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Abstract:
In this paper, we determine the triangle (polyhedral) model of

ahyperbolic surface, and we consider whether there is aclosed
polyhedron of the model of ahyperbolic surface.

1Introduction
Thurston [Th] gives us an exercise: Construct apolyhedral model of asurface
with negtive constant curvature using congruent triangles. In this article, we
give the answer of this exercise, and consider whether there exists aclosed
polygon of this model.

It is very easy to get all polyhedral models of hyperbolic surfaces. We
argue this in the section 2. In the section 3, we consider whether there exists a
closed polyhedron in $\mathrm{R}^{3}$ . We know well that there is no smoothly immersed
surface in $\mathrm{R}^{3}$ with constant negative curvature. (Hilbert’s theorem.) But
how about the polyhedral case? Such polyhedron is closely related to a
triangle group having aPuchsian surface subgroup of genus 2. (See [KN2].)
For example, we may consider aregular polyhedron with 28 regular triangles
of genus 2. This model has aindex (7, 7, 7). (About index, see Proposition
2.4.) In this case, (if exists,) this polyhedron is related to the triangle group
(2, 3, 7). We can make aunfolding development figure of this polyhedron,
but we cannot construct this (even we are allowed immersed case) in $\mathrm{R}^{3}$ .
Another example: When each face is atriangle with 54, 63, 63 degrees, we
call this model hyplane model. This index of this model is (6, 6, 7). The name
hyplane is derived from the software ‘Hyplane’ developed by the author
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The author would like to thank Prof. Jeffrey Weeks, Prof. Yoshitake
Hashimoto, and Prof. Nariya Kawazumi. Particularly Prof. Weeks shows
that the hyplane model is agood model in the sense of Proposition 2.5. The
author thanks him very much.

2Polyhedral model of hyperbolic surface.
Let $M$ be apolyhedron in $\mathrm{R}^{3}$ . That is, $M$ consists of some faces, some edges
and some vertices in $\mathrm{R}^{3}$ , such that (1) each face is aplaner polygon, and
that (2) for each edge at most 2faces meet at the edge. If all edge have two
faces then we call $M$ closed.

First of all, we define a curvature at each vertex of $M$ .

Definition 2.1
Suppose that avertex $v$ is contained in the interior ofM. The curvature

$\Delta(v)$ at $v$ is given by.$\cdot$

$\Delta(v):=2\pi$ - $\sum$ (radian of the angle)
angles at $v$

In the sequel, we consider Eulidian geometry on $M^{o}:=M\backslash \{\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}\}$.
The following proposition is elementary.

Proposition 2.2
Let $v$ be an interior vertex of M. If atriangle $\Delta ABC$ on $M^{o}$ satisfies

that v is an only vertex in the area surrounded by $\Delta ABC\subset M^{o}\subset M$ , then
$\angle A+\angle B+\angle C=\pi$ $+\Delta(v)$ .

The proof is easy.
Next, we define a triangle model of a hyperbolic surface as follows.

Definition 2.3
Let $M$ be apolyhedron. $M$ is atriangle model of a hyperbolic surface if:

(1) Any two faces are congruent to each other. And the faces have
mirror symmetry at each edges.

(2) For any vertex $v$ in the interior of $M$ , $\Delta(v)$ is equals to anegative
constant $\Delta$ .
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Here the faces have mirror symmetry if for each edge the two faces with
the edge have mirror symmetry with respect to the edge. See Figure 1.

For any vertex, angles at the vertex are constant because of mirror sym-
metry. Let $A$ , $B$ , $C$ be the angles of aface and let $a$ , $b$ , $c$ be the numbers of
angles $A$ , $B$ , $C$ at avertex respectively. From the condition (2), $a$ , $b$ , $c$ must
be constants. If avertex $v$ collects $a$ angles of radian $A$ , then $\Delta(v)=2\pi-aA$ .
From the condition (2), we have

$2\pi-aA=2\pi-bB=2\pi-cC<0$ .

Since $A$ , $B$ , $C$ are the angles of atriangle,

$A+B+C=\pi$

Let $k$ be $aA$ and we have

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{\pi}{k}<\frac{1}{2}$ .

So, we have the complete answer of the exercise by Thurston.

Theorem 2.4
Let $(a, b, c)$ be atripie of positive integers satisfying:
(i) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<\frac{1}{2}$

(2) If $a\neq b$ then $c$ is even. If $b\neq c$ then $a$ is even. If $c\neq a$ then $b$ is even.
Then we have atriangle model of ahyperbolic surface. In fact,

$k= \frac{abc\pi}{ab+bc+ca}$ ,

$A= \frac{k}{a}$ , $B= \frac{k}{b}$ , $C= \frac{k}{c}$ .

We cail $(a, b, c)$ the mdez of the model.

The following two models are regarded as good ones.

Proposition 2.5
(1) If $ail$ faces are isosceles triangles then $\Delta=\frac{-\pi}{10}$ (the model of index

(6, 6, 7) $)$ is the maximum value of $\Delta$ . (This part is due to Prof. Weeks.)
(2) If each faces isn’t isosceles, then $\Delta=\frac{-2\pi}{41}$ (the model of index

(4, 6, 14) $)$ is the maximum value of $\Delta$ .

Remark that the model (6, 6, 7) is the hyplane model.
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3Closed polyhedron
In this section we argue whether there exists aclosed polyhedron of atriangle
model of ahyperbolic surface. The following two propositions are elementary.

Proposition 3.1 Suppose M is aclosed polyhedron of the model of index
(a, b, c). Let g be the genus of M then we have g $\geq 2$ .

Proof:
Suppose that $a$ , $b$ , $c$ are different with each other. It is easy to have

$v=( \frac{1}{a}+\frac{1}{b}+\frac{1}{c})f$, $e= \frac{3}{2}f$ ,

where $v$ , $e$ , $f$ are the numbers of all vertices, of all edges, and of all faces
respectively. If the polyhedron is closed,

$2-2g=v-e+f=( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2})f<0$ .

In the case $a=b\neq c$ and the case $a=b=c$, we get the same result in the
similar way.

In the smooth case we know that the genus of aclosed hyperbolic surface
is more than 1. Proposition 3.1 is an analogue of this fact.

Proposition 3.2
Suppose that P is aAg-gon on $M^{o}$ and that the sum of the internal angle

of P is $2\pi$ . If $v’$ is the number of vertices in the area surrounded by P, then
v $=v’$ .

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$

Prom Proposition 2.2, we have

$2\pi=(4g-2)\pi+v’\Delta$ .

After easy calculations, we obtain that

$v=v’= \frac{2(ab+bc+ca)(2-2g)}{2(ab+bc+ca)-abc}$ .
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In the triangle model, we may regard that vertices are placed uniformly
on the polyhedron. It means that Proposition 2.2 is an analogue of Gauss-
Bonnet theorem. Using Gauss-Bonnet theorem, we get the area of aclosed
smooth hyperbolic surface. Prom Proposition 3.2, we know that ‘the area’ of
closed polyhedron doesn’t contradict to the numbers of vertices.

So we cannot restrict the index $(a, b, c)$ by the genus $g$ using this prop0-

sition. But as mentioned in [NK2], if we fix $g$ then the index $(a, b, c)$ is
restricted from the viewpoint of Fuchsian groups and triangle groups.

Theorem 3.3
(1) There are two polyhedron $M_{1}$ and $M_{2}$ of the model (7, 7, 7) such that

$M=M_{1}\cup M_{2}$ can be aclosed polyhedron of the model (7, 7, 7) with genus
2.

(2) We cannot realize the above $M$ in $\mathrm{R}^{3}$ .

Proof:
(1) See Figure $2(1)$ . This polyhedron is homeomorphic to apants. If

we consider two copies of this (and let them be $M_{1}$ and $M_{2}$ ) then we can
construct aclosed polyhedron of the index (7, 7, 7). See Figure $2(2)$

(2) The proof can be obtained only by aconbinatorial way and very
complicated. So we omit the proof.
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Figure 1

Figure $2(2)$
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