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ABSTRACT. The communication process in the pbelief system that reaches consensus
is presented: The agents communicate the events that they believe more than their
own posteriors. We show that in the long run each posterior converges and that any
two limiting values of posterior can be same.

1. INTRODUCTION
The purposes of this article are the two points: First to present the communica-

tion process according to aprotocol with the $p$-belief system, and secondly to extend
the agreement theorem of Aumann [1] to this model in the line of Geanakoplos and
Polemarchakis [4] and Krasudci [5].

In his seminal paper Aumann [1] showed his agreement theorem that if aU play-
ers commonly know their posteriors of an event then their posteriors must be same.
Geanakoplos and Polemarchakis [4] investigated acommunication process between two
players in which the players announce their posteriors to each other. In the process
players learn and revise their posteriors and they reached consensus. This is an exten-
sion of the agreement theorem of Aumann regardless of common-knowledge. Krasucki
[5] extended the result for the communication process among at least three players.

The knowledge of players in the above models are given by partition. However many
researchers have been pointing out that the assumption for the partition is problematic
in the decision makings among players and that the model should be constructed
without such strong assumption.

Monderer and Samet [7] introduced the weaker model, called the pbelief system,
that formalzes player’s belief of something as he believes it at least probability $p$ .
They showed the approximating agreement theorem: If all players commonly pbelieve
their posteriors of an event then the diHerence between any two players’ posteriors can
diHer at most $2(1-p)$ .

We introduce the communication process with the $\mathrm{p}$-belief system; it is the revision
process of the values of players’ posterior of an event through the messages. Our result
is an extension of the above agreement theorems as follows:
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Theorem 1. In the $p$-belief communication consensus on the limiting values of the
posteriors of an event $X$ can be guaranteed if the protocol contains no cycle.

We begin in Section 2by reviewing the basic model, which consists of the standard
model of knowledge, -belief system and aprotocol. The -belief communication is
introduced on the system. In Section 3, asimple example is presented, which shows a
-belief communication process among three persons. In Section 4, we show the results
and the proof and state the conclusion in the last section.

2. THE Model

Let $N$ be aset of finitely many players and $i$ denote an player. Astate-space is a
finitely non-empty set, whose members are called states. An event is asubset of the
state space If $\Omega$ is astate space, we denote by $2^{\Omega}$ the field of all subsets of it. An
event $F$ is said to occur in astate $\omega$ if $\omega$ $\in F$ .
2.1. Partitional Information Structure 1. By this we mean aclass of mappings
$(\Pi_{i})_{i\in N}$ such that $\Pi_{:}$ : $\Omegaarrow 2^{\Omega}$ satisfies the three properties, Reflectivity, Transitivity
and Symmetry :

(Ref) $\omega$ $\in\Pi_{:}(\omega)$ ;
(TYn) $\xi\in\Pi_{:}(\omega)$ implies $\Pi_{:}(\xi)\subseteqq\Pi_{:}(\omega)$ ;

(Sym) $\xi\in\Pi_{i}(\omega)$ implies $\omega$ $\in\Pi_{:}(\xi)$ .
Specifically, an agent $i$ for whom $\Pi_{:}(\omega)\subseteqq E$ knows in the state $\omega$ that some state in

the event $E$ has occurred. We call $\Pi_{:}$ the $i’ \mathrm{s}$ information partition and $\Pi.\cdot(\omega)$ the $i$ ’s
possibility set at $\omega$ . This is interpreted as the set of states that $i$ thinks are possible
when $\omega$ occurs. By $i$ ’s posterior $q$:at $\omega$ of agiven event $X$ we mean the conditional
probability of $X$ under the possibility set at $\omega$ ;i.e.; $q:=\mu(X|\Pi:(\omega))$ . We will also $\mathrm{c}\mathrm{a}\mathrm{U}$

it the initial posterior of $X$ at $\omega$ in later sections.

2.2. -Belief system. We assume that the partitional information structure $(\Pi_{:}):\in N$

on the given 0. Let $p$ be anumber with $0\neq<p\leqq 1$ and fix it. The $p$-belief system
associated with the information partitions is the tuple $\langle\Omega,\mu, (\Pi:):\in N, (B^{p}\dot{.}):\in N\rangle$ consist-
ing of the following structures and interpretations: $(\Omega,\mu)$ is afinite probability space
such that $\mu(\omega)\neq>0$ for every $\omega$ $\in\Omega$ , and the $i’ \mathrm{s}p$-belief operator $B_{}^{p}$ on $2^{\Omega}$ is defined
such that $B^{p}\dot{.}E$ is the set of states of $\Omega$ in which $i$ believes that $E$ has occurred with
probability at least $p$ ;that is,

$B^{p}\dot{.}E:=\{\omega\in\Omega|\mu(E|\Pi:(\omega))\geqq p\}$ .
We call it the event that player $ip$-believes $E$. When $\omega$ $\in B^{p}\dot{.}(E)$ we say that $i$ p-believes
$E$ at $\omega$ . We record the properties of $B^{p}.\cdot$ as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}^{2}$:For every $E$ , $F$ of $2^{\Omega}$ ,

$\mathrm{N}$ $B^{p}.\cdot\Omega=\Omega$ and $B^{p}\dot{.}\emptyset=\emptyset$ ;
$\mathrm{M}$ $B^{p}\dot{.}E\subseteqq B^{p}.\cdot F$ whenever $E\subseteqq F$ ;
T4 $B^{p}\dot{.}E=B^{p}\dot{.}B_{\dot{1}}^{p}E$;
IE $\mu(E|B_{\dot{1}}^{p}E)\geqq p$.

The mutual belief operator $B_{E}^{p}$ on $2^{\Omega}$ is defined by $B_{E}^{p}E:= \bigcap_{:\in N}B^{p}.\cdot E$ , whereas
$B_{E}^{p}E$ is interpreted as the event that all agents $p$ believe $E$ .

Aumann [1], Binmore [3].
$2\mathrm{S}\mathrm{e}\mathrm{e}$ Proposition 2in Monderer and Samet [7]
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2.3. Protocol 3. We assume that players communicate by sending messages. AprO-
tocol is amapping $\mathrm{P}\mathrm{r}$ of the set of non-negative integers $\mathbb{Z}_{+}$ into the product set $N\cross N$

that assigns to each $t$ apair of players $(s(t), r(t))$ . Here $t$ stands for time and $s(t)$

and $r(t)$ are, respectively, the sender and the recipient of the communication which
takes place at time $t$ . We can consider it as the directed graph. Aprotocol is said
to be fair if the graph is strongly-connected; in words, every player in this protocol
communicates directly or indirectly with every other player infinitely often. It is said
to be acyclic if the graph contains no cyclic path; that is, there are players $i_{1}$ , $i_{2}$ , $\ldots$ , $i_{k}$

with $k$ $\geqq 3$ such that for all $m<k$ , $i_{m}$ communicates directly with $i_{m+1}$ , and such that
$i_{k}$ communicates directly with $i_{1}$

2.4. Communication with $\mathrm{p}$-belief system. The $p$-belief communication process $\pi$

of revisions of the posteriors $(q_{\dot{1}}^{t})_{(:,\iota)\in N\mathrm{x}\mathrm{z}_{+}}$ of an event $X$ is atriple $\langle \mathrm{P}\mathrm{r}, (Q^{t}.\cdot)_{(:,t)\in N\mathrm{x}\mathrm{Z}_{+}},X\rangle$,
in which $\mathrm{P}\mathrm{r}(t)=(s(t),r(t))$ is fair protocol such that for every $t\in \mathbb{Z}_{+}$ , $r(t)=s(t+1)$ ,
communications proceed in $munds^{4}$ and $Q^{t}.\cdot$ is the mapping of $\Omega$ into $2^{\Omega}$ for agent $i$ at
time $t$ that is defined inductively as follows:

$\bullet$ We assume given amapping $Q^{0}\dot{.}:=\Pi_{:}$ and $q_{}^{o}$ is the initial posterior $q:=$
$\mu(X|Q_{\dot{1}}^{0}(\omega))$ .

$\bullet$ Suppose $Q^{t}.\cdot$ is defined.
-IIJ is the partition on $\Omega$ induced by $Q^{t}.\cdot$ ;that is, $\Pi^{t}\dot{.}(\omega):=\{\xi\in\Omega|Q^{t}\dot{.}(\xi)=$

$Q^{t}.\cdot(\omega)\}$ ;
$-q_{}^{t}(X;\omega)$ denotes $q^{t}.\cdot:=\mu(X|\Pi^{t}.\cdot(\omega))$ ;
$-W.\cdot$ is the mapping of $\Omega$ into $2^{\Omega}$ which assigns to each state $\omega$ the event

Wl (u) that consists of all the states $\xi$ such that $\mu(X|\Pi^{t}.\cdot(\xi))\geqq q^{t}.\cdot(X;\omega)^{5}$ ;
$\bullet$ If $j$ send the message $W_{j}(\omega)$ at $t$ to $i$ , then $Q^{t+1}.\cdot$ is defined as follows:

-If $i$ is not arecipient of amessage at time $t$ , then $Q_{}^{t+1}=Q^{t}\dot{.}$ .
-If $i$ is arecipient of amessage at time $t$ , then $Q_{}^{t+1}=Q^{t}.\cdot\cap W.\cdot$ defined by

$Q^{t+1}.\cdot(\omega)=Q_{\dot{1}}^{t}(\omega)\cap W_{j}(\omega)$ .

Remark 1. The sequence of sets $\{Q^{t}.\cdot|t=0,1,2, \ldots\}$ is stationary in finitely many
rounds because it is adescending chain by definition and $\Omega$ is finite. That is, there is
asufficiently large time $\tau\in T$ such that for every $i$ , for all $\omega$ $\in\Omega$ and for aU $t\geqq\tau$ ,
$Q^{t}\dot{.}(\omega)=Q^{\tau}.\cdot(\omega)$ , and therefore $q^{t}.\cdot(X;\omega)=q_{\dot{1}}^{\tau}(X;\omega)$

2.5. Consensus. We note that the lmit $Q^{\infty}.\cdot$ exists in each state by Remark 1, and
thus $\Pi^{\infty}.\cdot$ can be defined. We denote $q_{\dot{1}}^{\infty}$ $(\omega)=\mu(X|\Pi_{\dot{1}}^{\infty}(\omega))$ cffied the $i’ \mathrm{s}$ limiting value
of $X$ at $\omega$ . We say that consensus on the limiting values of the posteriors about $X$ can
be guaranteed in the communication process if $q_{}^{\infty}(\omega)=q_{j}^{\infty}(\omega)$ for each player $i,j$ and
in aU the states $\omega$ .

3. EXAMpLE

We consider acomprehensive example as follows. Players are Alice, Bob, and Nanny.
They communicate about -belief of some event X to each other according the protocol

$3\mathrm{K}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{d}\mathrm{i}$ $[5]$ .
$4\mathrm{T}\mathrm{h}\mathrm{a}\mathrm{t}$ is, there exists anatural number $m$ such that for all $t$ , $s(t)=s(t+m)$ .
$5\mathrm{T}\mathrm{h}\mathrm{e}$ specification of the message sent by :at $t$ allows that the recipient $j$ receives the information

that :believes $X$ with probabilty at least $q_{\dot{l}}^{t}(X;\omega)$ .
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FIGURE 1. Commimication protocol among three players.

with no cycle in Figure 1. Now let $\Omega$ be the state space $\{\omega_{1}, \cdots,\omega_{8}\}$ and $\mu$ the common-
prior on $\Omega$ defined by $\mu(\omega)=1/8$ for each $\omega$ .

Each player has his initial knowledge defined by the partition on Q. Figure 2shows
this situation. Now suppose an event $X=\{\omega_{2},\omega_{5},\omega_{6},\omega_{8}\}$ is occurred. Then their
posteriors will reach consensus: the values of the posteriors are all one in each state in
$X$ and the values are zero in other states.

$\Pi_{4}\mathrm{F}\mathrm{I}\mathrm{G}\mathrm{U}\mathrm{R}\mathrm{E}2$

. Information
$\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}_{1}^{B}\mathrm{o}\mathrm{n}\mathrm{s}\Pi$ for each of players.

$\Pi_{N}$

We show the revision process about their knowledge and posteriors. First, Alice
sends her message to Bob at time $t=1$ as Table 1. He receives it and constitutes his
own partition. However the message at time $t=1$ is not useful for him because his
initial knowledge is finer. Therefore his information partition is not changed, that is
$\Pi_{B}^{1}--\Pi_{B}$ . As result, the information structure at time $t=1$ for each player is the
same as the initial.

In asimilar way, Bob communicates with the protocol. Table 2shows his message to
Nanny at time $t=2$. Though she receives it, it is not useful for her as well. Therefore
her information structure is the same as the initial one. The situation continues at
time $t=3$ .
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TABLE 1. Alice’s message at time t $=1$ .

TABLE 2. Bob’s message at time t $=2$ .

At time $t=4$, Bob sends auseful message to Alice. Table 3denotes Bob’s at the
time. That is, his message is finer than her knowledge held until now. Consequently
her knowledge is revised as $Q_{A}^{4}$ in Figure 3. Therefore her message to Bob is finer as
denoted in Table 4.

TABLE 3. Bob’s message at time t $=4$.

$Q_{A}^{4}$ $Q_{B}^{4}$ $Q_{N}^{4}$

FIGURE 3. Information structures at time t $=4$.

Seeing the Table 5, we say that consensus on the lmiting values of the posteriors
about $X$ can be guaranteed in the example. The information structures on the lmiting
values for each players is stable after time $t=5$. Therefore the structures is the same
as the Figure 3.
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TABLE 4. Alice’s message at time t $=5$ .

TABLE 5. The travelers’ message at time t $\geqq 5$ .

4. REACHING Consensus
We show aproof of Theorem 1presented in Introduction. For the purpose, we prove

Theorem 2.

4.1. Proof of Theorem 1. Follows immediately fiiom Theorem 2below.

Theorem 2. In the $p$-belief communication $\pi$, if player $i$ communicates $his/her$ mes-
sage directly to another player $j$ then $q^{\infty}\dot{.}(\omega)=q_{j}^{\infty}(\omega)$ for every $\omega$ $\in\Omega$ .

In fact we can observe that the consensus in Theorem 1follows from Theorem 2by
inductive steps in viewing that the protocol is acyclic.

4.2. Proof of Theorem 2. The folowing lemma is akey to proving the theorem:

Lemma 1. Let $\omega$ be a state in $\Omega$ , $\Pi$ a partition of $\Omega$ , and let $\mathrm{q}(\mathrm{X}$ ; denote $\mu(X|\Pi(\omega))$ .
If there exists a non-empty event $H$ of $2^{\Omega}$ such that for every 4of $H$, the two conditions
are $tme$:

(a) $\Pi(\xi)$ is contained in $H$, and
(b) $\mu(X|\square (\xi))=q(X;\omega)$;

then we obtain that
$q(X;\omega)=\mu(X|H).6$

In fact, H can be decomposed into the disjoint union of components $\Pi(\xi)$ for $\xi$ $\in H$

in view of (a), and thus the result follows from (b).

Proof of Theorem Z.$\cdot$ For each state $\omega$ denote $[q^{\infty}.\cdot]=[q^{\infty}.\cdot(X;\omega)]:=\{\xi|\mu(X|\Pi_{}^{\infty}(\xi))=$

$q^{\infty}\dot{.}\}$ . Set $H=[q_{\dot{l}}^{\infty}]\cap[q_{j}^{\infty}]$;this is non-empty because $\omega$ $\in H$ . We can verify the two
properties: For $l=i,j$,

(a) $\Pi_{l}^{\infty}(\xi)\subseteqq H$ for every $\xi$ $\in H$ , and
$,6- 1\backslash \mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ lemma plays an essential role in the proof of the agreement theorem of Aumann (Proposition
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(b) $H\subseteqq[q_{l}^{\infty}]$ .
In fact, Part (b) is obviously observed. For (a) it suffices to show that

(c) $\Pi_{l}^{\infty}(\xi)\subseteqq[q_{l}^{\infty}, (X;\omega)]$ for every $\xi$ $\in[q_{l}^{\infty}, (X;\omega)]$ ,
where $l’\in\{i,j\}\backslash \{l\}$ . Indeed, it is easily verified that $[q_{l}^{\infty}, (X;\xi)]=[.q_{l}^{\infty}, (X;\omega)]$ for
every ( $\in[q_{l}^{\infty}, (X;\omega)]$ , and thus (a) immediately follows.

We will prove (c): Suppose $\zeta\in\Pi_{l}^{\infty}(\xi)$ . We note that there exist $m$ such that
$s(t)=r(t+m)$ and $r(t)=s(t+m)$ since the protocol is acyclic, and on noting
that $Q_{l}^{\infty}(\zeta)=Q_{l}^{\infty}(\xi)$ it follows from the definition of $\{Q_{l}^{t}\}_{t\in}\mathrm{z}_{+}$ that $\langle$ $\in W_{l}^{\infty}$, $(\xi)$ and
$\xi\in W_{l}^{\infty}$, $(\zeta)$ . Therefore it can be observed that $q_{l}^{\infty}$, $(X;\zeta)=q_{l}^{\infty}$, $(X;\xi)$ , and thus $($ $\in$

$[q_{l}^{\infty}, (X;\xi)]$ as claimed.
Now, viewing Lemma 1we obtain that $q_{l}^{\infty}=\mu(X|\Pi_{l}^{\infty}(\xi))=\mu(X|H)$ for each

$\mathit{1}\in\{i,j\}$ , and thus $q^{\infty}.\cdot(\omega)=q_{j}^{\infty}(\omega)$ as required. $\square$

5. CONCLUDING REMARKS

This article investigates how players reach consensus through pbelief communica-
tion. This research is in the Hue on the investigations on acommunication process in
the standard model of knowledge. As stated in Introduction, Geanakoplos and Pole
marchakis [4] and Krasucki [5] studied how players reach consensus on the knowledge
model. Correspondingly Monderer and Samet [7] showed the approximating agree-
ment theorem that does not guarantee consensus on the -belief model. The reason
the players cannot reach consensus in Monderer and Samet [7] is that the information
obtained from the players’ ability is ambiguous; the players’s knowledge are given not
by the partitional structure but the $RT$-infomation structure similar to S4 model in
Bacharach [2]. This means that the players’ information structures satisfy reflexive
and transitive properties but not symmetric property.

To overcome the difficulty, we introduce the model of -belief communication in
which players can generate the partitional information structures by receiving messages
though the messages are not given by partitions, and thus the players can keep their
knowledge partitional. Consequently we can obtain the result that players can reach
consensus on the $p$-belief communication. In the -belief communication as above
the requirement that players must generate the partitional information by receiving
messages is not astrong assumption with respect to the requirement of the standard
model of knowledge.

It plays the essential role for reaching consensus through the communication on
which players’ information structures are given by partitions. When this requirement
fails, how we can reach consensus? This problem remains open
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