place at time $t$ . We
consider aprotocol as the directed graph whose vertices are the set of $\mathrm{a}\mathbb{I}$ players
$N$ and such that there is an edge (or an arc) from $i$ to $j$ if and only if there are
infinitely many $t$ such that $s(t)=i$ and $r(t)=j$ .

Aprotocol is said to be fair if the graph is strongly-connected; in words, every
player in this protocol communicates directly or indirectly with every other player
infinitely often. It is said to contain a cycle if the graph contains acyclic path;
that is, there are players $i_{1}$ , $i_{2}$ , $\ldots$ , $i_{k}$ with $k\geqq 3$ such that for all $m<k$ , $i_{m}$

communicates directly with $i_{m+1}$ , and such that $i_{k}$ communicates directly with $i_{1}$

Definition 1. Acommunication process $\pi$ of revisions of the values of decision
functions $(f\dot{.}).\cdot\in N$ is triple $(\mathrm{P}\mathrm{r}, (Q^{t}\dot{.})(:,t)\in N\mathrm{x}T,$ $(f\dot{.}):\in N\rangle$ , in which $\mathrm{P}\mathrm{r}(t)=(s(t),r(t))$

is afair protocol such that for every $t$ , $r(t)=s(t+1)$ , communications proceed
in $rounds^{5}$ , and $Q^{t}.\cdot$ is the mapping of $\Omega$ into $T$ for $i$ at time $t$ that is defined
inductively as follows:

$\bullet$ We assume given amapping $Q^{0}\dot{.}:=P_{}$ .
$\bullet$ Suppose $Q^{t}.\cdot$ is defined.

$-d_{i}^{t}(\omega)$ denotes the value $f_{}(Q^{t}.\cdot(\omega))$ :
$-\mathrm{t}V_{\dot{1}}$ is the mapping of $\Omega$ into $\mathcal{F}$ that assigns to each state $\omega$ the event

$W\dot{.}(\omega)$ consisting of all the states 4such that $d^{t}\dot{.}(\xi)=d^{t}\dot{.}(\omega)$ :
$-B_{\dot{1}}^{t}$ is the belief operator induced by $Q^{t}.\cdot$ defined by $B^{t}.\cdot E=\{\omega\in$

$\Omega|Q^{t}.\cdot(\omega)\subseteqq E\}$ :
$4\mathrm{C}.\mathrm{f}$. Bacharach [2]
$5\mathrm{T}\mathrm{h}\mathrm{a}\mathrm{t}$ is, there exists anatural number $m$ such that for all $t$ , $s(t)=s(t+m)$
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-The recipient $j=r(t)$ at $t$ send the message $B_{j}^{t}(W_{j}(\omega))$ at $t+1$

when $\omega\in B_{j}^{t}(W_{j}(\omega))$ , and he does not send the message otherwise.
$\bullet$ Then $Q_{\dot{1}}^{t+1}(\omega)$ is defined as follows:

-If $i$ is not recipient of message at time $t+1$ , then $Q^{t+1}.\cdot(\omega)=Q^{t}.\cdot(\omega)$ .
-If $i$ is arecipient of amessage at time $t+1$ , then $Q^{t+1}.\cdot(\omega)=Q_{i}^{t}(\omega)\cap$

$B_{s(t)}^{t}(W_{s(t)}^{t}(\omega))$ .
Specificaly the sender $j$ sends to $i$ the message that he believes that his decision

is $d_{\mathrm{j}}^{t}(\omega)$ . The communication is said to be cut off in a state $\omega$ if $\omega\not\in B_{j}^{t}(W_{j}^{t}(\omega))$

for some $t$ and the recipient $j=r(t)$ at $t$ .

2.7. Consensus. The family $\{Q_{}^{t}(\omega)|t=0,1,2, \ldots\}$ is adescending chain in $\mathcal{F}$

and so the limit $Q_{\dot{1}}^{\infty}$ exists in each state where the communication is never cut
off: In fact, there exists sufficiently large $T\in \mathbb{Z}_{+}$ such that for aU $t\geq T$ , $Q^{t}.\cdot=Q_{i}^{T}$

because $\Omega$ is finite. Since the protocol is fair, there exist infinitely many $t$ such
that $r(t)=i$, it follows that $Q_{\dot{1}}^{\infty}$ $( \omega)=\lim_{tarrow\infty}Q^{t}.\cdot(\omega)$ .
Remark 2. For each $i$ the sequence of the domains of $Q^{t}\dot{.}(t=0,1, \cdots)$ makes a
descending chain, and thus it may be occurred that for $Q_{\dot{1}}^{\infty}$ $(\omega)=\emptyset$ in some $\omega$ .

It can be easily observed that
Lemma 1. For every player $i$ , the sequence $\{d_{\dot{1}}^{t}(\omega)|t=0,1,2, \ldots\}$ converges to
the limiting value $d^{\infty}.\cdot(\omega)$ of $f$ at each state $\omega$ where the communication is never
cut off and $Q_{\dot{1}}^{\infty}$ $(\omega)$ is defined; i.e., there exists

$d_{\dot{1}}^{\infty}$

$( \omega)=\lim_{tarrow\infty}d^{t}.\cdot(\omega)$ .

We call $d^{\infty}.\cdot(\omega)=f(Q^{\infty}\dot{.}(\omega))$ the limiting value of $f$ at $\omega$ for $i$ . We say that
consensus on the lmiting values of decision functions $(f_{\dot{1}}):\in N$ can be guaranteed
in acommunication process if $d^{\infty}\dot{.}(\omega)$ and $d_{\mathrm{j}}^{\infty}(\omega)$ are equal for each player $i,j$ and
in all the states $\omega$ that the communication is never cut off and that $Q^{\infty}\dot{.}$ is defined
for all $i\in N$ .
Remark 3. In the communication process, the limiting value of $f$ can be reached
in finitely many rounds; i.e., there exists anon-negative integer $T$ independent
on $\omega$ such that for every player $i$ and for all $t\geqq T$ , $d_{\dot{1}}^{\infty}$ $(\omega)=d_{\dot{1}}^{t}(\omega)$ by Lemma 1.

3. EXAMPLE

We show asimple example below in order to explain Theorem 1. We consider
three players $A$ , $B$ and $C$, and give their associated information structures at time
$t=0$ defined by Figure 1.

In this case, we assume the event $X=\{1,3,5,7\}$ and the protocol $A_{arrow}^{arrow}Barrowarrow C$

that contains no cycle. Let us give the common prior $\mu(\omega)=\frac{1}{8}$ for each state
$\omega\in\Omega$ , and their decision functions are given by the common function $f$ defined
by $f(E)=\mu(X|E)$ . It is noted that the common decision function satisfies the
sure thing principle and is preserved under difference.

Then the calculation result with player $A$ at $t=\mathrm{O}\mathrm{w}\mathrm{i}\mathrm{u}$ be given in Table 1.
Sender $A$ sends the message $B_{A}^{0}(\omega)$ to the recipient B. $B$ mixes the message

and his associated information structure, and he makes his revised information
structure then
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$X$

$Q_{A}^{0}$ $Q_{B}^{0}$ $Q_{C}^{0}$

FIGURE 1. Associated information structure at the early time t $=0$

TABLE 1. The calculation result with $A$

$Q_{B}^{1}(\omega_{1})$ $=$ $Q_{B}^{1}(\omega_{2})=\{\omega_{1},\omega_{2},\omega_{3},\omega_{4}\}$

$Q_{B}^{1}(\omega_{3})$ $=$ $Q_{B}^{1}(\omega_{4})=\{\omega_{3},\omega_{4}\}$, $Q_{B}^{1}(\omega_{6})=\{\omega_{6}\}$ , $Q_{B}^{1}(\omega_{8})=\{\omega_{8}\}$

Note that the state $\omega_{5}$ , $\omega_{7}$ of $Q_{B}^{1}$ are not defined here. Next the results in Table
2is also obtained by the same way.

TABLE 2. The calculation result with $B$

Then player $C$ ’s revised information structure at $t=2$ is as follows:
$Q_{C}^{2}(\omega_{1})=Q_{C}^{2}(\omega_{4})=\{\omega_{1},\omega_{4}\}Q_{C}^{2}(\omega_{2})=\{\omega_{2},\omega_{3}\}$,
$Q_{C}^{2}(\omega_{3})=\{\omega_{3}\}$ , $Q_{C}^{2}(\omega_{6})=\{\omega_{6}\}$ , $Q_{C}^{2}(\omega_{8})=\{\omega_{6},\omega_{8}\}$

Similarly, the communication goes on as follows
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TABLE 3. The calculation result with $C$

Then Player $B$ ’s revised information structure at $t=3$ is the next result.
$Q_{B}^{3}(\omega_{1})$ $=$ $Q_{B}^{3}(\omega_{4})=\{\omega_{1},\omega_{4}\}$

$Q_{B}^{3}(\omega_{3})$ $=$ $\{\omega_{3}\}$ , $Q_{B}^{3}(\omega_{6})=\{\omega_{6}\}$ , $Q_{B}^{3}(\omega_{8})=\{\omega_{8}\}$

TABLE 4. The calculation result with $B$

Player $A$ ’s revised information structure at $t=4$ is given by as follows:
$Q_{A}^{4}(\omega_{1})$ $=$ $Q_{A}^{4}(\omega_{4})=\{\omega_{1},\omega_{4}\}$

$Q_{A}^{4}(\omega_{3})$ $=$ $\{\omega_{3}\}$ , $Q_{A}^{2}(\omega_{6})=Q_{A}^{2}(\omega_{8})=\{\omega_{6},\omega_{8}\}$

TABLE 5. The calculation result with $A$

Player $B$ ’s revised information structure at $t=5$ is given by as follows:
$Q_{B}^{5}(\omega_{1})$ $=$ $Q_{B}^{5}(\omega_{4})=\{\omega_{1},\omega_{4}\}$

$Q_{B}^{5}(\omega_{3})$ $=$ $\{\omega_{3}\}$ , $Q_{B}^{5}(\omega_{6})=\{\omega_{6}\}$ , $Q_{B}^{5}(\omega_{8})=\{\omega_{8}\}$

TABLE 6. The calculation result with $B$
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$\omega_{2}$ $\omega_{2}$ $\omega_{2}$

$\omega_{5}$ $\omega_{7}$ $\omega_{5}$
$\mathrm{O}\omega_{6}$

$\omega_{7}$ $\omega_{5}$ ($

$\mathrm{O}\omega_{8}$

$Q_{A}^{6}$ $Q_{B}^{6}$ $Q_{C}^{6}$

FIGURE 2. Each player’s revised information structure at t $=6$

For $t\geqq 5$ each $Q^{t}.\cdot$ is stationary given by Figure 2. AU values of decision
functions are equal. Therefore consensus can be guaranteed in this example.
(Note that the states $\omega_{2}$ , $\omega_{5}$ and $\omega_{7}$ are not defined.) $\square$

4. THE RESULT

4.1. We prove the generalized version of Theorem 1in Matsuhisa et al [8] as
follows:
Theorem 2. In a communication process associated with awareness structure,
suppose that the all decision functions are common for all players, and that the
common decision function satisfies the sure thing principle and is preserved un-
der difference. Consensus on the limiting values of the decision function can be
guaranteed if the protocol contains no cycle.

In the case that the decision function is given by posterior (Section 2.5), it
immediately follows from Theorem 2that
Corollary 1. Suppose that all players have a common-prior. Conse nsus on the
limiting values of the posteriors for a publicly aware event among all players can
still be guaranteed in the communication if the protocol contains no cycle.

4.2. $RT$-Information Structure. Before proceeding to the proof, we need the
notion of $RT$-iffiormation structure and the fundamental lemma:

Amapping $Q$ : $\Omegaarrow \mathcal{F}$ is said to be an $RT$ information $stmcture^{6}$ on $\Omega$ if the
folowing two conditions are true: For each $i$ and for every state $\omega$ such that $Q(\omega)$

is defined,
(Ref) $\omega$ $\in Q(\omega)$ ;

(Rn) $\xi\in Q(\omega)$ implies $Q(\xi)\subseteqq Q(\omega)$ .

The following lemma is akey to proving the theorem:
$6\mathrm{T}\mathrm{h}\mathrm{e}RT$-information structure stands for refieive and transitive information structure
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Fundamental Lemma. Let $\omega$ be a state in $\Omega$ , and $Q$ an $RT$-infomation struc-
ture on O. Suppose that $f$ be a decision function that satisfies the sure thing
principle and is preserved under difference.

If there exists an event $H$ of $\mathcal{F}$ such that the two conditions are $tme$:For each
$\xi$ of $H$,

(a) $Q(\xi)$ is defined and it always contained in $H$ , and

(b) it is always satisfied that $f(Q(\xi))=f(Q(\omega))$ ,

then we obtain that
$f(H)=f(Q(\omega))$ .

Asimilar lemma may be found in Matsuhisa and Usami [9].

4.3. ProofofTheorem 2. It is sufficient to prove the following theorem because
Theorem 2immediately follows from it.
Theorem 3. In a communication process associated with an awareness structure,
suppose that the the decision functions are common for all players, and that the
common decision function satisfies the sure thing principle and is preserved under
difference, ifplayer $i$ communicates $his/her$ message directly to player $j$ then their
limiting values of the decision function must be equal.

Prvof. Let $\pi=\langle \mathrm{P}\mathrm{r}, (Q_{\dot{1}}^{t}), f\rangle$ be acommunication process associated with aware-
ness structures where $f$ is the common decision function. The protocol has the
property that, if $s(t)=i$ and $r(t)=j$ then $r(t+m)=i$ and $s(t+m)=j$ for
some $m$ .

It should be noted that $P_{\dot{1}}$ is an $RT$-infomation structure, and so is $Q^{\infty}.\cdot$ for
every $i$ . Therefore in view of (Ref) and (Rn), it can be plainly observed that

$\mathrm{T}$ $B^{\infty}\dot{.}(F)\subseteqq F$;

4 $B^{\infty}.\cdot(F)\subseteqq B^{\infty}.\cdot(B_{\dot{1}}^{\infty}(F))$.

For each state $\omega$ at which $Q_{\dot{1}}^{\infty}$ is defined, set $H=B_{\dot{1}}^{\infty}$ $(W_{\dot{1}}^{\infty}(\omega))\cap B_{\mathrm{j}}^{\infty}(W_{j}^{\infty}(\omega))$

and $Q=Q_{l}^{\infty}$ for $l=i,j$ . To complete the proof, it suffices to verify the two
properties:

(a) If 4is amember of $H$ then $Q(\xi)\subseteqq H$, and
(b) $H$ is contained in the set consisting of all the states 4such that $d_{l}^{\infty}(\xi)=$

$d_{l}^{\infty}(\omega)$ .
Indeed, if it is the case then, viewing of Fundamental Lemma we obtain that

$f(H)=f(Q_{l}^{\infty}(\omega))$ for each $l\in\{i,j\}$ , and thus $d_{\dot{1}}^{\infty}$ $(\omega)=d_{j}^{\infty}(\omega)$ as required.

Proof of (a): It foUows from 4that $Q_{l}^{\infty}(\xi)\subseteqq B_{l}^{\infty}(W_{l}^{\infty}(\omega))$ , and it follows
from the definition of $Q_{l}^{t+1}$ that $\xi\in Q_{l}^{\infty}(\xi)\subseteq B_{l}^{\infty}$, $(W_{l}^{\infty}, (\xi))$ for $\mathit{1}’\in\{i,j\}\backslash \{l\}$ ,
and thus $W_{l}^{\infty}$, $(\xi)=W_{l}^{\infty}$, $(\omega)$ by T. We observe that for every $\xi$ $\in H$ , $Q(\xi)\subseteq$

$B_{\dot{1}}^{\infty}$ $(W^{\infty}\dot{.}(\omega))\cap B_{j}^{\infty}(W_{j}^{\infty}(\omega))$ .

Proof of (b): In view of T it is easily observed that H $\subseteqq W_{l}^{\infty}(\omega)=\{\xi\in$

$\Omega|d_{l}^{\infty}(\xi)=d_{l}^{\infty}(\omega)\}$ , in completing the proof. $\square$
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4.4. As aconsequence of Theorem 2we can obtain ageneralized version of the
Agreement theorem of Geanakoplos and Polemarchakis [5] and that of Matsuhisa
and Kamiyama [7].
Corollary 2. In a communication process associated with awareness $st$ ucture,
suppose that the all decision functions are common for all players, and that the
common decision function satisfies the sure thing principle and is preserved under
difference, if the players in the process are only two then their limiting values of
the decision function must be equal.

Proof. Immediately follows from Theorem 2. 口

4.5. Conclusion. In this paper we have shown that the nature that consensus
can be guaranteed in acommunication process is not the restrictions on the
players’ knowledge operators but their awareness and belief.
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