Approximations for a family of generalized hypergeometric distributions

筑波大·数学 飛田 英祐 (Eisuke Hida) 筑波大·数学 赤平 昌文 (Masafumi Akahira)

1. はじめに

離散型分布族の1つとして,一般超幾何分布族が考えられ,これはポアソン分布,2項分布,負の 2項分布,超幾何分布,負の超幾何分布,対数級数分布などを含む一般的な分布族であることが知 られている(Kemp[K68], Dacey[D72],竹内[Ta84]).この一般超幾何分布はすべての母数が大きく なるとき,正規分布で近似できることが知られ,さらにEdgeworth型展開による近似式がStirling の公式を用いて導かれる([Ta84]).本論では,一般超幾何分布の[Ta84]によるEdgeworth型近 似式を改良し,数値的に比較してその精確性を確かめる([HA00]).さらに,一般超幾何分布の下 側確率の近似式を構成し,数値的に比較する.なお,関連する結果は[JKK92],[SO94],[M73], [SS81],[Tr83]等に見られる.

2. 設定

本節においては [Ta84] と同じ設定で考える.まず,確率変数 X が確率関数

$$p_X(x) := P\{X = x\} = K \frac{\prod_{j=1}^m c_j(x) \prod_{j=1}^n \bar{d}_j[x]}{x! \prod_{j=1}^k a_j(x) \prod_{j=1}^l \bar{b}_j[x]} \theta^x$$
(2.1)

をもつ分布を一般超幾何分布 (generalized hypergeometric distribution) という. ただし, すべての a_j, b_j, c_j, d_j を非負値定数, $\theta > 0$, Kはある定数とし, $a(x) = \Gamma(a+x)/\Gamma(a), \bar{b}[x] = \Gamma(b)/\Gamma(b-x)$ とする. また, $M := \min\{b_1, \ldots, b_l, d_1, \ldots, d_n\} > 0$ とし, $x = 0, 1, \ldots, M$ とする. このような 分布を, $\mathbf{a} = (a_1, \ldots, a_k), \mathbf{b} = (b_1, \ldots, b_l), \mathbf{c} = (c_1, \ldots, c_m), \mathbf{d} = (d_1, \ldots, d_n)$ とし,

 $GHG(k, l, m, n; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$

と表す.このとき,非負整数の組 (k, l, m, n)を一般超幾何分布のタイプといい,この分布は,特 殊な場合として次のような分布を含む.

(k,l,m,n)	θ の範囲	分布
(0, 0, 0, 0)	$(0,\infty)$	ポアソン分布
(0,0,0,1)	$(0,\infty)$	2項分布
(0,0,1,0)	(0,1)	負の2項分布
(1,0,0,2)	1	超幾何分布
(0, 1, 1, 1)	1	負の超幾何分布
(2, 1, 0, 0)	(0,1)	対数級数分布

3. 一般超幾何分布の近似

各 j について、 a_j , b_j , c_j , d_j が大きいときの一般超幾何分布の Edgeworth 型近似は [Ta84] に よって与えられているが、数値的な検討はなされていない.本節では、 [Ta84] と同様にして近似 を導出する際に、その途中で適切に係数を決めることによって [Ta84] の近似式を改良することを 考慮した上で、数値検討も行う.

3.1 各点確率の近似

まず, 各 *j* について $a_j = \alpha_j N + 1$, $b_j = \beta_j N + 1$, $c_j = \gamma_j N + 1$, $d_j = \delta_j N + 1$ とし, $\alpha_j > 0$, $\beta_j > 0$, $\gamma_j > 0$, $\delta_j > 0$ とする. ただし, $\alpha_0 := 0$ とし, $a_0 := 1$ とする. 次に, $\theta = \theta_0 N^{k+l+1-m-n}$ ($\theta_0 > 0$) として, $N \to \infty$ のときに (2.1) の近似を考える. ここで, Stirling の公式

$$\log \Gamma(x+1) = \log \sqrt{2\pi} + \left(x + \frac{1}{2}\right) \log x - x + \frac{1}{12x} + O\left(\frac{1}{x^3}\right)$$
(3.1)

を用いる.いま, $p_X(x)$ をモードの値 $x_0 = N\mu + O(N)$ を中心にして展開する.このとき, $p_X(x_0 + 1)/p_X(x_0) \approx 1$ より, μ は

$$\frac{\prod_{j=1}^{m} (\gamma_j + \mu) \prod_{j=1}^{n} (\delta_j - \mu)}{\prod_{j=0}^{k} (\alpha_j + \mu) \prod_{j=1}^{l} (\beta_j - \mu)} \theta_0 = 1$$
(3.2)

を満たさなければならない.そこで,(3.2)の解 μ (> 0)が存在するときに, μ の値を中心にした展開を考える.ここで,(3.2)の解は必ずしも一意的になるとは限らない.このとき, $z := (x - N\mu)/\sqrt{N}$ とおくと

$$\log p_X(x) = \log K - \sum_{j=0}^k \log \Gamma(a_j + x) + \sum_{j=1}^l \log \Gamma(b_j - x) + \sum_{j=1}^m \log \Gamma(c_j + x) - \sum_{j=1}^n \log \Gamma(d_j - x) + x \log \theta$$
(3.3)

になる.いま, Stirling の公式 (3.1) を用いると

$$\log \Gamma(a_{j} + x) = \log \sqrt{2\pi} + \{N(\alpha_{j} + \mu) + N^{1/2}z + \frac{1}{2}\} \log (N(\alpha_{j} + \mu) + N^{1/2}z) - \{N(\alpha_{j} + \mu) + N^{1/2}z\} + \frac{1}{12\{N(\alpha_{j} + \mu) + N^{1/2}z\}} + O\left(\frac{1}{N^{3}}\right) = N^{1/2} \{\log N + \log (\alpha_{j} + \mu)\}z + \frac{1}{2(\alpha_{j} + \mu)}z^{2} - \frac{1}{6\sqrt{N}} \left\{\frac{1}{(\alpha_{j} + \mu)^{2}}z^{3} - \frac{3}{(\alpha_{j} + \mu)}z\right\} + \frac{1}{12N} \left\{\frac{1}{(\alpha_{j} + \mu)^{3}}z^{4} - \frac{3}{(\alpha_{j} + \mu)^{2}}z^{2}\right\} + \operatorname{const} + o\left(\frac{1}{N}\right)$$
(3.4)

となる.また、(3.2)より

$$\sum_{j=1}^{m} \log (\gamma_j + \mu) + \sum_{j=1}^{n} \log (\delta_j - \mu) - \sum_{j=0}^{k} \log (\alpha_j + \mu) - \sum_{j=1}^{l} \log (\beta_j - \mu) + \log \theta_0 = 0$$

となるから、(3.4)と同様のものを用いると(3.3)は

$$\log p_X(x) = \log K - \frac{1}{2\sigma^2} z^2 + \frac{1}{6\sqrt{N}} (A_2 z^3 - 3A_1 z) - \frac{1}{24N} (2B_3 z^4 - 6B_2 z^2) + o\left(\frac{1}{N}\right)$$
(3.5)

となる. ただし, $z = (x - N\mu)/\sqrt{N}$,

$$A_{i} = \sum_{j=0}^{k} \frac{1}{(\alpha_{j} + \mu)^{i}} + \sum_{j=1}^{l} \frac{1}{(\beta_{j} - \mu)^{i}} - \sum_{j=1}^{m} \frac{1}{(\gamma_{j} + \mu)^{i}} - \sum_{j=1}^{n} \frac{1}{(\delta_{j} - \mu)^{i}} \quad (i = 1, 2),$$

$$B_{i} = \sum_{j=0}^{k} \frac{1}{(\alpha_{j} + \mu)^{i}} - \sum_{j=1}^{l} \frac{1}{(\beta_{j} - \mu)^{i}} - \sum_{j=1}^{m} \frac{1}{(\gamma_{j} + \mu)^{i}} + \sum_{j=1}^{n} \frac{1}{(\delta_{j} - \mu)^{i}} \quad (i = 1, 2, 3)$$

とし、 $B_1 = 1/\sigma^2$ とする. このとき、(3.5) において $A := A_1/A_2$ 、 $w := z - (C/\sqrt{N})$ とすると、

$$\log p_X(x) = \log K - \frac{1}{2\sigma^2} \left(w + \frac{C}{\sqrt{N}} \right)^2 + \frac{A_2}{6\sqrt{N}} \left\{ \left(w + \frac{C}{\sqrt{N}} \right)^3 - 3A \left(w + \frac{C}{\sqrt{N}} \right) \right\} - \frac{1}{24N} (2B_3 w^4 - 6B_2 w^2) + o \left(\frac{1}{N} \right) = -\frac{1}{2\sigma^2} w^2 + \frac{A_2}{6\sqrt{N}} \left\{ w^3 - 3 \left(A + \frac{2C}{A_2 \sigma^2} \right) w \right\} - \frac{1}{24N} \left\{ 2B_3 w^4 - 6(B_2 + 2A_2 C) w^2 + 12C \left(A_1 + \frac{C}{\sigma^2} \right) \right\} + o \left(\frac{1}{N} \right)$$
(3.6)

となる. ただし, $C = \frac{1}{2}(A_2 - A_1)\sigma^2$ とする. ここで, 通常の Edgeworth 展開を考慮に入れて

$$A + \frac{2C}{A_2\sigma^2} = 1$$

となるように C を決めていることに注意. したがって (3.6) より

$$p_X(x) = Ke^{-\frac{w^2}{2\sigma^2}} \left[1 + \frac{A_2}{6\sqrt{N}} (w^3 - 3w) - \frac{1}{24N} \{ 2B_3 w^4 - 6(B_2 + A_2(A_2 - A_1)\sigma^2)w^2 + 3(A_2^2 - A_1^2)\sigma^2 \} + \frac{A_2^2}{72N} (w^3 - 3w)^2 + o\left(\frac{1}{N}\right) \right]$$

=: $Kf_N(w)$ (3.7)

と表される.ただし、 $w = (x - N\mu - C)/\sqrt{N}$ とする.また、(3.6)の定数 K は

$$\sum_{w} \frac{1}{\sqrt{N}} f_N(w) = \int_{-\infty}^{\infty} f_N(w) dw + o\left(\frac{1}{N}\right)$$
(3.8)

より,

$$K = \frac{1}{\sqrt{2\pi N}\sigma} + O\left(\frac{1}{N\sqrt{N}}\right) \tag{3.9}$$

と表される. したがって (3.6) と (3.9) より

$$p_X(x) = \frac{1}{\sqrt{2\pi N\sigma}} e^{-\frac{w^2}{2\sigma^2}} \left[1 + \frac{A_2}{6\sqrt{N}} (w^3 - 3w) - \frac{1}{24N} \{ 2B_2 w^4 - 6(B_2 + A_2(A_2 - A_1)\sigma^2)w^2 + 3(A_2^2 - A_1^2)\sigma^2 \} + \frac{A_2^2}{72N} (w^3 - 3w)^2 + o\left(\frac{1}{N}\right) \right]$$
(3.10)

となる. 一方, (3.5)から直接

$$p_X(x) = \frac{1}{\sqrt{2\pi N}\sigma} e^{-\frac{z^2}{2\sigma^2}} \left[1 + \frac{1}{6\sqrt{N}} (A_2 z^3 - 3A_1 z) - \frac{1}{24N} (2B_3 z^4 - 6B_2 z^2) + \frac{1}{72N} (A_2 z^3 - 3A_1 z)^2 + o\left(\frac{1}{N}\right) \right]$$
(3.11)

と表すこともできる ([Ta84]).

3.2 片側確率の近似

前節において、一般超幾何分布の確率関数が(3.10)より

$$p_X(x) = rac{1}{\sqrt{2\pi N}\sigma} f_N(w)$$

と表せることから、その下側確率 $P\{X \leq x\}$ の近似を [Ta84] と同様にして考えることもできる. そのため、 $W = (X - N\mu - C)/\sqrt{N}$ の分布のキュムラントを求める. したがって、 $H_j \ge j$ 次の エルミート多項式とすると

$$\int e^{itw} w^j \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{w^2}{2\sigma^2}} dw = (i\sigma)^j H_j(\sigma t) e^{-\frac{\sigma^2 t^2}{2}}$$

となる. いま $\tilde{H}_j(t) := (i\sigma)^j H_j(\sigma t)$ とおくと, W の分布の特性関数は

$$\begin{split} \phi_N(t) &= E(e^{itW}) = \int \frac{1}{\sqrt{2\pi\sigma}} e^{itw} f_N(w) dw \\ &= e^{-\frac{\sigma^2 t^2}{2}} \left\{ 1 + \frac{A_2}{6\sqrt{N}} (\tilde{H}_3(t) - 3\tilde{H}_1(t)) - \frac{1}{24N} \{ 2B_3 \tilde{H}_4(t) - 6(B_2 + \sigma^2 A_2(A_2 - A_1)) \tilde{H}_2(t) \\ &- 3\sigma^2 (A_2^2 - A_1^2) \} + \frac{A_2^2}{72N} (\tilde{H}_6(t) - 6\tilde{H}_4(t) + 9\tilde{H}_2(t)) \right\} + O\left(\frac{1}{N\sqrt{N}}\right) \end{split}$$

と展開することができる. これより W の分布のキュムラント母関数は

$$\log \phi_N(t) = -\frac{\sigma^2 t^2}{2} + \frac{A_2}{6\sqrt{N}} (\tilde{H}_3(t) - 3\tilde{H}_1(t)) - \frac{1}{24N} \{ 2B_3\tilde{H}_4(t) - 6(B_2 + \sigma^2 A_2(A_2 - A_1))\tilde{H}_2(t) - 3\sigma^2 (A_2^2 - A_1^2) \} + \frac{A_2^2}{72N} (\tilde{H}_6(t) - 6\tilde{H}_4(t) + 9\tilde{H}_2(t)) + O\left(\frac{1}{N\sqrt{N}}\right) = -\frac{\sigma^2 t^2}{2} + \frac{A_2}{2\sqrt{N}} 3(\sigma^4 - \sigma^2)(it) - \frac{1}{4N} [2B_3\sigma^6 - (B_2 + \sigma^2 A_2(A_2 - A_1))\sigma^4 - A_2^2(2\sigma^8 - \sigma^6)](it)^2 + \frac{A_2}{6\sqrt{N}} \sigma^6(it)^3 - \frac{1}{24N} (2B_3\sigma^8 - 3A_2^2\sigma^{10})(it)^4 + O\left(\frac{1}{N\sqrt{N}}\right)$$
(3.12)

となる. したがって (3.12) より W のキュムラントはそれぞれ

$$\begin{split} \kappa_1(W) &= E[W] = \frac{A_2}{2\sqrt{N}} (\sigma^4 - \sigma^2) + O\left(\frac{1}{N\sqrt{N}}\right) \\ \kappa_2(W) &= \sigma^2 - \frac{1}{2N} (2B_3 \sigma^6 - B_2 \sigma^4) + \frac{1}{2N} (2A_2^2 \sigma^8 - A_1 A_2 \sigma^6) + O\left(\frac{1}{N\sqrt{N}}\right) \\ \kappa_3(W) &= \frac{A_2}{\sqrt{N}} \sigma^6 + O\left(\frac{1}{N\sqrt{N}}\right) \\ \kappa_4(W) &= -\frac{2B_3}{N} \sigma^8 + \frac{3A_2^2}{N} \sigma^{10} + O\left(\frac{1}{N\sqrt{N}}\right) \end{split}$$

となる. ただし、5次以上のキュムラントはすべて N^{-1} より小さい order となる. そこで、 $P{X \le x}$ を計算するために

$$u = \frac{x - N\mu - C - (A_2(\sigma^4 - \sigma^2) - 1)/2}{\sqrt{N}\sigma}$$

とおく.ただし、分子はWの平均の項と、連続補正を考慮したものとする.このとき離散修正を施した Edgeworth 展開は

$$P\{X \le x\} = \sum_{t=0}^{x} p_X(t)$$

$$= \Phi(u) - \phi(u) \left\{ \frac{\kappa_3}{6\sigma^3} H_2(u) + \frac{\kappa_4}{24\sigma^4} H_3(u) + \frac{\kappa_3^2}{72\sigma^6} H_5(u) - \frac{1}{24N\sigma^2} H_1(u) + O\left(\frac{1}{N\sqrt{N}}\right) \right\}$$

$$= \Phi(u) - \phi(u) \left\{ \frac{A_2\sigma^3}{6\sqrt{N}} H_2(u) - \frac{1}{24N} (2B_3\sigma^4 - 3A_2^2\sigma^6) H_3(u) + \frac{A_2^2\sigma^6}{72N} H_5(u) - \frac{1}{24N\sigma^2} H_1(u) - \frac{1}{4N} \{2B_3\sigma^4 - B_2\sigma^2 + A_1A_2\sigma^4 + 2A_2^2(\sigma^6 - \sigma^4)\} + O\left(\frac{1}{N\sqrt{N}}\right) \right\}$$
(3.13)

と表される.ただし、 $\Phi(\cdot), \phi(\cdot)$ はそれぞれ標準正規分布 N(0,1)の c.d.f., p.d.f. とする.また、これより $P\{X \leq x\} = \Phi(u')$ とおくと

$$u' = u - \frac{A_2 \sigma^3}{6\sqrt{N}} H_2(u) + \frac{A_2^2 \sigma^6}{72N} (H_2^2(u) - H_5(u)) + \frac{1}{24N} (2B_3 \sigma^4 - 3A_2^2 \sigma^6) H_3(u) + \frac{1}{24N\sigma^2} H_1(u) + \frac{1}{4N} \{2B_3 \sigma^4 - B_2 \sigma^2 + A_1 A_2 \sigma^4 + 2A_2^2 (\sigma^6 - \sigma^4)\} + O\left(\frac{1}{N\sqrt{N}}\right)$$

と表すこともできる.

前節の2つの Edgeworth 型近似式 (3.10), (3.11) と下側確率の近似式 (3.13) を具体的な分布に おいて数値的に比較検討する.

例 1 (ポアソン分布の場合). ポアソン分布 $P_O(\lambda)$ は、タイプ (0,0,0,0)、の一般超幾何分布であり、その確率関数は

$$p_X(x) = rac{\lambda^x e^{-\lambda}}{x!}$$
 $(x = 0, 1, 2, \dots; \lambda > 0)$

である. このとき, $\theta = \lambda$, $\theta_0 = \lambda/N$ とおくと, (3.2)の解として $\mu = N/\lambda$ が一意的に定まる. こ れを用いて $p_X(x)$ の真値とその近似 (3.10), (3.11) と Edgeworth 近似, さらに下側確率の真値と その近似 (3.13) と各点確率の近似式 (3.10)の和をとったものと Edgeworth 近似を数値的に比較を 行った (表 4.1.1, 4.1.2 参照). その結果,各点確率については近似式 (3.10)は (3.11) と Edgeworth 近似より精確であることが分かる. また,下側確率についても近似式 (3.13)の精確さを読みとる ことができる.

x	True value (%)	GHG approx. (3.11)	GHG approx. (3.10)	Edgeworth
0	0.0045			
1	0.0454	-0.1123	-0.1197	-0.1633
2	0.2270	0.0604	0.0516	0.0531
3	0.7567	0.0435	0.0349	0.0407
4	1.8917	0.0184	0.0099	0.0140
5	3.7833	0.0059	-0.0024	-0.0006
6	6.3056	0.0036	-0.0048	-0.0046
7	9.0079	0.0058	-0.0026	-0.0033
8	11.2599	0.0082	-0.0002	-0.0010
9	12.5110	0.0090	0.0006	0.0002
10	12.5110	0.0084	0.0000	0.0003
11	11.3736	0.0079	-0.0005	0.0003
12	9.4780	0.0089	0.0004	0.0013
13	7.2908	0.0109	0.0025	0.0028
14	5.2077	0.0120	0.0035	0.0030
15	3.4718	0.0095	0.0010	-0.0003
16	2.1699	0.0031	· -0.0052	-0.0070
17	1.2764	-0.0032	-0.0116	-0.0132
18	0.7091	-0.0030	-0.0113	-0.0119
19	0.3732	0.0090	0.0006	0.0024
20	0.1866	0.0312	0.0227	0.0285

表 4.1.1 ポアソン分布 $P_O(\lambda)$ の真値と近似式との相対誤差

$\int x$	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)	Edgeworth
0	0.0045			
1	0.0499	-0.5019	-0.3169	-0.5019
2	0.2769	-0.0470	-0.0149	-0.0470
3	1.0336	0.0172	0.0215	0.0172
4	2.9253	0.0152	0.0140	0.0152
5	6.7086	0.0063	0.0047	0.0063
6	13.0141	0.0010	0.0001	0.0010
7	22.0221	-0.0008	-0.0010	-0.0008
8	33.2820	-0.0009	-0.0007	-0.0009
9	45.7930	-0.0006	-0.0004	-0.0006
10	58.3040	-0.0004	-0.0003	-0.0004

表 4.1.2 ポアソン分布 $P_O(10)$ の下側確率 $P\{X \le x\}$ の真値と近似式との相対誤差

例 2 (2項分布の場合). 2項分布分布 *B*(*n*,*p*)は, タイプ (0,0,0,1)の一般超幾何分布であり, その確率関数は

$$p_X(x) = \binom{n}{x} p^x q^{n-x}$$
 $(x = 0, 1, ..., n; \ 0$

である. このとき, d = n + 1, $\theta = \theta_0 = p/q$ とおくと

$$p_X(x) = K \frac{\bar{d}[x]}{x!} \theta^x$$

と表される. ただし, K はある定数とする. いま (3.2) において, $\delta = n/N$ とおくと

$$\frac{\delta - \mu}{\mu} \cdot \frac{p}{q} = 1$$

となり、この解として $\mu = \delta p$ が一意的に定まる. これを用いて $p_X(x)$ の真値とその近似 (3.10), (3.11) と Edgeworth 近似、さらに下側確率の真値とその近似 (3.13) と各点確率の近似式 (3.10) の 和をとったものと Edgeworth 近似を数値的に比較を行った (表 4.2.1, 4.2.2 参照). その結果、各 点確率については近似式 (3.10) は (3.11) と Edgeworth 近似より精確であることが分かる. また、 下側確率についても近似式 (3.13) の精確さを読みとることができる.

x	True value (%)	GHG approx. (3.11)	GHG approx. (3.10)	Edgeworth
0	0.0001			
1	0.0019	-0.0986	-0.1266	-0.2757
2	0.0181	0.0458	0.0300	0.0040
3	0.1087	0.0316	0.0195	0.0180
4	0.4621	0.0148	0.0044	0.0068
5	1.4786	0.0083	-0.0015	0.0002
6	3.6964	0.0078	-0.0018	-0.0013
7	7.3929	0.0091	-0.0006	-0.0008
8	12.0134	0.0099	0.0001	0.0000
9	16.0179	0.0100	0.0000	0.0002
10	17.6197	0.0099	0.0000	0.0003
11	16.0179	0.0100	0.0000	0.0002
12	12.0134	0.0099	0.0001	0.0000
13	7.3929	0.0091	-0.0006	-0.0008
14	3.6964	0.0078	-0.0018	-0.0013
15	1.4786	0.0083	0.0015	0.0002
16	0.4621	0.0148	0.0044	0.0068
17	0.1087	0.0316	0.0195	0.0180
18	0.0181	0.0458	0.0300	0.0040
19	0.0019	-0.0986	-0.1266	-0.2757
20	0.0001			—

表 4.2.1 2項分布 B(20,0.5)の真値と近似式との相対誤差

表 4.2.2 2項分布 B(20, 0.5)の下側確率 $P\{X \leq x\}$ の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)	Edgeworth
0	0.0181	-0.5459	0.4672	-0.5459
1	0.2133	0.0294	0.1113	0.0294
2	1.2118	0.0269	-0.0027	0.0269
3	4.4376	0.0072	-0.0282	0.0072
4	11.8197	-0.0003	-0.0207	-0.0003
5	24.5396	-0.0012	-0.0068	-0.0012
6	41.6625	-0.0006	0.0017	-0.0006
7	60.1027	-0.0003	0.0025	-0.0003

例 3 (負の 2 項分布の場合). 負の 2 項分布 NB(n,p) は,タイプ (0,0,1,0) の一般超幾何分布で あり,その確率関数は

$$p_X(x) = \binom{x+n-1}{x} p^x q^{n-x} \qquad (x = 0, 1, \dots, n; \ 0$$

である. このとき, c = n, $\theta = \theta_0 = q$ とすると

$$p_X(x) = K \frac{c(x)}{x!} \theta^x$$

と表される. ただし, K はある定数とする. いま, $\gamma = (n-1)/N$ とおくと, (3.2)の解として $\mu = \gamma q/p$ が一意的に定まる. これを用いて $p_X(x)$ の真値とその近似 (3.10), (3.11) と Edgeworth 近似, さらに下側確率の真値とその近似 (3.13) と各点確率の近似式 (3.10)の和をとったものと Edgeworth 近似を数値的に比較を行った (表 4.3.1, 4.3.2 参照). その結果,各点確率については近 似式 (3.10) は (3.11) と Edgeworth 近似より精確であることが分かる. また,下側確率についても 近似式 (3.13)の精確さを読みとることができる.

表 4.3.1 負の 2 項分布 NB(40,0.75) の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.11)	GHG approx. (3.10)	Edgeworth
0	0.0010	6441.2400		319.3720
1	0.0100	769.3210	-0.3769	66.1710
2	0.0515	158.8540	-0.1304	25.6483
3	0.1804	41.6233	-0.1454	12.3797
4	0.4848	11.8389	-0.1743	6.7854
5	1.0666	3.15862	-0.1848	4.0082
6	1.9998	0.5862	-0.1763	2.4598
7	3.2854	-0.0515	-0.1532	1.5183
8	4.8254	-0.0934	-0.1208	0.9067
9	6.4339	-0.0067	-0.0845	0.4890
10	7.8815	0.0511	-0.0492	0.1926
11	8.9562	0.0499	-0.0194	-0.0238
12	9.5160	0.0167	0.0017	-0.1856
13	9.5160	-0.0031	0.0130	-0.3093
14	9.0062	0.0246	0.0163	-0.4063
15	8.1056	0.1000	0.0159	-0.4843
16	6.9657	0.1824	0.0182	-0.5486
17	5.7365	0.2110	0.0299	-0.6025
18	4.5414	0.1585	0.0554	-0.6475
19	3.4658	0.1069	0.0947	-0.6844
20	2.5560	0.3193	0.1427	-0.7136

x	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)	Edgeworth
2	0.0626	0.4835	-0.2222	36.8765
3	0.2430	0.1533	-0.1652	18.6908
4	0.7278	0.0317	-0.1713	10.7603
5	1.7944	-0.0298	-0.1793	6.7469
6	3.7941	-0.0630	-0.1777	4.4872
7	7.0795	-0.0791	-0.1663	3.1094
8	11.9049	-0.0845	-0.1479	2.2166
9	18.3388	-0.0832	-0.1256	1.6105
10	26.2202	-0.0783	-0.1027	1.1843
.11	35.1765	-0.0716	-0.0815	0.8767
12	44.6924	-0.0644	-0.0638	0.6505
13	54.2084	-0.0573	-0.0503	0.4820

表 4.3.2 負の 2 項分布 NB(40, 0.75) の下側確率 $P\{X \leq x\}$ の真値と近似式との相対誤差

例 4 (超幾何分布の場合). 超幾何分布 H(M,n,L)は、タイプ (1,0,0,2), θ = 1 の一般超幾何分 布であり、その確率関数は

$$p_X(x) = \binom{M}{x} \binom{L-M}{n-x} / \binom{L}{n} \quad (x = 0, 1, \dots, \min(n, M))$$

である. このとき, a = L - M - n + 1, $d_1 = M + 1$, $d_2 = n + 1$ とすると

$$p_X(x) = K \frac{\prod_{j=1}^2 \bar{d}_j[x]}{x! a(x)}.$$

と表される. ただし, K はある定数とする. いま, $\alpha = (L - M - n)/N$, $\delta_1 = M/N$, $\delta_2 = n/N$ とおくと, (3.2) は

$$\frac{(\delta_1-\mu)(\delta_2-\mu)}{\mu(\alpha+\mu)}=1,$$

となり、この解として $\mu = \delta_1 \delta_2 / (\alpha + \delta_1 + \delta_2)$ が一意的に定まる.これを用いて $p_X(x)$ の真値とそ の近似 (3.10), (3.11) と Edgeworth 近似, さらに下側確率の真値とその近似 (3.13) と各点確率の 近似式 (3.10) の和をとったものと Edgeworth 近似を数値的に比較を行った (表 4.4.1, 4.4.2 参照). その結果,各点確率については近似式 (3.10) は (3.11) と Edgeworth 近似より精確であることが分 かる.また,下側確率についても近似式 (3.13) の精確さを読みとることができる.

x	True value $(\%)$	GHG approx. (3.11)	GHG approx. (3.10)	Edgeworth
0	0.0000	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	
1	0.0000	-0.4975	-0.4459	
2	0.0003	-0.0152	-0.0032	-0.4434
3	0.0053	0.0175	0.0185	-0.0759
4	0.0548	0.0078	0.0042	-0.0082
5	0.3685	0.0035	-0.0028	0.0014
6	1.6750	0.0054	-0.0029	-0.0010
7	5.3041	0.0091	-0.0011	-0.0002
8	11.9342	0.0121	0.0000	0.0000
9	19.3221	0.0141	0.0000	-0.0001
10	22.6713	0.0160	-0.0001	-0.0001
11	19.3221	0.0181	0.0000	-0.0001
12	11.9342	0.0200	0.0000	0.0000
13	5.3041	0.0208	-0.0011	-0.0002
14	1.6750	0.0207	-0.0029	-0.0010
15	0.3685	0.0229	-0.0028	0.0014
16	0.0548	0.0328	0.0042	-0.0082
17	0.0053	0.0522	0.0185	-0.0759
18	0.0003	0.0410	-0.0032	-0.4434
19	0.0000	-0.3765	-0.4459	
20	0.0000	-5.9376		

表 4.4.1 超幾何分布 H(50, 25, 20) の真値と近似式との相対誤差

表 4.4.2 超幾何分布 H(40, 20, 15) の下側確率 $P\{X \leq x\}$ の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)	Edgeworth
0	0.0000	-1.9175	-0.3489	-3.7685
1	0.0020	-0.1325	0.0458	-0.3679
2	0.0386	-0.0022	0.0185	-0.0414
3	0.3956	0.0017	-0.0014	-0.0018
4	2.4186	-0.0010	-0.0043	0.0010
5	9.5396	-0.0010	-0.0022	0.0004
6	25.7238	-0.0004	-0.0007	0.0001
7	50.0000	0.0000	-0.0004	0.0000

例 5 (負の超幾何分布の場合). 負の超幾何分布 NH(n, M, L) は、タイプ $(0, 1, 1, 1), \theta = 1$ の一 般超幾何分布であり、その確率関数は

$$p_X(x) = \frac{M! \ (L-M)! \ (n+x-1)! \ (L-n-x)!}{L! \ (n-1)! \ x! \ (M-n)! \ (L-M-x)!}$$
$$(x = 0, 1, \dots, \min(L-n, \ L-M))$$

である. このとき, b = L - n + 1, c = n, d = L - M + 1とすると

$$p_X(x) = K rac{c(x) \ d[x]}{x! \ ar{b}[x]}$$

と表される.ただし, K はある定数とする.いま, $\beta = (L-n)/N$, $\gamma = (n-1)/N$, $\delta = (L-M)/N$ とおくと, (3.2) は

$$\frac{(\gamma+\mu)(\delta-\mu)}{\mu(\beta-\mu)}=1$$

となり、この解として $\mu = \gamma \delta/(\beta + \gamma - \delta)$ が一意的に定まる. これを用いて $p_X(x)$ の真値とその 近似 (3.10), (3.11) と Edgeworth 近似, さらに下側確率の真値とその近似 (3.13) と各点確率の近似 式 (3.10) の和をとったものと Edgeworth 近似を数値的に比較を行った (表 4.5.1, 4.5.2 参照). そ の結果,各点確率については近似式 (3.10) は (3.11) と Edgeworth 近似より精確であることが分か る.また、下側確率についても近似式 (3.13) の精確さを読みとることができる.

x	True value (%)	GHG approx. (3.11)	GHG approx. (3.10)	Edgeworth
0	0.0218		-0.6406	-0.2567
1	0.1453	0.0102	0.0591	0.2651
2	0.5236	0.0400	0.0418	0.0791
3	1.3464	0.0128	0.0078	0.0062
4	2.7552	-0.0031	-0.0057	-0.0158
5	4.7474	-0.0080	-0.0061	-0.0158
6	7.1210	-0.0079	-0.0019	-0.0086
7	9.4947	-0.0068	0.0019	-0.0015
8	11.4040	-0.0064	0.0030	0.0027
9	12.4407	-0.0066	0.0020	0.0044
10	12.3814	-0.0067	0.0003	0.0045
11	11.2559	-0.0065	-0.0007	0.0037
12	9.3305	-0.0064	-0.0002	0.0016
13	7.0178	-0.0070	0.0017	-0.0029
14	4.7474	-0.0082	0.0047	-0.0096
15	2.8484	-0.0081	0.0090	-0.0155
16	1.4836	-0.0023	0.0154	-0.0128
17	0.6483	0.0151	0.0213	0.0136
18	0.2244	0.0419	-0.0024	0.0923
19	0.0551	-0.0068	-0.2648	0.2810
20	0.0073			0.6311

表 4.5.1 負の超幾何分布 NH(40,20,10) の真値と近似式との相対誤差

表 4.5.2 負の超幾何分布 NH(40, 20, 10) の下側確率 $P\{X \leq x\}$ の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)	$\mathbf{Edgeworth}$
0	0.0218		-0.6406	-0.2567
1	0.1671	-0.5636	-0.0322	0.1971
2	0.6907	-0.0913	0.0239	0.1077
3	2.0371	0.0148	0.0133	0.0406
4	4.7923	-0.0033	0.0023	0.0082
5	9.5396	-0.0022	-0.0019	-0.0038
6	16.6607	-0.0019	-0.0019	-0.0058
7	26.1554	-0.0013	-0.0005	-0.0043
8	37.5593	-0.0008	0.0006	-0.0021
9	50.0000	-0.0005	0.0009	-0.0005
10	62.3814	-0.0004	0.0008	0.0005

例 6 (一般超幾何分布の場合). 一般超幾何分布で, (i) タイプ (1,0,0,2), $\theta = 1.5$, 2 と (ii) タイ プ (0,1,1,1) $\theta = 2$ の場合について考える. まず (i) の場合, 確率関数は

$$p_X(x) = K \frac{\prod_{j=1}^2 \bar{d}_j[x]}{x! \ a(x)} \theta^x \qquad (x = 0, 1, \dots, \min\{d_1, d_2\}),$$

と表される. ただし, K はある定数とする. また, (3.2) より方程式

$$\frac{(\delta_1 - \mu)(\delta_2 - \mu)}{\mu(\alpha - \mu)}\theta_0 = 1$$

の μ の解が存在する.また,(ii)においても同様に μ を求めることができる.これを用いて $p_X(x)$ の真値とその近似(3.10),(3.11)と Edgeworth 近似,さらに下側確率の真値とその近似(3.13)と 各点確率の近似式(3.10)の和をとったものと Edgeworth 近似を数値的に比較を行った(表 4.6.1 ~ 4.6.6 参照).その結果,各点確率については近似式(3.10)は(3.11)と Edgeworth 近似より精確で あることが分かる.また,下側確率についても近似式(3.13)の精確さを読みとることができる.

表 4.6.1 タイプ (1,0,0,2), $\theta = 1.5 \sigma$ 一般超幾何分布 (a, b, c, d_1, d_2) = (11,0,0,31,21) の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.11)	GHG approx. (3.10)
0	0.0000	201.1810	
1	0.0000	36.3066	
2	0.0000	10.5663	-0.6873
3	0.0005	3.6016	-0.2168
4	0.0063	1.2169	-0.0527
5	0.0526	0.3490	0.0100
6	0.3081	0.0669	0.0277
7	1.3051	0.0090	0.0230
8	4.0647	0.0153	0.0100
9	9.4131	0.0217	-0.0010
10	16.3082	0.0165	-0.0045
11	21.1794	0.0103	-0.0012
12	20.5777	0.0119	0.0035
13	14.8655	0.0178	0.0033
14	7.8973	0.0170	-0.0049
15	3.0326	0.0070	-0.0177
16	0.8201	0.0185	-0.0247
17	0.1501	0.1725	-0.0066
18	0.0174	0.9184	0.0688
19	0.0011	4.5290	0.2552
20	0.0000	32.2268	0.4710

表 4.6.2 タイプ (1,0,0,2), $\theta = 1.5 \sigma$ 一般超幾何分布 $(a,b,c,d_1,d_2) = (11,0,0,31,21) \sigma$ 下側確率 $P\{X \leq x\}$ の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)
3	0.0005	0.0974	-0.2434
4	0.0069	0.0506	-0.0678
5	0.0595	0.0320	0.0010
6	0.3676	0.0249	0.0234
7	1.6727	0.0204	0.0231
8	5.7374	0.0151	0.0138
9	15.1505	0.0090	0.0046
10	31.4586	0.0035	-0.0001
11	52.6381	0.0000	-0.0006

表 4.6.3 タイプ $(1,0,0,2), \theta = 2$ の一般超幾何分布 $(a,b,c,d_1,d_2) = (11,0,0,31,21)$ の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.11)	GHG approx. (3.10)
2	0.0000	150.6610	
3	0.0000	61.5599	-0.9488
4	0.0007	26.0501	-0.3560
5	0.0073	10.2095	-0.0528
6	0.0573	3.2430	0.0792
7	0.3238	0.6355	0.1022
8	1.3447	0.0174	0.0674
9	4.1520	0.0517	0.0197
10	9.5910	0.1104	-0.0105
11	16.6079	0.0614	-0.0139
12	21.5147	0.0032	-0.0004
13	20.7232	0.0221	0.0117
14	14.6789	0.0839	0.0080
15	7.5156	0.0843	-0.0136
16	2.7100	0.0031	-0.0423
17	0.6613	0.1775	-0.0550
18	0.1023	2.2546	-0.0124
19	0.0089	15.2547	0.1742
20	0.0003	127.1020	0.8425

x	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)
5	0.0080	0.0327	-0.0826
6	0.0654	-0.0139	0.0593
7	0.3892	-0.0211	0.0950
8	1.7339	-0.0152	0.0736
9	5.8858	-0.0079	0.0356
10	15.4769	-0.0030	0.0070
11	32.0847	-0.0004	-0.0038
. 12	53.5994	0.0007	-0.0025

表 4.6.4 タイプ (1,0,0,2), $\theta = 2 \mathcal{O}$ 一般超幾何分布 $(a,b,c,d_1,d_2) = (11,0,0,31,21) \mathcal{O}$ 下側確率 $P\{X \leq x\}$ の真値と近似式との相対誤差

表 4.6.5 タイプ $(0,1,1,1), \theta = 2$ の一般超幾何分布 (a,b,c,d) = (0,47,9,21)の真値と近似式との相対誤差

x	True value (%)	GHG approx. (3.11)	GHG approx. (3.10)
0	0.0067	4.2192	
1	0.0524	0.8174	-0.0727
2	0.2213	0.2038	0.0452
3	0.6638	0.0434	0.0408
4	1.5747	0.0068	0.0261
5	3.1193	0.0070	0.0139
6	5.3256	0.0128	0.0048
7	7.9885	0.0137	-0.0012
8	10.6513	0.0094	-0.0036
9	12.7068	0.0041	-0.0024
10	13.5997	0.0020	0.0008
11	13.0502	0.0043	0.0037
12	11.1859	0.0088	0.0036
13	8.5033	0.0116	-0.0009
14	5.6689	0.0098	-0.0086
15	3.2596	0.0049	-0.0150
16	1.5772	0.0052	-0.0130
17	0.6185	0.0310	0.0058
18	0.1848	0.1364	0.0377
19	0.0375	0.5316	-0.0368
20	0.0039	2.9176	

x	True value (%)	GHG approx. (3.13)	Sum of GHG (3.10)
. 0	0.0067	-0.6935	
1	0.0591	0.1509	-0.1173
2	0.2804	0.1233	0.0151
3	0.9442	0.0687	0.0278
4	2.5189	0.0357	0.0219
5	5.6382	0.0189	0.0150
6	10.9638	0.0107	0.0095
7	18.9523	0.0064	0.0055
8	29.6036	0.0038	0.0028
9	42.3104	0.0020	0.0015
10	55.9101	0.0008	0.0013

表 4.6.6 タイプ $(0,1,1,1), \theta = 2 \sigma$ 一般超幾何分布 $(a,b,c,d) = (0,47,9,21) \sigma$ 下側確率 $P\{X \leq x\}$ の真値と近似式との相対誤差

上記より,ここで求めた近似式 (3.10) が, [Ta84] での近似式 (3.11) と Edgeworth 展開より比較 的精確な結果を与えていることから, (3.11) を改良しているといえるであろう.

参考文献

[D72] Dacey, M. F. (1972). A family of discrete probability distributions defined by the generalized hypergeometric series. Sankhyā B 34, 234–250

[HA00] Hida, E. and Akahira, M. (2000). An approximation to the generalized hypergeometric distribution. Submitted for publication.

[JKK92] Johnson, N. L., Kotz, S. and Kemp, A. W. (1992). Univariate Discrete Distributions (2nd ed.). Wiley, New York.

- [K68] Kemp, A. W. (1968). A wide class of discrete distributions and the associated differential equations. Sankhyā A 30, 401–410.
- [M73] Molenaar, W. (1973). Approximations to the Poisson, Binomial and Hyper-Geometric Distribution Functions. Mathematical Centre, Amsterdam.
- [SO94] Stuart, A. and Ord, J. K. (1994). Kendall's Advanced Theory of Statistics Volume 1: Distribution Theory (6th ed.). Edward Arnold, London.
- [SS81] Sibuya, M. and Shimizu, R. (1981). The generalized hypergeometric distributions. Ann. Inst. Statist. Math., 33 A, 177-190.
- [Ta84] 竹内 啓 (1984). 一般超幾何分布. 応用統計学 13, 83-101.
- [Tr83] Tripathi, R. C. (1983). *Kemp families of distributions*. Encyclopedia of Statistical Sciences Vol. 4.