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Stokes’ theorem, self-adjointness of the
Laplacian and Hodge’s theorem for

hyperbolic 3-cone-manifolds

MicHIHIKO FUJII

BH EE (REK - BSARD)

§1. Introduction

By a hyperbolic 3-cone-manifold, we will mean an orientable (not necessarily volume-finite)
riemannian 3-manifold C of constant sectional curvature —1 with cone-type singularity along
a 1-dimensional graph ¥ which consists of geodesic segments in C. The subset M := C — %
has a smooth, incomplete hyperbolic structure whose metric completion is identical to the
singular hyperbolic structure on C. The hyperbolic 3-manifold M is incomplete near .

In this paper, we will inform that Stokes’ theorem for smooth L?-forms on the incom-
plete hyperbolic manifold M holds. The proof can be performed by following the argument
described in Hodgson-Kerckhoff [5]. (In [5], Stokes’ theorem in the case where each compo-
nent of the singular locus ¥ is homeomorphic to S and the complement of an open tubular
neighborhood of ¥ is compact was shown.) Then from Stokes’ theorem, by using a result of
Gaffney (3], it is shown that there is a maximal extension of the Laplacian on M which is
self-adjoint on its adequately defined domain. Thus, we have an extension of Hodge theory
to hyperbolic 3-cone-manifolds whose singular loci are smooth 1-manifolds. Let E denote the
flat vector bundle of local killing vector fields on the hyperbolic 3-manifold M. Then, if the
singular locus ¥ of the hyperbolic 3-cone-manifold C is a smooth 1-dimensional manifold,
for any E-valued 1-form & which represents an infinitesimal deformation of the hyperbolic
structure on M around ¥ and which satisfies some conditions related with the domain of the
Laplacian (& is called to be ”in standard form”), there is a closed and co-closed E-valued
1-form w which is equivalent to & in the de Rham cohomology group H!(M; E). The 1-form

w is a representative with specific control on the asymptotic behavior near the singular locus.
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§2. Stokes’ theorem and self-adjointness of the Laplacian for hyperbolic 3-cone-

manifolds

First we will give the definition of hyperbolic 3-cone-manifolds. Consider a smooth 3-
dimensional manifold N, which has a path metric given by a gluing of the faces of finitely
many geodesic polyhedra possibly with ideal verticies in the 3-dimensional hyperbolic space
H3. The gluing is performed by orientation reversing isometries of H?. It is permitted that
the polyhedra have “faces” on the sphere at infinity S2, which are not glued to another such
“faces”. We assume that the link of a vertex is piecewise linear homeomorphic to a sphere
and the link of an ideal vertex is piecewise homeomorphic to a torus, an open annulus or an
open disk. We also assume that the path metric on N is complete. The manifold N with
the metric above is called a hyperbolic 3-cone-manifold.

The singular locus T of a hyperbolic 3-cone-manifold consists of the points with no neigh-
borhood isometric to a ball in H3. It is a union of totally geodesic closed simplices of
dimension 1. At each point of ¥ in an open 1-simplex, there is a cone angle which is the
sum of dihedral angles of polyhedra containing the point. The subset N — X has a smooth
riemannian metric of constant curvature —1, but this metric is incomplete near L if ¥ # ¢.

Let C be a (not necessarily volume-finite) hyperbolic 3-cone-manifold with singular locus
Y. Let M := C — ¥ be a smooth (but incomplete) hyperbolic 3-manifold. A tubular

neighborhood of a singular point of C, which is not a vertex, has the metric
dr? + sinh®rd#? + cosh?rdz?,

by using the cylindrical coordinate. There are finitely many vertices of X.

We have a developing map of M from its universal covering space M,
Do : M — H3,
and a holonomy representation,
pc : m(M) — PSLy(C).

They are called a developing map and a holonomy representation of the cone-manifold C'.

Let QP(M) denote the space of smooth, real-valued p-forms of M and Q*(M) denote the
space of smooth, real-valued forms on M. Let d be the usual exterior derivative of smooth
real-valued forms on M: ‘

d : Q°(M) — QF*Y(M).

Let % be the Hodge star operator defined by using the riemannian metric g on M:

9(¢,* P)AM = ¢ N9



82

for any real-valued p-form ¢ and (3 — p)-form 9. Let & be the adjoint of d:
6 : QP(M) - QP Y(M).
Let A be the Laplacian on smooth real-valued forms for the riemannian manifold M:
A=ds+éd
We will use <, > to denote an L? inner product on real-valued forms:

<&n>= /ME/\i n=/Mg(§,n ) dM.

It is seen that Stokes’ theorem for smooth L2-forms on the incomplete hyperbolic manifold
M can be proved as in Hodgson-Kerckhoff [5]. The proof is performed by using Cheeger’s
method in [1].

Theorem 1 (Stokes’ theorem). Let C be a hyperbolic 3-cone-manifold with singular locus
L. Let M := C — X be the smooth, incomplete hyperbolic 3-manifold. Then Stokes’ theorem
holds:

/Mcfa/\iﬁ=/Ma/\ic§ﬂ,
for smooth L2-forms a, 3 on M such that da,$0 are L*-forms on M.

If we define the domains of d and & by

domd = {a € Q*(M); aand da are L?},
dom é = {B€ Q*(M); Band 4B are L?},

then Theorem 1 saids that < Ja, 8 >=< aq, 5ﬂ > holds for all & € dom (i, B € dom 4.

The strong closure d of d is defined as follows (see [1]): do = 7 means that « is an L?-form
and there exist o; € dom d (¢ € N) such that a; — a, ciai — 1. The domain of E is defined
by

dom d = {a; aand do are L2-forms on M }
In the same manner, the strong closure gof 4 and its domain dom 5 are defined.
The theorem above means that the manifold M has a negligible boundary (see [3],[4]).

Then, by the result of Gaffney [3], for our manifold M, the Hilbert space closure A of A is
self-adjoint.

Theorem 2 (self-adjointness of Z) Let C be a hyperbolic 3-cone-manifold with singular
locus £. Let M := C — X be the smooth, incomplete hyperbolic $-manifold. Let A be the
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Hilbert space closure of the Laplacian for the riemannian manifold M so that

the domain of A= {a € dom dNdom & ; da € dom 2, da € dom ;5;}

Then A = 3 g—i—g 2, and Aisa closed, non-negative, self-adjoint and elliptic operator.

§3. Hodge theorem for hyperbolic 3-cone-manifolds

Let C be the hyperbolic 3-cone-manifold with singular locus ¥ and M = C — X be the
hyperbolic 3-manifold considered in §2. Let G denote the group consisting of orientation
preserving isometries of H3. The group G can be naturally identified with PSL,(C). Let G
denote the Lie algebra of G and Ad the adjoint representation of G on G. Associated to the
hyperbolic structure p¢ is a flat G vector bundle E over M:

FE =M X Adopc g

Let Q*(M; E) denote the space consisting of smooth E-valued p-forms on M. Let d be a

covariant exterior derivative
d : P(M;E) — QF*Y(M;E),

which is given by the flat connection on E. Then the pth de Rham cohomology group
HP(M; E) of M with coeflicients in F is defined by d.

There is a natural metric on E as follows. For each £ € M, the fiber E, of the bundle F
decomposes as a direct sum P & K, where P consists of the infinitesimal pure translations at
z and K consists of the infinitesimal rotations at x. Since an infinitesimal pure translation
at z corresponds to a tangent vector to M at x, P is identified with the tangent space T, M
of M at z. Then we give P the metric induced from the riemannian metric on M. Similarly,
since an element of K operates linearly and isometrically on the tangent space, a metric on
K comes from identifying it with a subspace of 0(3) with its usual metric. In fact, K is
identified with the total space o(3). Then we give a metric on P & K by regarding the direct
sum as an orthogonal direct sum. Let h denote the metric on E given as above.

Let * denote the Hodge star operator on Q*(M; E') defined by using the riemannian metric
h on E and the Hodge star operator % on Q*(M):

a A xf = (a€) A (b*n) = (ab) (£ A *n) = h(a,b) g(§,n) dM,
for any a = a&, B = by (a,b € Q°(M; E),&,n € Q*(M)). For two forms a = a§,8 =bn €
Q*(M; E), put
(@,8) = [ ans= [ hia?) g(¢mdM.
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This is an L? inner product on Q*(M; E). We define
§ : QP(M;E) - QP"Y(M;E)
by putting
ba = (-1l ydx a

for any a € QP(M; E). Then the associated Laplacian A is defined by
A :=dé + dd.

Let V denote the Levi-Civita connection on E with respect to the metric h, and D denote

a covariant exterior derivative induced by the connection V:

vV o QM;E) - QYM;E),
D : Q*(M;E) - P*Y(M;E).

Put
D*a=(-13")+ y D« q,

for all @ € QP(M;E). Let {e;,ez,e3} be any orthonormal frame for TM and {w',w?, w?®}
be the dual co-frame. Let i() denote the interior product on forms. Then D and D* are

described as in the following:
D = 2?:1 w! AV,
D* =-— Z‘]?:l i(ej)Ve;-
Put
™ =%, i(e;) ad(Ej),

where E; is the element in the fiber over any point on M, which is the infinitesimal translation
in the direction e; at that point, and ad(E;) sends an element Y in the fiber to [E;,Y]. Then
we have

d =D+T,

0 =D*+T".
This shows a relationship between the flat structure on F, which is defined by the hyperbolic

structure on M, and the natural metric h on E, which is defined by using the local geometry
on M. (See Matsushima-Murakami [8] for the formulation above.)
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As described above, at each point z € M, the fiber E, is decomposed into the orthogonal
direct sum P @ K. Then the vector bundle E is decomposed into an orthogonal direct sum

of two sub-bundles which we also denote as P and K:
E=PaKk.
This decomposition induces a decomposition:
QF(M; E) = OP(M; P) ® ¥ (M;K).

The bundle P is naturally identified with the tangent bundle TM of M. The Levi-Civita
connection V restricted to P-valued forms is the Levi-Civita connection on M. On K =
0(3) € Hom(TM,TM), it is again the Levi-Civita connection induced by the one on T'M.
The operators D and D* preserve the decomposition, while 7" and T* map Q*(M;P) to
Q*(M, K) and vice versa:

O(M;P) & Q(M;K) Q;(M;'P) ® QO*(M;K)

D,D‘l lD,D* T,T‘l lT,T*

Q(M;P) & Q(M;K), Q(M;K) & Q(M;P).

The Lie algebra G = sl3(C) has a natural complex structure which is related to the
decomposition E = P @ K by K = i P. The multiplication by 7 in the Lie algebra induces
a bundle isomorphism from P to K, which respects the local geometry of M. For example,
if ¢ denotes an infinitesimal translation, then it is an infinitesimal rotation around the axis
of ¢, and t and it are orthogonal. Now we will think of Q*(M;P) and Q*(M;K) as the real
and imaginary parts of Q*(M; E):

O (M;E) = Re Q*(M;E) & Im Q*(M;E)
= Q@M;P) @& Q(M;K)
= QO(M;P) @ iQ(M;P).

An E-valued p-form a is a pair of a real part Oyeqr and a imaginary part Qimag. The
real part Qeq is a P-valued p-form on M. If v is a P-valued O-form (namely a tangent
vector field) on M, then (dv),eq is Dv € QY M;P) (= Q' (M;TM) = Hom(TM,TM)),
which is also equal to Vv, and (dv)imeg is Tv € QY (M;K) (=4 QYM;P) =i Q(M;TM)
= ¢ Hom(TM,TM)). By using the orthonormal frame {e,e;,e;} and the dual co-frame
{w* W, wi}, we can describe a canonical isomorphism between skew-symmetric elements of
Hom(TM,TM) and vector fields:

Hom(TM,TM)gew > e ®u’ —e; @' — ex € Q°(M;TM).
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If v is a tangent vector field on M, Dv is an element of Hom(T M,TM). The skew-symmetric
part (Dv)ggew of Dv is called the curl of v, and is denoted by curl v. By the isomorphism
above, curl v is regarded as a vector field on M. Note that this vector field is the half of the
usual curl considered in elementary vector calculus. The trace of Duv is called the divergence
of v, and is denoted by div v. The traceless, symmetric part of Dv is called the strain of v,
and is denoted by str v.

If v is a locally defined tangent vector field on M, then we can consider a local section of
the bundle E, which is defined by s, = v — i curl v. Call it the canonical lift of v.

Let o be any closed smooth E-valued 1-form on M. Choosing a point z € M, we can
locally define a section [, o of the bundle E by integrating o along paths beginning at z,
which is called the associated local section. Note that we are using the flat connection on
E to identify the fibers at different points along the path in order to do the integration.
Since o is closed, the value of the integral depends only on the homotopy class of the path;
a well-defined section is determined on any simply connected subset of M. Thend [0 =0

on such a subset. In general, the section will not extend to a global section on M.

In the rest of the paper, we assume that the singular locus ¥ of the cone-manifold C is a

smooth 1-manifold:
T~RU...URUS'U...uS.

Some examples of hyperbolic 3-cone-manifolds with infinite volume, whose singular loci

are homeomorphic to R, are illustrated in [9)].

In a tubular neighborhood Uy of each component ¥ of ¥, we use cylindrical coordinates,
(r,0,2). Then the hyperbolic metric on Uy is dr? + sinh®rd§? + cosh’rdz2. We will use the
orthonormal frame {e;, e, €3} of TM adapted to this coordinate system:

0 1 0 1 0

or’ €= Gnhrog’ @~ coshroz

Then the dual co-frame {w!,w? w3} is

€ =

w! =dr, w? =sinhr df, w® = coshr dz.

An E-valued 1-form can be interpretted as a complex-valued section of PQT*M = TM ®
T*M = Hom(TM,TM). Then an E-valued 1-form can be described as a matrix in M3(C)
whose (i, j) entry is the coefficient of e; ® w’.

The form in (1) below is a closed and co-closed form which represents an infinitesimal

deformation which does not change the real part of the complex length of an element of
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the fundamental group of Uy which is so called the meridian of Uy. The meridian is the
class of the fundamental group which wraps around ¥; once and bounds a singular disk
with cone angle equal to that of X;. The infinitesimal deformation preserves the property
that the meridian is elliptic. Then it gives a small deformation of the cone-manifold Uy
to a cone-manifold. The infinitesimal deformation also has the remarkable property that it

decreases the cone angle.

—1
——
cosh®r sinh®r 0 0
~ —_ 1 —1
W = 0 sinh?®r coshr sinhr (1)
—1 -1
0 coshr sinhr cosh®r

The form in (2) below is a closed and co-closed form which represents an infinitesimal
deformation which leaves the holonomy of the meridian (hence the cone angle) unchanged.

If ¥, is homeomorphic to S!, this deformation stretches the length of .

-1
cosh’r 0 0
" — _ —1_sinhr
W) = 0 1 coshr (2)
0 —i sinhr cosh?r41
coshr cosh? r

Definition (in standard form). Let & be a smooth, closed, E-valued 1-form on M such
that 60, d(6@),dd(6w) are L?. We say that the 1-form & is in standard form if the following

conditions are satisfied:

e The associated local section [, @ is the canonical lift of its real part:

/LD:(/G)) — 1 curl (/&3) , for any z € M.
T T real T real

e In a tubular neighborhood U}, of a component X of the singular locus %,

@ = hy &1y + hy &) for some hy, hy € C.

Theorem 3 (Hodge theorem for hyperbolic 3-cone-manifolds). Let C' be a hyperbolic
3-cone-manifold with singular locus . Let M := C —X be the smooth, incomplete hyperbolic
3-manifold. Assume that ¥ is a disjoint union of smooth 1-manifolds; ¥ ~ RU...URUS'U
...USY. Let & € QY(M;E) be a smooth, E-valued 1-form which is in standard form. Then
there exists a smooth, closed and co-closed E-valued 1-form w, which is 'ééhO}nologous tow
and whose associated local section [, w is the canonical lift of a divergence-free, harmonic
vector field. Moreover, there is a unique such form satisfying the condition that v —w =ds

where s is a globally defined L? section of E.
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Outline of the proof. We want to solve the equation As = éw for a globally defined section
s of E. Since the associated local section [, & is the canonical lift of its real part, 6& is
also the canonical lift of its real part. Thus, it suffices to solve Av = (0&)reqs for a globally
defined vector field v on M. Let ¢ € Q'(M) be a smooth, real-valued 1-form which is the
dual to the vector field (0&),eq- Then, by using a Weitzenbock formula, we can see that it
suffices to solve '

(A+4)r=¢,

for a smooth, real-valued 1-form 7 € Q!(M). Now we apply the self-adjointness of the closure
A of the Laplacian A on Q*(M). Since ( is in the domain of A + 4, then by Theorem 2,
there is a unique solution 7 € the domain of A—-l-—él- Since ( is smooth, then, by the usually

regularity theory for elliptic operators, 7 is also smooth. Therefore, we can find a globally
defined smooth section s of E which satisfies As = dw. Then put w := & — ds. It is easy to
see that w and s satisfy the condition described in the theorem. O

If each component Ti of the singular locus ¥ is homeomorphic to S* and M — LU, is

compact, each cohomology class has a representative in standard form (see Lemma 3.3 in

[5])-
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