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1 Introduction
We discuss free-surface flow motion of viscous liquid falling down asolid wall, referred
to as falling film flows. This problem has along history, starting from the study of
Nusselt [1] and the pioneering experiments by Kapitza [2]; see the introduction of the
paper by Salamon et al. [3], as well as the review by Chang [4].

The dynamics of falling liquid films is fairly well described as affee-surface prob-
lem of tw0-dimensional, single-phase Nav er-Stokes equation. Of course, this problem
with Navier-Stokes equation is quite difficult to treat directly, and therefore agreat
effort has been made to simplify the problem. By utilizing afact that the film thick-
ness $h$ is much smaller than the surface wave length, the depthwise freedom of motion
is eliminated, so that we can obtain asimplified equation; this is the essential idea
of the long-wave expansion initiated by Benney [5]. However, since Benney’s long-
wave expansion is poor at convergence and therefore sometimes it fails to work very
well, we need to replace it by what we call regularized long-wave expansion method or
regularization method [6]. The essential idea consists in the treatment of “poorly con
vergent” power series solution obtained by the traditional long-wave expansion: this
may be understood as kind of summation method, similar to Pade approximation, in
regard to differential operators. The surface equation obtained by this method,

$\partial_{t}h-\frac{4}{21}R\partial_{x}\partial_{t}(h^{5})-\partial_{x}(h^{2}\partial_{x}\partial_{t}h)$

$+ \frac{2}{3}\partial_{x}[h^{3}-\partial_{x}(\frac{\cot\alpha}{4}h^{4}+\frac{72}{245}Rh^{7})+Wh^{3}\partial_{x}^{3}h]=0$ . (1)

is referred to as regularized equation of film flows.
Among recent studies on the problem of simplifying the equation of falling film

flows, the improved depth-averaging method by Ruyer-Quil and Manneville [7] is
outstandingly remarkable, as well as the center-manifold reduction by Roberts [8].
One of the main differences between their approaches and that of the present study
is that they develop tw0-mode or three-mode equation, while we insist on a“one-
mode” equation; Eq. (1) includes only one dependent variable $h$ , and no higher-0rder
derivatives in $t$ (such as $\partial_{t}^{2}h$ , $\partial_{t}^{3}h$ etc.) are present. Instead, cross-differential terms
$\partial_{x}^{n}\partial_{t}h$ are allowed in Eq. (1)
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In Sec. 2we formulate the problem, describing the basic equation together with

the boundary condition. Benney’s long-wave expansion method is reviewed in Sec. 3;

Gjevik’s equation (16) is obtained as aresult, but it mispredicts the bifurcation of

permanent solutions. To save the long-wave expansion from that failure, we propose
the regularization method. A basic idea is shown in Sec. 4 in terms of a model

equation. This method is applied to falling film flows in Sec. 5, so that Eq. (1) is

obtained. In Sec. 6we discuss its relation to Benney’s long-wave expansion, zer0-

mode interaction, Whitham’s wave hierarchy, and KuramotO-Sivashinsky equation.

2Formulation of the problem

2.1 Basic Equations

The wall is sloped by an angle $\alpha$;it is vertical if $\alpha=\pi/2$ . With the x-axis taken

downward along the wall and the $z$-axis perpendicular to it, the components of the

velocity field $\mathrm{u}$ and the gravitational acceleration $\mathrm{g}$ are denoted as

$\mathrm{u}=\{\begin{array}{l}uw\end{array}\}$ , $\mathrm{g}=\{\begin{array}{l}g_{x}-g_{z}\end{array}\}$ $=g$ $\{\begin{array}{l}\mathrm{s}\mathrm{i}\mathrm{n}\alpha-\mathrm{c}\mathrm{o}\mathrm{s}\alpha\end{array}\}$ .

We assume that the liquid, filling the volume between the wall $z=0$ and the film

surface $z=h(x, t)$ , is governed by the 2-dimensional Navier-Stokes equation, which

consists of the continuity equation,

divu $=0$ , $\rho=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.$ , (2a)

the momentum equation,

$\partial_{t}(\rho \mathrm{u})+\mathrm{d}\mathrm{i}\mathrm{v}(\rho \mathrm{u}\mathrm{u}-\tau)rightarrow=\rho \mathrm{g}$ , (2b)

and the constitutive equation prescribing Newtonian viscosity,

$rightarrow\tau=-p1+2\rho\nu \mathrm{s}\mathrm{y}\mathrm{m}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{u}rightarrow$ . (2c)

Eqs. (2) are combined with two boundary conditions at $z=h(x, t)$ , namely the

dynamical and kinematic conditions at the free surface, as well as with the n0-slip

condition at the wall,

$\mathrm{u}|_{z=0}=0$ . (3)

In terms of the surface normal vector n defined by

n $=\{\begin{array}{l}-\mathrm{s}\mathrm{i}\mathrm{n}\theta\mathrm{c}\mathrm{o}\mathrm{s}\theta\end{array}\}$ , $\theta=\tan^{-1}\partial_{x}h$ ,
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the dynamical boundary condition is described as
$rightarrow\tau$ . $\mathrm{n}|_{z=h}=\tau_{*}\mathrm{n}$ , (4a)

$\tau_{*}=-p_{\mathrm{a}\mathrm{t}\mathrm{m}}+\frac{T\partial_{x}^{2}h}{[1+(\partial_{x}h)^{2}]^{3/2}}$ , (4b)

with $p_{\mathrm{a}\mathrm{t}\mathrm{m}}$ and $T$ being the atmospheric pressure and the surface tension coefficient,
respectively. The kinematic condition concerns the surface motion; with $D_{t}$ being
the Lagrange derivative, this condition is prescribed as

$D_{t}(h-z)|_{z=h}=\partial_{t}h+u|_{z=h}\partial_{x}h-w|_{z=h}=0$ . (4c)

It is easily verified that Eq. (4c) is equivalent to the mass conservation equation

$\partial_{t}h+\partial_{x}Q=0$ , (5a)

where Q is the volume flux, defined by

$Q^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}} \int_{0}^{h}udz$ . (5b)

2.2 Nusselt solution and dimensionless parameters

The solution describing the unperturbed flat-film flow (h $=h_{0}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.)$ ,

u $=\{\begin{array}{l}U_{\mathrm{N}}(2\zeta-\zeta^{2})0\end{array}\}$ , $\zeta=\frac{z}{h_{0}}$ , (6a)

$U_{\mathrm{N}}= \frac{g_{x}h_{0}^{2}}{2\nu}=\frac{(g\sin\alpha)h_{0}^{2}}{2\nu}$, (6b)

is referred to as the Nusselt solution [1]. The Nusselt velocity $U_{\mathrm{N}}$ , defined by Eq. (6b),
stands for the velocity at the surface of the unperturbed film. The viscous stress at
the wall for the Nusselt solution is given by $\tau_{\mathrm{N}}=\tau_{xz}|_{z=0}=\rho g_{x}h_{0}$ .

Suppose that now the film is not flat but still we can specify its representative
thickness $h_{0}$ in some way. Dimensional analysis shows that the system is characterized
by two nondimensional parameters besides the inclination angle $\alpha$ . One of the most
common styles is to introduce the Reynolds number $R$ and the Weber number $W$ ,
defined by

R $\mathrm{d}\mathrm{e}\mathrm{f}=\frac{U_{\mathrm{N}}h_{0}}{\nu}=\frac{(g\sin\alpha)h_{0}^{3}}{2\nu^{2}}$ , (7a)

$W= \frac{Th_{0}^{-1}}{\tau_{\mathrm{N}}}\mathrm{d}\mathrm{e}\mathrm{f}=\frac{T}{(\rho g\sin\alpha)h_{0}^{2}}$ ; (7b)

they are indicators of the inertia and of the surface tension, respectively.
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The basic equations and the boundary conditions, i.e. Eqs. (2)$-(4)$ , are now
nondimensionalized. After some rearrangements, they are rewritten as follows:

$\partial_{z}^{2}u=RD_{t}u+2\partial_{x}p-2-\partial_{x}^{2}u$ , (8a)

$\partial_{z}p=-\frac{1}{2}RD_{t}w-\cot\alpha+\frac{1}{2}(\partial_{x}^{2}+\partial_{z}^{2})w$, (8b)

$\partial_{z}w=-\partial_{x}u$ , (8c)

$u|_{z=0}=w|_{z=0}=0$ , $(8\mathrm{d})$

$\partial_{z}u|_{z=h}=-\partial_{x}w|_{z=h}+4\partial_{x}u|_{z=h}\partial_{x}h+[\partial_{z}u+\partial_{x}w]|_{z=h}(\partial_{x}h)^{2}$, $(8\mathrm{e})$

lA $|_{z=h}=-[1+(\partial_{x}h)^{2}]\partial_{x}u|_{z=h}+p|_{z=h}(\partial_{x}h)^{2}-W\Sigma$ , $(8\mathrm{f})$

$\partial_{t}h=-\partial_{x}Q$ , $(8\mathrm{g})$

where Iis the surface tension term defined by

$\Sigma=\frac{[1-(\partial_{x}h)^{2}]\partial_{x}^{2}h}{[1+(\partial_{x}h)^{2}]^{3/2}}$ ,

and $Q$ is the volume flux defined in Eq. (5b).
Instead of the Weber number $W$ , some researchers prefer to use the Kapitza

number $K$ , which is essentially a“Weber number without $h_{0}$”(defined by material
properties alone) and is identical to $WR^{2/3}$ except for anumerical factor. For water
films at room temperature on avertical wall we have $WR^{2/3}\approx 3000$ .

3Long-wave expansion

3.1 Linear analyses and the long-wave parameter

Benjamin [9] and Yih [10] studied the linear stability of uniform film flows described
by the the Nusselt solution (6). According to their analyses, the growth rate of
long-wave disturbances (in the time-evolutional picture) is given by

$c_{i}k= \frac{8}{15}(R-R_{\mathrm{c}})k^{2}-(\frac{2}{3}Wk^{3}+O(R, R^{3}))k^{4}+O(k^{6})$ (9)

for long-wave disturbances. Eq. (9), which asserts that the modes with positive
growth rate $(c_{i}>0)$ are limited to anarrow range $0<k<k\circ$ , provides with abasis
for the long-wave expansion [11, 12, 13]: the governing equations can be expanded by
the long-wave parameter $\mu$ , whose smallness comes from the smallness of the neutral
wave number $k_{0}$ . If $W$ is large, Eq. (9) allows us to estimate $\mu$ to be

$\mu\sim k_{0}=\sqrt{\frac{4}{5}(\frac{R-R_{\mathrm{c}}}{W})}\sim\sqrt{\frac{R}{W}}$; (10)

this assures $\mu<<1$ if W $>>R$ , i.e. if the surface tension is large. Most liquids,
including water and alcohol, have so large surface tension that $\mu\propto W^{-1/2}\ll 1$ safely
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3.2 Benney’s long-wave expansion

After Benney [5] we expand Eqs. (8) by the long-wave parameter $\mu$ , introduced by

$\mu\sim\partial_{x}=\mu\partial_{x_{1}}\mathrm{d}\mathrm{e}\mathrm{f}$ . (11)

It is also necessary to introduce multiple-scale expansion,

$\partial_{t}=\mu\partial_{t_{1}}+\mu^{2}\partial_{t_{2}}+\cdots$ ,

while $\partial_{z}$ is left unexpanded. The long-wave expansion allows to eliminate $\mathrm{u}$ from the
governing equations and leads to areduced evolution equation which includes the
surface profile $h=h(x, t)$ as the sole dependent variable.

During the the long-wave expansion, provisionally we assume

R $\sim|R-R_{\mathrm{c}}|\sim O(1)$ , (12)

so that the proper ordering for W is

W $=\mu^{-2}\tilde{W}$ (13)

where $\tilde{W}\sim O(1)$ . Thus we perform the same long-wave expansion as was performed
by Gjevik [14] and by Lin [15]. As aresult, we obtain apower-series expression for
the flux $Q=Q[h]$ , namely

Q $= \int_{0}^{h}udz=Q_{0}[h]+\mu Q_{1}[h]+\mu^{2}Q_{2}[h]+\cdots$ , (14a)

where

$Q_{0}= \int_{0}^{h}u_{0}dz=\frac{2}{3}h^{3}$ , (14b)

$Q_{1}= \int_{0}^{h}u_{1}dz=\frac{8}{15}Rh^{6}\partial_{x_{1}}h-\frac{2}{3}(\cot\alpha)h^{3}\partial_{x_{1}}h+\frac{2}{3}\tilde{W}h^{3}\partial_{x_{1}}^{3}h$ , (14c)

$Q_{2}=R^{2}[ \frac{1016}{315}h^{9}(\partial_{x_{1}}h)^{2}+\frac{32}{63}h^{10}\partial_{x_{1}}^{2}h]$

$-(R \cot\alpha)[\frac{32}{15}h^{6}(\partial_{x_{1}}h)^{2}+\frac{40}{63}h^{7}\partial_{x_{1}}^{2}h]+\frac{14}{3}h^{3}(\partial_{x_{1}}h)^{2}+2h^{4}\partial_{x_{1}}^{2}h$

$+\tilde{W}R\{$ $\frac{40}{63}h^{7}\partial_{x_{1}}^{4}h+\frac{16}{3}h^{6}(\partial_{x_{1}}h)\partial_{x_{1}}^{3}h+\frac{16}{5}h^{6}(\partial_{x_{1}}^{2}h)^{2}+\frac{32}{5}h^{5}(\partial_{x_{1}}h)^{2}\partial_{x_{1}}^{2}h]$ .
$(14\mathrm{d})$

It is easy to proceed to higher order with the aid of symbolic manipulations such as
MATHEMATICA, as Eqs. (8) are in aform allowing recursive substitution.

The results of the long-wave expansion should be combined with the mass con-
servation, i.e. Eq. (5a) or $(8\mathrm{g})$ , so that the reduced equation has the form

$\partial_{t}h+\partial_{x}\{Q_{0}[h]+\mu Q_{1}[h]+\mu^{2}Q_{2}[h]+\cdots\}=0$. (15)
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Note that we can rewrite Eq. (15) in such form that does not include $\mu$ explicitly, by
remembering $\mu\partial_{x_{1}}=\partial_{x}$ and $\mu^{-2}\tilde{W}=W$ .

The traditional approach is to truncate the infinite-0rder equation (15) at acertain
order. In particular, taking the results up to $Q_{1}$ leads to the long-wave equation of
Gjevik [11] :

$\partial_{t}h+\frac{2}{3}\partial_{x}[h^{3}+(\frac{4}{5}Rh^{6}-h^{3}\cot\alpha)\partial_{x}h+Wh^{3}\partial_{x}^{3}h]=0$. (16)

3.3 Failure of Benney’s long-wave expansion

Pumir et al. [13] numerically studied Gjevik’s long-wave equation (16). By assuming a
permanent solution (i.e. asolution which is steady in amoving frame), they obtained
its solitary-wave solutions, which were found to resemble the waves experimentally
observed by Kapitza [2]. It was also shown that such solitary waves can be realized
by time-evolutional calculation of Eq. (16), provided that the Reynolds number $R$

is less than some limiting value $R_{*}$ . According to the bifurcation diagram shown
as Fig. 5in their paper [13], permanent solitary waves can be realized only for a
limited range of the Reynolds number, $R_{\mathrm{c}}<R<R_{*}$ . In time-evolutional problems
for $R>R_{*}$ , aself-focusing of asolitary wave was observed, leading to divergence of
the wave amplitude in afinite time.

The question is how this singular behavior is related to the real film flows: this
singularity may reflect some unusual phenomena which really occur in film flows, or
it may have nothing to do with the reality, being merely afailure of the long-wave
equations. This question was answered by Salamon et $al$ $[3]$ . They directly applied
the finite-element method to the Navier-Stokes equation (2) to obtain its permanent
wave solutions, and compared them with the corresponding results of the long-wave
expansion. Although their solutions agreed with the results of long-wave equations
when $R$ is close to $R_{\mathrm{c}}$ , their solutions exhibited no limiting point such as $R_{*}$ . They

also found that including more terms (up to $Q_{2}$ ) does not save the truncated long-
wave equation from the failure. It was concluded that there is aserious limitation in
the range of validity of the long-wave equations.

4Basic idea of regularized long-wave expansion

4.1 Model equation as amathematical example

Though Benney’s long-wave expansion is expected to converge for $Warrow+\infty$ with
$R$ kept finite, it is quite doubtful whether it converges for finite $W$ and finite $R$ .
The failure of Eq. (16), as well as its higher-0rder version, seems to suggest that the

long-wave expansion is poorly convergent.
As amodel to demonstrate how to deal with such kind of ”poor convergenc\"e, let

us consider a(formally) infinite-0rder partial differential equation

$\partial_{t}h+\partial_{X}h+\partial_{X}^{2}h+\partial_{X}^{3}h+\partial_{X}^{4}h+\cdots+\partial_{X}^{n}h+\cdots=0$, (17)
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together with the initial condition

$h|_{t=0}=f(x)$ . (18)
Since $\partial_{x}$ is not abounded operator, the left-hand side of Eq. (17) diverges and
therefore the initial-value problem, Eqs. (17)-(18), seems hardly meaningful. In
fact, truncation of Eq. (17) at finite $n(\geq 2)$ yields aparabolic equation with n-th
order derivative and can lead to strange results, such as ill-posedness of the initial-
value problem, because the growth rate for the Fourier component with wave-number
$karrow\infty$ behaves like $k^{n}$ .

It is possible, however, to rewrite Eq. (17) into amore tractable form. The idea
is to let $\partial_{x}$ operate upon Eq. (17) and subtract the result from the original equation:

$\partial_{t}h+\partial_{x}h+\partial_{x}^{2}h+\partial_{x}^{3}h+\cdots+\partial_{x}^{n}h+\cdots=0$

$\frac{-)\partial_{t}\partial_{x}h+\partial_{x}^{2}h+\partial_{x}^{3}h+\cdots+\partial_{x}^{n}h+\cdots=0}{(1-\partial_{x})\partial_{t}h+\partial_{x}h=0}$

. (19)
Instead of the infinite-0rder equation (17), now we have Eq. (19) which contains only
three terms!

By substituting into Eq. (19) an elementary solution of the form
$h\propto e^{ikx+\sigma t}$ ,

we find the complex dispersive relation

$\sigma=\frac{-ik}{1-ik}=\frac{k^{2}}{1+k^{2}}-\frac{ik}{1+k^{2}}$ . (20)

Note that
$|\sigma|\leq 1$ for $\forall k$ ; (21)

this means that the initial value problem of Eq. (19) is well-posed in the sense that
${\rm Re}\sigma$ is bounded for $karrow\infty$ [ $16$ , p.84], in contrast with some of the truncated equation
obtained from Eq. (17). We also note, defining $\omega$ $=-{\rm Im}\sigma$ , that the phase velocity
$\omega/k$ is always positive, while the group velocity $duj/dk$ is negative for $1<k<+\infty$ .

If we introduce $H$ by $h=e^{x+t}H$ , then Eq. (19) is equivalent to
$\partial_{x}\partial_{t}H=H$ . (22)

This is Klein-Gordon equation (see Appendix $\mathrm{A}$), though not in the form that is
familiar to the physicists. The characteristics of Eq. (22) are given by two sets of
lines, namely $x=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ , and $t=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.$ ; they axe also the characteristics of Eq. (19).

Considering that Eq. (19) as well as Eq. (22) is hyperbolic, we emphasize that
the initial value problem treated here is of quite unusual type. The initial data (18)
is given on the line $t=0$ in the space-time, which actually coincides with one of the
characteristics. This is quite different from the usual way of providing ahyperbolic
equation with initial data; usually we assume that the curve on which initial data is
given does not coincide with any characteristics of the equation. We may understand
this unfamiliar setting of problem by remarking that the hyperbolic equation (19) ac-
tually comes from the summation of the infinitely high-0rder parabolic equation (17),
for which, in fact, the initial data (18) seems quite natural
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(a) (b)

Figure 1: Integral paths for evaluation of Eq. (24): (a) x $>0$ , (b) x $<0$ .

4.2 Solution to the model equation

Now let us solve the initial-value problem of Eq. (19). Without loss of generality, we
may assume $h|_{t=0}=\theta(x)$ instead of Eq. (18), where $\theta(x)$ is the step function. It is
useful to express this initial condition as

$h|_{t=0}= \theta(x)=\frac{1}{2\pi i}\int_{-\infty}^{+\infty}\frac{dk}{k-i\epsilon}e^{ikx}$ $(\epsilonarrow+0)$ (23)

in terms of Fourier transform [17]. Then, taking Eq. (20) into account, we have

h $= \frac{1}{2\pi i}\int_{-\infty}^{+\infty}\frac{dk}{k-i\epsilon}e^{ikx+\sigma t}$

$= \frac{1}{2\pi i}\int_{-\infty}^{+\infty}\frac{dk}{k-i\epsilon}\exp[(ik-1)x+\frac{t}{ik-1}]$ . (24)

For x $>0$ , the integral path can be closed in the upper half plane, as in Fig. 1(a),
and then deformed into asmall circle around k $=0$ . Then we find

h $= \frac{e^{x+t}}{2\pi i}\oint\frac{dk}{k}\exp[(ik-1)x+\frac{t}{ik-1}]=e^{x+t}e^{-x-t}=1$ , (23)

i.e. $h$ remains unchanged in the domain $x>0$ .
For $x<0$ , on the other hand, the integral path is closed in the lower half plane,

as shown in Fig. 1(b), so that we evaluate the integral (24) on the anticlockwise path
around $k=-i$ . It is convenient to change the variable from $k$ into

$\zeta^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\sqrt{\frac{-x}{t}}(-ik+1)$ ,
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h $=- \frac{e^{x+t}}{2\pi i}\oint\frac{-\sqrt{\frac{t}{-x}}}{1-\sqrt{\frac{t}{-x}}\zeta}\exp[\sqrt{-xt}(\zeta-\zeta^{-1})]$

$= \frac{e^{x+t}}{2\pi i}\oint d\zeta\{\sum_{n=0}^{\infty}(\frac{t}{-x})^{\frac{n+1}{2}}\zeta^{n}\}\sum_{m=-\infty}^{+\infty}J_{m}(2\sqrt{-xt})\zeta^{m}$

$=e^{x+t} \sum_{n=0}^{\infty}(\frac{t}{-x})^{\frac{n+1}{2}}J_{-n-1}(2\frac{-xt}{}$

$=e^{x+t} \sum_{n=1}^{\infty}(\frac{t}{-x})^{n/2}(-)^{n}J_{n}(2rightarrow-xt$ . (26)

The series in Eq. (26) contains $(t/|x|)^{n/2}$ and therefore rapidly converges $\mathrm{f}\mathrm{o}\mathrm{r}-\infty<$

$x<<-t<0$ , i.e. near the axis $t=0$ and far from the axis $x=0$. For the opposite
cases, i.e. $-t\ll x<0$ , we utilize the summation formula

$\sum_{n=-\infty}^{+\infty}(\frac{-x}{t})^{n/2}J_{n}(2\infty-xt=\exp[\sqrt{-xt}(\sqrt{\frac{-x}{t}}-\sqrt{\frac{t}{-x}})]=e^{-x-t}$

to rewrite Eq. (26) as

$h=e^{x+t} \sum_{n=1}^{\infty}(\frac{t}{-x})^{n/2}J_{-n}(2\sqrt{-xt})$

$=e^{x+t}[e^{-x-t}- \sum_{n=0}^{\infty}(\frac{-x}{t})^{n/2}J_{n}(2\frac{-xt}{}]$

$=1-e^{x+t} \sum_{n=0}^{\infty}(\frac{-x}{t})^{n/2}J_{n}(2\frac{-xt}{}$ . (27)

In conclusion, the solution to Eq. (19) satisfying the initial condition (23) is given
by

$h=h_{0}(x, t)=\{$ $\frac{1}{h}\mathrm{o}(-x, t)$ $(x<0)(x>0)$ (28a)

where

$\overline{h}_{0}(\xi, t)=1-e^{-\xi+t}\sum_{n=0}^{\infty}(\frac{\xi}{t})^{n/2}J_{n}(2\sqrt{\xi t})$

$=e^{-\xi+t} \sum_{n=1}^{\infty}(\frac{t}{\xi})^{n/2}(-)^{n}J_{n}(2\sqrt{\xi t})$ . (23)
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Figure 2: Numerical solution to Eq. (19)

Eq. (28) is understood also as asolution to the infinite-0rder parabolic equation

Eq. (17). Asolution for the general initial condition (18) could be obtained by

convolution of $f$ and $\partial_{x}h\circ\cdot$

To check the analytical solution (28), we solve Eq. (19) also numerically. Asecond-
order finite difference scheme is very easily obtained by substituting into Eq. (19) the

following central-difference formulae:

$\partial_{x}h^{(*)}=\frac{1}{2}(\frac{h_{j+1}^{(0)}-h_{j}^{(0)}}{\Delta x}+\frac{h_{j+1}^{(+)}-h_{j}^{(+)}}{\Delta x})$ , (29a)

$\partial_{t}h^{(*)}=\frac{1}{2}(\frac{h_{j+1}^{(+)}-h_{j+1}^{(0)}}{\Delta t}+\frac{h_{j}^{(+)}-h_{j}^{(0)}}{\Delta t})$ , (29b)

$\partial_{t}\partial_{x}h^{(*)}=\frac{h_{j}^{(0)}+h_{j+1}^{(+)}-h_{j}^{(+)}-h_{j+1}^{(0)}}{\Delta t\Delta x}$ , (29c)

where

$x_{j}=x_{0}+j\Delta x\mathrm{d}\mathrm{e}\mathrm{f}$ , $h_{j}^{(0)\mathrm{d}}=^{\mathrm{e}\mathrm{f}}h(t, x_{j})$ , $h_{j}^{(+)\mathrm{d}}=^{\mathrm{e}\mathrm{f}}h(t+\Delta t, x_{j})$ ,

and the superscript $(*)$ denotes evaluation at $(t+\Delta t/2, xj+\Delta x/2)$ .
Some of the profiles of the numerically calculated solution are depicted in Fig. 2.

The agreement between the numerical solution and the analytical solution was quite

satisfactory. Note that the waves propagate in the negative direction only, in spite

of the positive phase velocity ($\omega/k>0$ for $\forall k$ ) obtained from Eq. (20). The most

dominant part of the waves, however, remain always near $x=0$ , i.e. evolves along

the characteristic line defined by $x=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$. $(=0)$ .
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5Regularized equation for film flows
5.1 Pad\’e approximation

The regularization procedure proposed in Sec. 4is now applied to Eq. (15), which is a
nonline$\mathrm{a}\mathrm{r}$ partial differential equation describing the dynamics of film flows [6]. Since
the essential idea is to regard Benney’s long-wave expansion as Taylor expansion
around $\partial_{x}=0$ and then replace it by Pad\’e approximation, it is appropriate to begin
with areview of the systematic Pad\’e approximation method.

Suppose that afunction $\psi(k)$ is given in terms of apower series, as
$\psi$ $=c0+c_{1}k+c_{2}k^{2}+\cdots$ . (30)

This power series may be only poorly convergent or even not convergent at all; in such
acase, aratio of two polynomials may give abetter approximation than atruncated
power series. The procedure to determine these two polynomials involves converting
the power-series (30) into another power-series

$f=g\psi$ $=a_{0}+a_{1}k+a_{2}k^{2}+\cdots$ (31)
so that $\psi$ $=f/g$ , where $g=1+b_{1}k+\cdots+b_{n}k^{n}$ . What we expect is that asuitable
choice of $g$ can improve the convergence of the power series, as the singularity of $\psi(k)$

may be canceled (at least approximately) by the zero of $g(k)$ . The problem is what
is the best choice of $g$ ;we assume that the “best choice” should lead to termination
of the power series (31) at $k^{m}$ , so that $b_{1}$ , $b_{2}$ , $\ldots$ , $b_{n}$ aie determined by the conditions

$a_{m+1}=a_{m+2}=\cdots=a_{m+n}$ ,
i.e. that the terms whose order is higher than $k^{m}$ should vanish.

5.2 Regularization operator

Now let us remember that the long-wave expansion is essentially apower series ex-
pansion by adifferential operator $\partial_{x}$ , which suggests introducing an operator

$\hat{L}=1+A^{(1)}\partial_{x}+A^{(2)}\partial_{x}^{2}=1+\mu A^{(1)}\partial_{x_{1}}+\mu^{2}A^{(2)}\partial_{x_{1}}^{2}$ (32)

corresponding to the polynomial $g$ in the Pade approximation. The coefficients $A^{(j)}$

may depend on $h$ . In analogy to Eq. (31) we define
$S^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\hat{L}Q=S_{0}+\mu S_{1}+\mu^{2}S_{2}+O(\mu^{3})$ , (33)

where

$S_{0}=Q_{0}$ , (34a)
$S_{1}=Q_{1}+A^{(1)}\partial_{x_{1}}Q_{0}$ , (34b)
$S_{2}=Q_{2}+A^{(1)}\partial_{x_{1}}Q_{1}+A^{(2)}\partial_{x_{1}}^{2}Q_{0}$. (34c)

We can make $S_{2}\simeq 0$ by defining the coefficients of the operator $\hat{L}$ appropriately.
The operator $\hat{L}$ , as well as $g$ , plays the role of canceling the singularity; for this reason
we call $\hat{L}$ “regularization operator”
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5.3 Derivation of regularized equation

Let us proceed to determine $\hat{L}$ , defined by Eq. (32). According to the philosophy of

Pade approximation, $A^{(1)}$ and $A^{(2)}$ are determined so that “
$S_{2}$ may vanish” , which

completes the regularization method and yields the regularized equation governing
$h$ .

Supposing $\mu$ to be small but finite, we decompose $h$ as

h $=\overline{h}+\phi$ , (35)

where $\overline{h}$ represents the very-long-wave part whose wave number is significantly smaller

than $\mu$ . The remaining part, $\phi$ , stands for the fluctuating wave components, and is

characterized by the finite wave number $k$
$\sim\mu$ . Since the amplitude of $\phi$ is supposed

to be small, we introduce the amplitude expansion parameter $\epsilon$ to write

$\overline{h}\simeq h\sim 1$ , (36a)

$|\partial_{x_{1}}\phi|\sim|\phi|\sim\epsilon<<1$ , (36b)
$|\partial_{x_{1}}\overline{h}|\sim\epsilon^{p}|\partial_{x_{1}}\phi|<<|\phi|$ (36c)

with $p\geq 1$ . By substituting the amplitude expansion (35) into the result of the

long-wave expansion (14a) and taking the estimations (36) into account, we are led
to

$Q_{2}=[ \frac{32}{63}R^{2}h^{10}-\frac{40}{63}(R\cot\alpha)h_{\mathrm{c}}^{7}+2h^{4}]\partial_{x_{1}}^{2}\phi+\frac{40}{63}\tilde{W}Rh^{7}\partial_{x_{1}}^{4}\phi+O(\epsilon^{2})$, (37a)

$\partial_{x_{1}}Q_{1}=[\frac{8}{15}Rh^{6}-\frac{2}{3}h^{3}\cot\alpha]\partial_{x_{1}}^{2}\phi+\frac{2}{3}\tilde{W}h^{3}\partial_{x_{1}}^{4}\phi+O(\epsilon^{2})$ , (37b)

$\partial_{x_{1}}^{2}Q_{0}=2h^{2}\partial_{x_{1}}^{2}\phi+O(\epsilon^{2})$ ; (37c)

we substitute Eqs. (37) into $S_{2}$ , defined by Eq. (34c), to obtain

$S_{2}=[ \frac{32}{63}R^{2}h^{10}-\frac{40}{63}(R\cot\alpha)h^{7}+2h^{4}+A^{(1)}(\frac{8}{15}Rh^{6}-\frac{2}{3}h^{3}\cot\alpha)$

$+2h^{2}A^{(2)}] \partial_{x_{1}}^{2}\phi+\tilde{W}[\frac{40}{63}Rh^{7}+\frac{2}{3}h^{3}A^{(1)}]\partial_{x_{1}}^{4}\phi+O(\epsilon^{2})$. (38)

This expression for $S_{2}$ is made to vanish by a suitable choice of $A^{(1)}$ and $A^{(2)}$ . We

find that it vanishes by setting

$A^{(1)}=- \frac{20}{21}Rh^{4}$ , $A^{(2)}=-h^{2}$ ; (39)

note that the $A^{(j)}$ ’s are chosen to be independent of $\alpha$ . Thereby the regularization

operator is determined to be

$\hat{L}=1-\frac{20}{21}Rh^{4}\mu\partial_{x_{1}}-h^{2}\mu^{2}\partial_{x_{1}}^{2}=1-\frac{20}{21}Rh^{4}\partial_{x}-h^{2}\partial_{x}^{2}$ , (40)
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and $S_{1}$ , defined by Eq. (34b), becomes

$S_{1}=Q_{1}- \frac{20}{21}Rh^{4}\partial_{x_{1}}Q_{0}$

$= \frac{2}{3}[-\frac{72}{35}Rh^{6}\partial_{x_{1}}h-(\cot\alpha)h^{3}\partial_{x_{1}}h+\tilde{W}h^{3}\partial_{x_{1}}^{3}h]$ . (41)

By substituting Eq. (41) into Eq. (33), where $S_{0}=Q_{0}$ and $S_{2}\simeq 0$ is already known,
now $S$ is completely determined. As aresult, the power series representation of Q-h
relation (14a) is replaced by its “regularized” representation,

$\hat{L}Q=S=\frac{2}{3}[h^{3}-\frac{72}{35}Rh^{6}\partial_{x}h-(\cot\alpha)h^{3}\partial_{x}h+Wh^{3}\partial_{x}^{3}h]$ , (42)

where $\mu$ is absorbed into $\partial_{x}=least$ and $W=\mu^{-2}\tilde{W}$ . Note that $Q=\hat{L}^{-1}S$ is
determined uniquely as asolution of Eq. (42), as is shown in Appendix B.

The relation (42) must be combined with the mass conservation equation (5a),

$\partial_{t}h+\partial_{x}Q=0$ ,

to close the equation. By eliminating $Q$ from them, finally we are led to the regular-
ized equation (1).

5.4 Numerical solutions
Numerical solutions of the regularized equation (1) are now compared with those of
two long-wave equations. Fig. 3shows abifurcation diagram for permanent solitary
wave solutions, where the wave velocity $c$ is plotted against the Reynolds number
$R$ . The wall is vertical $(\alpha=\pi/2)$ and the Weber number $(W=90)$ is fixed. The
three lines stand for the three equations, namely Gjevik’s long-wave equation (16),
Nakaya’s higher-0rder long-wave equation in Ref. [12], and the regularized equation
(1). In the vicinity of the critical Reynolds number ( $R_{\mathrm{c}}=0$ for this case), all the
three equations yield almost the same result. Beyond $R=1.5$ , however, they behave
quite differently. As for the long-wave equation of Gjevik, there occurs asaddle-node
bifurcation (indicated by $\cross$ ) at $R=2.2099$ , where the branch meets another branch
to annihilate (not shown here). The equation of Nakaya is also subject to asimilar
bifurcation which occurs at $R=1.5843$ . Meanwhile, the regularized equation (1)
does not exhibit such abifurcation at all. This bifurcation is afalse prediction of the
long-wave equation; this is successfully avoided by the regularized equation, at least
qualitatively. Further numerical tests and discussion on the validity of Eq. (1) are
reported in Ref. [6]
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Figure 3: Bifurcation of permanent solitary waves

6Discussion
6.1 Regularized equation as infinite-0rder long-wave equation

The inverse of the regularization operator (40) is formally expressed as an infinite
summation,

$\hat{L}^{-1}=1+(\frac{20}{21}Rh^{4}\partial_{x}+h^{2}\partial_{x}^{2})+(\frac{20}{21}Rh^{4}\partial_{x}+h^{2}\partial_{x}^{2})^{2}+\cdots$ , (43)

if we do not care about its convergence. We may formally operate $\hat{L}^{-1}$ either upon
the regularized Q-h relation (42) or upon the regularized equation (1), to recover
along-wave equation which consists of infinite number of terms. Several leading

terms in this infinite-0rder equation are exactly identical with those contained in the

traditional long-wave equations, such as Gjevik’s long-wave equation (16), so that

the regularized equation (1) asymptotically agrees with Eq. (16). The remaining

higher-0rder terms does not strictly coincide with the straightforward higher-0rder
results of the long-wave expansion, but they do agree with the major part of the

long-wave result. For example, it is easy to show that every $Q_{n}$ includes aterm

proportional to $R^{n}h^{2+4n}\partial_{x}^{n}h\sim R^{n}\mu^{n}$ according to the long-wave expansion; it is
therefore inappropriate to truncate the power-series, unless $R\mu$ is sufficiently small.

In this respect the regularized equation (1) is equivalent to an infinite-0rder version
of long-wave equation. We would like to emphasize, however, that such an infinite-

order equation is meaningful only with the aid of summation method, such as the

regularization method adopted here
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It is convenient to introduce the rescaled Reynolds number

$\delta_{*}=\frac{R}{W^{1/3}}$ (44)

so that $R\mu\sim R^{3/2}W^{-1/2}=\delta_{*}^{2/3}$ according to the estimation of $\mu$ in Eq. (10). This
parameter $\delta_{*}$ is analogous to the parameter $\delta$ used by Chang et $al$ $[18]$ . Then we can
reformulate one of the assumptions in the long-wave expansion, i.e. Eq. (12), as

$\delta_{*}<<1$ , (45)

because Eq. (12) actually states that $R$ is small as compared to $\mu^{-1}$ . The condi-
tion (45), which is equivalent to $R\mu<<1$ , is also what validates the formal expan-
sion (43) and its truncation, i.e. Benney’s long-wave expansion. This condition (45)
is relaxed by the regularization method, so that the regularized equation (1) is valid
for \mbox{\boldmath $\delta$}* % 1.

6.2 Effect of zer0-modes due to the cross-differential terms
The remarkable features of the regularized equations, such as Eqs. (19) and (1),
is that they include cross-differential terms like dxdth. Such terms incorporates the
influences of the (nearly) zer0-wavenumber modes, i.e. the mode with arbitrarily long
wave length, upon the linear growth rate and the linear dispersion relation of other
modes. The influences of the zer0-modes are referred to as the “baseline effect” by
Ooshida and Kawahara [19], who developed amodel equation for one-dimensional
fluidized beds:

$(1-\gamma\partial_{X}-\partial_{X}^{2})b\Psi$ $+(1+\Psi -\mu’\Psi^{2})\partial_{X}\Psi-\gamma\partial_{X}^{2}\Psi=0$ , (46)

where $\Psi$ is related to the s0-called void fraction, with $\mu’$ and $\gamma$ being positive
constants. Eq. (46) includes two cross-differentiational terms, namely $\partial_{X}\mathrm{a}\mathrm{e}_{1}\Psi$ and
$\partial_{X}^{2}\partial_{T}\Psi$ .

A $\mathrm{K}\mathrm{d}\mathrm{V}$-like equation with across-differential term $\partial_{x}^{2}\partial_{t}h$ is known as Benjamin-
Bona-Mahony (BBM) equation [20], historically also known as the “Regularized
Long-Wave (RLW) equation.” Unfortunately, the studies of BBM equation seem
to have concentrated on its linear dispersion relation, rather than the influences of
the zer0-modes. For falling film flows, Indireshkumar and Frenkel [21] pointed out
that an equation including across-differential term $\partial_{x}\partial_{t}(h^{5})$ might provide amodel
better than Eq. (16), but further investigations were not made.

As an example to observe the influence of the zer0-modes, let us linearize Eq. (46)
around $\Psi$ and examine the complex linear dispersion relation. Substituting $\Psi$ $=$

$\Psi_{b}+\hat{\Psi}\exp(\sigma T+ikX)$ with $|\hat{\Psi}|<<1$ into Eq. (46), we obtain

$\sigma=\frac{-i(1+\Psi_{b}-\mu’\Psi_{b}^{2})k-\gamma k^{2}}{1-i\gamma k+k^{2}}$

$=\{\begin{array}{l}-i(1+\Psi_{b}-\mu’\Psi_{b}^{2})k+\gamma(\Psi_{b}-\mu’\Psi_{b}^{2})k^{2}+\cdots(\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{w}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{s})-\gamma+O(k^{-1})(\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t} \mathrm{w}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{s})\end{array}$ (47)
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to find that ${\rm Re}$ adepends on $\Psi_{b}$ . We may say that the zer0-wavenumber mode $\Psi_{b}$

is influential through the implicit nonlinearity introduced by the cross-differential
terms.

It is worth while to note here that permanent solutions to Eq. (46) can be obtained
explicitly. Substituting $\Psi=\Psi(Z)$ with $Z=X-cT$ into Eq. (46) leads to an ordinary

differential equation,

$(1-c)\partial_{Z}\Psi+c\partial_{Z}^{3}\Psi+(\Psi-\mu’\Psi^{2})\partial_{Z}\Psi-(1-c)\gamma\partial_{Z}^{2}\Psi=0$ , (48)

which poses anonlinear eigenvalue problem under asuitable boundary condition.
The “eigenvalue” $c$ is easily determined as follows: let us multiply (48) by $\Psi$ and
integrate with respect to $Z$ , to find

$(1-c) \gamma\int dZ(\partial_{Z}\Psi)^{2}=0$ (49)

by partial integration. Obviously $c=1$ if $\Psi$ is to be non-trivial. Then the terms
with $\gamma$ in Eq. (48) completely cancels out each other, so that we obtain permanent
solutions traveling with $c=1$ . Especially, when $\mu’=0$ , afamily of cnoidal wave
solutions are obtained:

$\Psi=\frac{12}{\ell^{2}}[m^{2}\mathrm{c}\mathrm{n}^{2}$ ( $\frac{x-ct}{\ell}$ , m) $+ \frac{1}{3}(1-2m^{2})]$ , c $=1$ . (50)

Note that $p$ can take any positive value if $\Psi_{b}$ is given in accord, i.e. arbitrary long

waves are possible.
Eq. (49), prescribing aselection rule for the permanent waves of Eq. (46), is

interpreted as the balance between $\partial_{X}\partial_{T}\Psi$ and $\partial_{X}\partial_{T}\Psi$ ;their balance leads to the
selection of the velocity, i.e. $c=1$ . This is in contrast with the case for KuramotO-
Sivashinsky (KS) equation,

$\partial_{T}\eta+\partial_{X}(\eta^{2})+\partial_{X}^{2}\eta+\partial_{X}^{4}\eta=0$, (51)

where the rule to select permanent solutions is the balance between $\partial_{X}^{2}\eta$ and $\partial_{X}^{4}\eta$ ,
so that solutions with appropriate wave length are selected.

6.3 Whitham’s wave hierarchy equation

Whitham studied coupled equations of the general form

$\eta(\partial_{t}+c_{1}\partial_{x})(\partial_{t}+c_{2}\partial_{x})\varphi+(\partial_{t}+a\partial_{x})\varphi=0$ , (52)

which appears in his book [22] as Eq. (10.5). In Eq. (52), $\eta$ is apositive constant,

and $a$ , $c_{1}$ , $c_{2}$ are positive or negative constants which would have the dimension of
velocity if written in dimensional form; without loss of generality we may assume
that $c_{1}>c_{2}$ . The relevance of this type of equations to film flows was pointed out
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$a$

$\mathrm{c}$

Figure 4: Bifurcation of periodic solutions to KS equation

by Alekseenko et al. [23], who referred to them as having “tw0-wave structure.” The
criterion for stability of Eq. (52) is given by

$c_{2}<a<c_{1}$ , (53)
which is known as Whitham’s wave hierarchy condition.

To see what occurs when Whitham’s wave hierarchy condition (53) is not satisfied,
let us consider acase with

$a>0$ , $c_{1}=0$ , $c_{2}=-\epsilon^{-1}a<0$ . (54)
If we take the limit

$\epsilonarrow+0$ , $\etaarrow+0$

with the ratio $\tau\circ=\eta/\epsilon$ kept finite, then Whitham’s equation (52) is formally reduced
to the regularized model equation (19). This suggests that the regularization method
is related to the treatment of the characteristics with negative infinite phase velocity,
$c_{2}arrow-\infty$ .

6.4 KuramotO-Sivashinsky equation

Now let us return to the regularized equation of films flows, i.e. Eq. (1). Considering
the fact that amajor contribution of the higher-0rder terms are implicitly incorp0-
rated through the regularization operator $\hat{L}$ , we expect that a“weakly nonlinear
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Figure 5: Permanent solitary wave solution to KS equation

version of the regularized equation may as well be anice model equation for waves
on afilm flow at acertain stage of its evolution. While the traditional long-wave

equation (16) was simplified to KS equation by setting $h=1+\eta$ and postulating

that $|\eta|<<1$ , the regularized equation (1) becomes

$(1- \frac{20}{21}R\partial_{x}-\partial_{x}^{2})\partial_{t}\eta+\frac{2}{3}\partial_{x}[$
$3 \eta+3\eta^{2}-\frac{72}{35}R\partial_{x}\eta-(\cot\alpha)\partial_{x}\eta+W\partial_{x}^{3}\eta]=0$ .

(55)

Though the explicit nonlinearity is only seen at $\eta^{2}$ , higher-0rder nonlinearity is im-

plicitly incorporated through the regularization operator. In particular, Eq. (55)

incorporates the “baseline effect” which is lacking for KS equation.
First, we consider special cases, where both $\mu\sim\sqrt{R/W}<<\mathrm{a}\mathrm{n}\mathrm{d}R\sim O(1)$ are

satisfied; there are the conditions which validate Benney’s long-wave expansion. Then

the operator before $\partial_{t}\eta$ in Eq. (55) can be inverted as

$(1- \frac{20}{21}R\partial_{x}-\partial_{x}^{2})^{-1}=1+\frac{20}{21}R\partial_{x}+O(\mu^{2})$ , (56)

so that Eq. (55) reduces itself, after asuitable rescaling and achange of frame, to

KuramotO-Sivashinsky equation (51); in fact, several higher-0rder terms will appear,

but they are found to be negligible. This is an expected result, because the regularized

long-wave expansion method is reduced to Benney’s method in the case under con-
sideration. Permanent solutions to KS equation (51) are obtained as aeigenfunction

of anonlinear ordinary differential equation,

$-c\partial_{Z}\eta+\partial_{Z}(\eta^{2})+\partial_{Z}^{2}\eta+\partial_{Z}^{4}\eta=0$ . (57)

When the second condition $R\sim O(1)$ (or equivalently $\delta_{*}<<1$ ) is not satisfied,

it is not possible to utilize Eq. (56) to simplify Eq. (55). However, in the limitin
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case of $W/Rarrow+\infty$ , the term $\partial_{x}^{2}\partial t\eta$ becomes negligibly small as compared to other
terms. Considering such acase and assuming apermanent wave solution, we have

$\partial_{x}[(-c+2)\eta+2\eta^{2}]+(\frac{20}{21}Rc-\frac{48}{35}R-\frac{2}{3}\cot\alpha)\partial_{x}^{2}\eta+\frac{2}{3}W\partial_{x}^{4}\eta=0$ ; (58)

this is essentially the same equation as Eq. (57), except that $c$ appears not only as a
coefficient of $\partial_{x}\eta$ but also as acoefficient of $\partial_{x}^{2}\eta$ . The selection of permanent solution
consists in the balance of three terms in Eq. (55), namely $\partial_{x}\partial_{t}\eta$ , $\partial_{x}^{2}\eta$ , and $\partial_{x}^{4}\eta$ .

Although the applicability of KS equation is much more limited as compared
to the regularized equation (1), still we emphasize the significance of KS equation
as aprototype of all the simplified equations of falling film flows. Eq. (51) admits
many permanent solutions, i.e. solutions describing awave traveling in aconstant
velocity $c$ . Under the periodic boundary condition with the periodicity $L=2\pi/\alpha$ ,
such permanent solutions are possible only for $\alpha<1$ . The most important branches
of the bifurcation diagram are shown in Fig. 4, where the wave velocity $c$ is plotted
against $\alpha$ ;for more detail, see Fig. 3in Ref. [4, p.116] and Fig. 2in Ref. [3, p.2210].

In the limit of an infinite domain, i.e. $\alphaarrow+\mathrm{O}$ , KS equation (51) admits a
solitary wave solution. In Fig. 5we show the wave profile $2\eta$ against $z=x-d$,
where $c=1.21615012396$ ; see also the calculation by Toh [24, p.956]. It is interesting
that the regularized equation (1) also admits asolitary wave solution, but the shape
of the solitary wave is different from that of KS equation; see the discussion on the
tail length of solitary waves in Ref. [6].

Appendix

AKlein-Gordon equation

Klein-Gordon equation in $1+1$-dimensional space-time may be written either in the
first standard form

$\partial_{\xi}\partial_{\eta}\phi\pm\phi$ $=0$ (59)

or in the second standard form

$(\partial_{t}^{2}-c^{2}\partial_{x}^{2})\phi+\alpha^{2}\phi=0$. (60)

The second form, Eq. (60), is more familiar to physicists; note that $c$ and $\alpha$ could be
set to unity but are left present to help the physicist’s intuition. The first form (59)
clarifies that the characteristics are given by $\xi$ $=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ , and $\eta=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.;$ usually
we assume that these characteristics does not coincide with the initial data. The
peculiarity of Eq. (22) discussed in Sec. 4consists in that the initial data (18) is
given exactly on the characteristic line, i.e. $t=0$ .

Solutions to Eq. (59) or (60) may be given by separation of variables, unless we
mind the initial and boundary conditions. Let us begin with the first standard form
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Eq. (59). We introduce new independent variables $(r, s)$ , instead of $(\xi, \eta)$ , by the
relation

$\xi=\frac{r}{2}e^{+s}$ , $\eta=\frac{r}{2}e^{-s}$ ;

note that $r$ is real for $\xi\eta\geq 0$ and purely imaginary for $\xi\eta<0$ . After some calculation,

we have

$\{\begin{array}{l}\partial_{\xi}\partial_{\eta}\end{array}\}=\{\begin{array}{ll}\frac{\partial r}{\partial\xi} \frac{\partial s}{\partial\xi}\frac{\partial r}{\partial\eta} \frac{\partial s}{\partial\eta}\end{array}\}\{\begin{array}{l}\partial_{r}\partial_{s}\end{array}\}$ $=[_{e^{+s}}^{e^{-s}}$ $\{\begin{array}{l}\partial_{r}+r^{-1}\partial_{s}\partial_{r}-r^{-1}\partial_{s}\end{array})]$ , (61)

which enables to rewrite Eq. (59) as

$( \partial_{r}^{2}+\frac{1}{r}\partial_{r})\phi-\frac{1}{r^{2}}\partial_{s}^{2}\phi\pm\phi=0$. (62)

Now we can separate the variables by assuming $\phi(r, s)=R(r)S(s)$ , so that Klein-

Gordon equation (59), or Eq. (62), is reduced either to Bessel equation or modified
Bessel equation.

As for the second standard form (60), we assume $t>0$ and $-ct<x<ct$ , i.e.
we consider only the domain within the light cone. In terms of new variables $(r, \theta)$

introduced by

t $= \frac{r}{\alpha}\cosh$ \mbox{\boldmath $\theta$}フ x $= \frac{cr}{\alpha}$ s.nh $\theta$ ,

the $1+1$-dimensional d’Alembertian is found to be given by

$\partial_{t}^{2}-c^{2}\partial_{x}^{2}=\alpha^{2}(\partial_{r}^{2}+\frac{1}{r}\partial_{r}-\frac{1}{r^{2}}\partial_{\theta}^{2})$ . (63)

Note that the right-hand side of Eq. (63) is reminiscent of the Laplacian in cylin-

drical coordinate; this is no wonder if we remark that the Euclideanization of the
$1+1$-dimensional d’Alembertian would yield the 2-dimensional Laplacian, and that
$r$ stands for the Minkowski distance from the origin of the space-time. This sug-
gests that the Klein-Gordon equation (60) can be solved quite similarly to the 2-
dimensional Helmholtz equation. In fact, the general solution is given in terms of
Bessel functions:

$\phi=\sum_{n=-\infty}^{+\infty}c_{n}J_{n}(r)e^{n\theta}$ , (64)

where $c_{n}$ ’s are arbitrary constants. Note that $(r, \theta)$ can be expressed in terms of
$(x, t)$ :

r $=\alpha\sqrt{t^{2}-(\frac{x}{c})^{2}}$ , $e^{\theta}=\sqrt{\frac{ct+x}{ct-x}}$ .
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B One-t0-0ne mapping property of regularization oper-
ator

Let us prove that Eq. (42) gives aone-t0-0ne correspondence between Q and S.
Suppose that alinear operator $\hat{L}$ is given, such that

$\hat{L}$ : $\psi\mapsto\hat{L}[\psi]=\psi+A_{1}\frac{d\psi}{dx}+A_{2}\frac{d^{2}\psi}{dx^{2}}$ , (65)

where $A_{1}$ and $A_{2}$ need not to be constant but satisfy

$|A_{1}|<+\infty$ , $|A_{2}|<+\infty$ (for $\forall x$); (66a)
$\sup A_{2}<0$ . (66b)

Then the boundary-value problem for given $f$ ,

$\hat{L}\phi=f$ $(a<x<b)$ , (67)
$\phi(a)=\phi(b)=0$ , (68)

is shown to have at most one solution.
To prove this, we assume that the homogeneous equation

$\hat{L}\phi=\phi+A_{1}\phi’+A_{2}\phi^{JJ}=0$ (69)

had anon-trivial solution and show that it would lead to absurdity. Since the solution
$\phi$ satisfies the boundary condition (68), it should have either apositive maximum or
anegative minimum; without loss of generality we may consider the former. Then
we have

$\phi(\exists x_{0})=\max\phi>0$ , $a<x_{0}<b$ , $\phi’(x_{0})=0$ , (70)

which implies, due to Eq. (69) and the condition (66b), that

$\phi’(x_{0})=-\frac{\phi(x_{0})}{A_{2}(x_{0})}>0$ ; (71)

this is against the assumption that $\phi$ has amaximum at $x=x_{0}$ .
Thus we have proved that the correspondence from $\phi$ to $f$ is one-t0-0ne, which

obviously applies to Eq. (42) as well.
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