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1 Introduction

A3-manifold is said to be hyperbolic if it is homeomorphic to the quotient
of the 3-dimensional hyperbolic space via atorsion free kleinian group
acting as isometries. We also say that aknot in a3-manifold is hyperbolic
if it has the hyperbolic complement.

ADehn surgery is one of the well-known operations producing anew
3-manifold from aprescribed one. When a3-manifold and aknot in it are
given, one can yield alot of new 3-manifolds by performing Dehn surg-
eries The well-known Hyperbolic Dehn Surgery Theorem due to Thurston
[22] says that all but finitely many Dehn surgeries on ahyperbolic knot
give hyperbolic 3-manifolds. Also see [19] for adetailed proof.

In view of this result, aDehn surgery along ahyperbolic knot is called
exceptional if it yields anon-hyperbolic manifold. Alot of study to know
which surgeries are exceptional. Awell arranged survey was given in [7].
In particular, it was shown that on the number of exceptional surgeries,
there exists auniversal upper bound $[9, 15]$ .
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One of the main subject of the study of exceptional surgeries is those
on knots in the 3-sphere $S^{3}$ . It is well-known that aDehn surgery on
aknot in $S^{3}$ is characterized by the surgery slope, and such slopes are
parameterized by $\mathbb{Q}\cup\{\infty\}$ . With respect to this coordinate, the range
of exceptional surgery slopes is unbounded. Some specific examples were
given in [4, Section 5].

In this article, we will give some bounds on the range of exceptional
surgery slopes with respect to the coordinate above in terms of the genera
of knots. In the sequel, let $K(r)$ be the closed 3-manifold obtained by a
Dehn surgery on ahyperbolic knot $K$ in $S^{3}$ along aslope $r\neq\infty$ and $g$

denote the genus of $K$ . Our first theorem which is based on [10] is the
following.

Theorem 1. If $|r|>3\cdot$ $2^{7/4}g$ , then $K(r)$ is an irreducible 3-manif0ld
with infinite and word-hyperbolic fundamental group.

Remark that an approximate value of $3\cdot 2^{7/4}$ is 10.09. It is known that
the Thurston’s Geometrization Conjecture would imply that irreducible
3-manifolds with infinite and word-hyperbolic fundamental group are
actually hyperbolic. We will briefly review on this fact in the end of
Section 3.

Next, we restrict knots to some special classes and give more sharper
bounds. One class which we will consider is that of amphicheiral knots.
Remark that an approximate value of 1-2 is 0.29.

Theorem 2. If $K$ is amphicheiral and $|r|>3\cdot 2^{7/4}\{g-(1-2^{-1/2})\}$ ,
then $K(r)$ is an irreducible 3-manifold with infinite and word-hyperbolic
fundamental group.

The next result is based on joint work with Makoto Ozawa [13]. In
the study of exceptional surgeries, afruitful method is to consider some
surfaces in aknot complement or asurgered manifold. In this article, we
consider closed essential (i.e., incompressible and not $\partial$-parallel)surfaces
in aknot complement which admit an annulus connecting the surface
and the knot. Note that when the knot is hyperbolic such asurface
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corresponds to asurface subgroup contains accidental parabolics in the
knot group.

Theorem 3. Suppose that the complement of $K$ contains a closed essen-
tial surface admitting an annulus connecting the surface and K. Under
this assumption, $if|r|\geq 4g+1$ , then $K(r)$ is hyperbolic.

By virtue of the Thurston’s Uniformization Theorem [23] (see [18] for
detail), the proof of Theorem 3which we will give is purely topological.

Also will be used the results on such surfaces by Ozawa and the author
[11], [12].

Concerning the surgeries yielding lens spaces, the following conjecture

was proposed by Goda and Teragaito in [6].

Conjecture 1.1. If a Dehn surgery on a hyperbolic knot in $S^{3}$ along $a$

slope $r\neq\infty$ yields a lens space, then the knot is fibered and $2g+8\leq$

$|r|\underline{<}4g-1$ , where $g$ denotes the genus of the knot

They gave an upper bound $12g-7$ and proved that no such surgeries

can occur for genus one knots. Our theorems give some new bounds
which are sharper than theirs in certain cases. The conjecture above and
their results is one of the motivations of our work.

The author would like to thank Katura Miyazaki for useful sugges-
tions. He also thanks to Kimihiko Motegi, Masakazu Teragaito for helpful

comments and Han Yoshida for letting him know the result of Adams
[1].

2Preliminaries

The notations used throughout the article are as follows. For atopolog-

ical space $X$ , Int(X), $\partial X$ , $|X|$ and $\chi(X)$ denote the interior, the bound-
ary, the number of connected components and the Euler characteristic of
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$X$ , respectively. For a subset $\mathrm{Y}$ of $X$ , $\mathrm{E}\mathrm{x}\mathrm{t}(\mathrm{Y})$ denotes the exterior of $\mathrm{Y}$

in $X$ , that is, the closure of $X-\mathrm{N}(\mathrm{Y})$ , where $\mathrm{N}(\mathrm{Y})$ denotes the regular
neighborhood of $\mathrm{Y}$ in $X$ .

A3-manif0ld $M$ is called irreducible if every 2-sphere embedded in
$M$ bounds a3-ball.

By a Dehn filling, we mean the operation of attaching solid tori to a3-
manifold with toral boundaries. ADehn surgery on alink in a3-manif0ld
means the following operation. Remove the open regular neighborhood
of the link and then perform aDehn filling. It is well-known that every
closed, orientable 3-manifold is obtained by aDehn surgery on alink in
the 3-sphere $S^{3}[16]$ .

We call the isotopy class of anon-trivial simple closed curve on atorus
a slope. When a generator system for the first homology of atorus is
fixed, slopes on the torus are parameterized by $\mathbb{Q}\cup\{\infty\}$ . In the sequel, we
always fix the standard meridian-longitude system for the first homology
of the peripheral torus of aknot in $S^{3}[21]$ .

A Dehn surgery on aknot $K$ is determined by its surgery slope. That
is, the slope of the meridian of the attached solid torus uniquely deter-
mines the homeomorphism type of the resultant 3-manif0ld.

The 3-manifold obtained from a3-manifold $M$ by Dehn filling along a
slope $r$ is denoted by $M(r)$ . The 3-manifold obtained by aDehn surgery
on aknot $K$ in $S^{3}$ along aslope $r$ is denoted by $K(r)$ .

3 Proofs of Theorem 1 and Theorem 2
In this section, $M$ denotes a3-manifold with asingle toral boundary
$\partial M$ . Suppose that Int(M) admits a complete hyperbolic structure of
finite volume. One can take ahoroball neighborhood $C$ of the cusp of
Int(M) and then identify $\partial M$ with the boundary $\partial C$ of $C$ . Since $\partial C$ is
regarded as aEuclidean torus as demonstrated in [22], the length of a
curve on $\partial M$ can be defined. The length of aslope $r$ on $\partial M$ is defined
as the minimum of the lengths of simple closed curves with slope $r$ , and
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we denote it by $L(r)$ . Note that this length depends upon the choice of
$C$ .

Let us prepare the following three lemmas. The next lemma was
shown by Agol [2], which was also obtained by Lackenby [17].

Lemma 3.1 ([2, Lemma 6.1]). If the length of a slope $r$ on $\partial M$ is
greater than 6, then the surgered manifold $M(r)$ is irreducible and its
fundamental group is infinite and word-hyperbolic. $\square$

One can take aparticular horoball neighborhood $C$ as follows. Take
amaximal one among those having no overlapping interior, and then
slightly shrink it. The next lemma holds for this $C$ , which was given in
[1].

Lemma 3.2 ([1, Theorem 5.3]). Every slope on $\partial M$ has the length
greater than $2^{1/4}$ , if $M$ is neither the figure-eight knot exterior, the ex-
terior of the knot $5_{2}$ in the knot table [21] nor the manifold obtained by
$(\mathit{2},\mathit{1})$ -Dehn-filling on the Whitehead link exterior. $\square$

Aproperly immersed surface in $M$ is called essential if the immersion
induces injective maps of the fundamental groups and of the relative
fundamental groups. In [2], Agol proved the following.

Lemma 3.3 ([2, Lemma 5.1] ). Suppose that an essential surface $S$

with boundary in $M$ is given. Let $r_{1}$ , $\ldots$ , $r_{n}$ be the slopes of boundary
components of S. Then $\sum_{i=1}^{n}L(r_{i})\leq 6|\chi(S)|$ . $\square$

Proof of Theorem 1. We first assume that $K$ is the figure eight knot in
$S^{3}$ . In this case, it is shown in [22] that if $K(r)$ is non-hyperbolic and
$r\neq\infty$ then $|r|\leq 4=4g$ .

Next, in the case that $K$ is the knot $5_{2}$ in $S^{3}$ , it is also shown in [3]
that if $K(r)$ is non-hyperbolic and $r\neq\infty$ then $|r|\leq 4=4g$ .

Now, we consider ahyperbolic knot $K$ in $S^{3}$ neither the figure eight
knot nor the knot $5_{2}$ . Let $M$ denote the exterior of $K$ . Let $p/q$ be a
slope on $\partial M$ , where $p$ , $q$ are coprime integers and $q\neq 0$ . Suppose that
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$|p|>3\cdot 2^{7/4}g|q|$ . By virtue of Lemma 3.1, we only need to show that
$L(p/q)>6$ .

We choose ahoroball neighborhood $C$ as above and identify $\partial M$ with
$\partial C$ . Let $\overline{\partial C}$ be acomponent of the preimage of $\partial C$ in the universal cover
of Int(M). The preimage of apoint on $\partial C$ gives alattice on $\overline{\partial C}$ . By

fixing the base point $O$ , each primitive lattice point corresponds to a
slope on $\partial C$ , and the distance between $O$ and aprimitive lattice point is
equal to the length of the corresponding slope.

Take alattice point $P$ such that the path $OP$ is projected to the $|q|$

multiple of the longitude. We can take another primitive lattice point $Q$

corresponding to the slope $p/q$ such that the path $PQ$ is projected to $|p|$

multiple of the meridian. Then, the triangle inequality gives that

$|p|L(\infty)=PQ<OP+OQ=|q|L(0)+L(p/q)$

This implies that

$L(p/q)>|p|L(\infty)-|q|L(0)$

Let $g$ be the genus of $K$ , that is, the minimum of the genera of

Seifert surfaces for $K$ . Since aminimal genus Seifert surface is essential,

$L(0)\leq 6(2g-1)$ holds by Lemma 3.3.
Combining this and Lemma 3.2, we conclude

$L(p/q)>3\cdot 2^{7/4}g|q|2^{1/4}-|q|6(2g-1)>6$ .

$\square$

Aknot in $S^{3}$ is called amphicheiral if it is ambient isotopic to its
mirror image.

Proof of Theorem 2. In the same way as the proof above, we only need
to consider ahyperbolic knot $K$ in $S^{3}$ neither the figure eight knot nor
the knot 52 and will show that $L(p/q)>6$ . We use the same notations
as the proof above and let $C_{1}$ , $C_{2}$ be 3 $\cdot$ $2^{7/4},1-2^{-1/2}$ , respectively
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The key fact is that if $K$ is amphicheiral then the geodesies repre-
sented by meridian and the longitude are orthogonal in ahoroball neigh-
borhood [20]. From this fact, the path $OP$ is orthogonal to $PQ$ , and so
the angle $POQ$ is less than $\pi/2$ . Thus, one have

$|p|^{2}L(\infty)^{2}=PQ^{2}>OP^{2}+OQ^{2}=|q|^{2}L(0)^{2}+L(p/q)^{2}$ ,

and
$L(p/q)^{2}>|p|^{2}L(\infty)^{2}-|q|^{2}L(0)^{2}$

Together with the assumption that $|r|=|p/q|>C_{1}(g-C_{2})$ , $q\geq 1$

and the facts that $L(\infty)>2^{1/4}$ , $L(0)\leq 6(2g-1)$ , one has the next
inequalities.

$L(p/q)^{2}$ $>$ $\{\sqrt{2}C_{1}^{2}(g-C_{2})^{2}-36(2g-1)^{2}\}|q|^{2}$

$\geq$ $144(g-C_{2})^{2}-36(2g-1)^{2}$

$=$ $36(1-2C_{2})(4g-2C_{2}-1)$

$=$ $36(\sqrt{2}-1)(4g-3+\sqrt{2})$

$\geq$ 36

Consequently, we have that $L(p/q)>6$ . $\square$

As we remarked in Section 1, the Thurston’s Geometrization Con-
jecture would imply that irreducible 3-manifolds with infinite and word-
hyperbolic fundamental group are actually hyperbolic.

Here, let us give adefinition of the word-hyperbolic group. Let $G$ be
afinitely presented group. Fix afinite presentation of $G$ and let $\Gamma$ be the
Cayley graph of $G$ with respect to the presentation. One can regard $\Gamma$ as
ametric space by setting that each edge has length one. Then $G$ is called
word-hyperbolic if there exists apositive constant $\delta$ such that for every
geodesic triangle in $\Gamma$ , each one edge is contained in a $\delta$ neighborhood of
the other two edges. It can be proved that this definition does not depend
on the choice of presentations [8]. It is shown that the fundamental
group of anegatively curved manifold is word-hyperbolic. Conversely,
for 3-manifolds, the following is conjectured
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Conjecture 3.1. If a closed, irreducible 3-manifold has infinite funda-
mental group which is word hyperbolic, then it is hyperbolic.

It is known that if aclosed, irreducible 3-manifold has infinite fun-
damental group which is word hyperbolic, then it is neither toroidal nor
Seifert fibered. A3-manifold is called toroidal if it contains an embed-
ded essential torus, and it called Seifert fibered if it admits afoliation by
circles. Therefore, if the well-known Thurston’s Hyperbolization Conjec-
ture, which says that such manifolds are actually hyperbolic, is affirma-
tively solved, then the consequence of our theorems is rewritten as that
$K(r)$ is hyperbolic.

4 Proof of Theorem 3

In this section, let $K$ be ahyperbolic knot in $S^{3}$ , $M$ the exterior of $K$ in
$S^{3}$ .

Suppose that $M$ contains aclosed, essential, that is, incompressible
and not $\partial$-parallel, embedded surface $S$ which admits an annulus con-
necting $S$ and $K$ .

This assumption is also stated in the following way. If $K$ is hyperbolic,
$\pi_{1}(M)$ is identified with akleinian group $G$ , and if $S$ is essential, the
inclusion map $i$ : $Sarrow M$ induces the monomorphism $i_{*}$ : $\pi_{1}(S)arrow G$ .
If this $i_{*}(S)$ contains aparabolic element, then one can find an annulus
which runs from $S$ to $\partial M$ by the annulus theorem. Then, by [5, Lemma
2.5.3], such an annulus determines either meridional or integral slope.
In the case that the slope is integral, such an annulus is regarded to
be running from $S$ to the knot $K$ . Moreover, in [12], such an annulus
is uniquely determined in that case up to isotopy. Consequently, the
assumption above is equivalent to that there exist aclosed, essential
embedded surface $S$ such that $i_{*}(S)$ contains aparabolic element other
than that represented by the meridian of $K$ .

To prove Theorem 3, we use the following lemma. By an annulus-
compression, one obtains from $S$ an essential surface properly embedded
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in M. We denote it by $S^{t}$ . The boundary $\partial S$’ determines aslope a on
OM.

Lemma 4.1 ([13, Lemma 3.1] ). Let $F$ be an essential surface and
$f$ the slope determined by $\partial F$ . Then, $\triangle(\alpha, f)\leq-2\chi(F)/|\partial F|$ , where
$\triangle(\alpha, f)$ denotes the minimal geometric intersection number of the slopes.

Here, we only describe the outline of its proof. See [13] for detail.
The key to prove this lemma is the fact that at least one component

of $\partial \mathrm{E}\mathrm{x}\mathrm{t}(S)$ is essential in $\mathrm{E}\mathrm{x}\mathrm{t}(5)$ . By using this fact and the analysis
of the graph appearing as $F\cap S’$ , one obtains an upper bound on the
number of components of $F\cap S’$ .

Proof of Theorem 3. By virtue of Thurston’s Uniformization Theorem
[23], we only need to show that $K(r)$ is irreducible, $S$ remains essential
in $K(r)$ , $K(r)$ is not Seifert fibered and $K(r)$ contains no essential tori.

We set that $r=p/q$ and $\alpha=p’/q’$ , where $p$ and $q$ , $p’$ and $q’$ are c0-

prime integers, and assume that $q$ , $q’\neq 0$ . Then, their minimal geometric
intersection number $\triangle(\alpha, r)$ are given as $|pq’-p’q|$ .

First, let us show that $K(r)$ is irreducible if $|r|=|p/q|\geq 4g$ . Sup-
pose that $K(r)$ is reducible. Since $K$ is hyperbolic, the exterior $M$ is
irreducible. Hence, the reducing sphere must intersect the attached solid
torus, and one can find an essential planer surface $F$ properly embedded
in $M$ . Note that the slope $r$ is represented by the boundary of $F$ . Let
$m$ be the number of components of $\partial F$ . Then, the next follows from
Lemma 4.1.

$\triangle(\alpha, r)\leq\frac{-2(2-m)}{m}=2-\frac{4}{m}<2$ .

On the other hand, by considering aminimal genus Seifert surface, whose
boundary represents the slope 0, we have that

$\triangle(\alpha, 0)\leq-2(2-2g-1)=4g-2$ .

This implies that $|p’1-\mathrm{O}q’|=|p’|\leq 4g-2$ and that

$\triangle(\alpha,r)=|pq’-p’q|\geq||p||q’|-|p’||q||\geq||p||q’|-(4g-2)|q||$
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Since the assumption is that $|p/q|\geq 4g$ , it follows that

$\triangle(\alpha, r)\geq||p||q’|-(4g-2)|q||\geq|4g|q||q’|-(4g-2)|q||\geq|(4g|q’|-4g+2)|q||$

Consequently, by $|q|$ , $|q’|>0$ , we conclude that $\triangle(\alpha, r)\geq 2$ . This is a
contradiction.

Next, we show that $S$ remains essential in $K(r)$ . This is an immediate
corollary of [5, Theorem 2.4.3]. It says that if $\triangle(\alpha, r)\geq 2$ , then $S$ remains
essential in $K(r)$ . As we showed above, in fact, $\triangle(\alpha, r)\geq 2$ holds.

Now, since $K$ is hyperbolic, the genus of $S$ is greater than one, and
since $K$ is aknot in $S^{3}$ , $S$ is separating in $K(r)$ . This implies that $K(r)$

is not Seifert fibered [14, Theorem VI.34].
Finally, we show that $K(r)$ contains no essential tori if $|r|=|p/q|\geq$

$4g+1$ . The argument to show this is almost same as that to show $K(r)$

is irreducible. Suppose that $K(r)$ contains an essential torus. Since
$K$ is hyperbolic, one can find an essential punctured torus $F$ properly
embedded in $M$ . Note that the slope $r$ is represented by the boundary
of $F$ . Let $m$ be the number of components of $\partial F$ . Then, the next also
follows from Lemma 4.1.

$\triangle(\alpha, r)\leq\frac{-2(-m)}{m}=2$ .

On the other hand, again by using that $|p’|\leq 4g-2$ , we have

$\triangle(\alpha, r)=|pq’-p’q|\geq||p||q’|-|p’||q||\geq||p||q’|-(4g-2)|q||$

Since the assumption is that $|p/q|\geq 4g+1$ and $|q|$ , $|q’|>0$ , it follows
that

$\triangle(\alpha, r)\geq||p||q’|-(4g-2)|q||\geq|(4g+1)|q||q’|-(4g-2)|q||\geq 3$ .

This is acontradiction, and completes the proof. $\square$
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