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Non-Hermitian dynamics of vortices in a shear flow

WA M ¥R, HE¥P%K (Zensho Yoshida, Tomoya Tatsuno)
Graduate School of Frontier Sciences, University of Tokyo

1 Introduction

Non-orthogonality of eigenfunctions (modes) is the determining characteristic of non-Her-
mitian systems, which brings about interactions among different modes. This resembles
the mode couplings in nonlinear systems, and hence, the diversity of transient behavior in
non-Hermitian system is rather rich.

Let us consider an abstract autonomous evolution equation of the Schrodinger type

i0ru = Hu
, (1)
u(0) = ug

where H is a certain linear operator. When we can generate an exponential function
(propagator) e~* e can write the solution of (1) as

u(t) = e My,

When u € C and H € C, then e~ is nothing but the exponential function of elementary
mathematics. For vectors u € CN and a linear map H : C¥ — CV, we can define e=* by

the standard power series
oo 3 n
€ = [
n!

n=1

or the Cauchy integral (inverse Laplace transform)

it = L e Or ) (3)
2mi
For u in a Hilbert space 17, H is an operator in V". For some different classes of operators,
we have theories to generate e~ **. For bounded operators, we can invoke the Dunford
integral that is similar to (3). A most general theory of generating an exponential function
of the type e for positive ¢ (so-called semigroup theory) is due to Hille and Yosida[l].
Although this theory warrants the solvability of initial value problems for a wide class
of generators, understanding of the behavior of the solution is not simple. Indeed, the
exponential functions of matrices or operators are not necessarily “exponential” in the
conventional sense. ' :
The von Neumann theory for Hermitian (self-adjoint) operators provides a deep insight
into the structure of e~**_ which invokes the spectral resolution of the generator # in terms
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of a complete set of orthogonal modes. The basic idea is that the e ** may be represented
as a sum of independent harmonic oscillators, each of which is an eigenfunction of 4 and
the corresponding eigenvalue (real number) gives the frequency of the oscillation. Unlike
the case of finite dimension vector space, however, the conventional eigenfunctions may not
be complete to span the Hilbert space. The most essential generalization needed to study
an infinite dimension space was the introduction of continuous spectra that correspond to
singular eigenfunctions. The spectral resolution of H is, in general, given by an integral
over the spectra (an example will be given in Sec. 3.1). The contribution to the e~** from
the continuous spectra brings about the “phase mixing” of oscillations with continuous
frequencies, resulting in various types of damping. Hence, the reality of the spectra of an
Hermitian operator does not necessarily imply stationary (non-dumping) oscillations.

For a linear map in a finite dimension vector space, the spectral resolution yields the
Jordan canonical form, and the explicit representation of e=** can be constructed using
the canonical form. It is well known that a nilpotent yields secular behavior of the corre-
sponding generalized eigenvector. Therefore, even if every eigenvalue ), is real, the e=**
can describe “instabilities” (growth of oscillations).

In a Hilbert space, however, such a general theory of spectral resolution is limited to
either compact operators or Hermitian operators. This paper is an attempt to obtain a
spectral resolution of a non-Hermitian operator that is not included in the above mentioned
categories. This operator is related to an important physics problem (Sec. 2).

2 Non-Hermitian dynamics of vortices

The vortex dynamics equation in R? [the coordinates are denoted by (z,y)] reads as a
Liouville equation
oV + {H,¥} =0, (4)

where ¥ is the vorticity, H is the Hamiltonian (stream function) of an incompressible flow
v = (0,H, -0, H)! that transports the vortices, and

{a,b} = (8,0)(3:b) — (0,a)(9yb) = ~Va x Vb-Vz

is the Poisson bracket.

When the Hamiltonian H depends on ¥, the evolution equation (4) is nonlinear. The
dynamics of ¥ can couple with other fields when they are included in H. The simplest
example of nonlinear vortex dynamics is that of the Euler fluid (incompressible ideal flow),
where

~-AH=19, (5)
or, denoting the Green operator of the Laplacian —A by G
H=gGV. (6)

Let us linearize (4) with decomposing ¥ and H into their ambient (denoted by subscript
0) and fluctuation parts:

\I’. = ‘I’0+1)[),
H = Hy+h=G¥+Gy.
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Neglecting the second-order terms, (4) reads
O+ {Ho, ¥} + {AHo, G} = 0. (7)
In this paper, we consider one-dimensional problem with
Hy = Hy(x).

Since the ambient Hamiltonian Hj is independent of y, the wavenumber in y is a good
quantum number, and we can replace d, by ik. In what follows, we assume k # 0, and
normalize k = 1 [2]. We write

v(z) = =0, Ho(x),

to obtain the standard Rayleigh equation
10 = v(@) + " (2)G. (8)

The Green operator G is represented by a convolution integral

+00 e_':c_{l
GhH@ = [ 51 de. ©)
In what follows, we denote by G(z,&) the Green function;
e‘;x‘él )
Gle,8) = T —. (10)

3 Convection and oscillations

The generator of the vortex dynamics equation (8) consists of two terms, each of which
describes different mechanism of vortex motion. The first term on the right-hand side of (8)
[originating from {Hy, %} in (7)] represents the transport of the vorticity by the ambient
flow v(z). An inhomogeneous (sheared) flow distorts vortices, and hence, no stationary
structure can persist in a shear flow (v(x) # constant). Such a dynamics is described by
a continuous spectrum (Sec. 3.1). On the other hand, the second term [originating from
{AH,, Gy} in (7)] describes the interaction between the perturbation and the ambient
field. When the ambient vorticity ¥y = —AH, has a spatial gradient, a flow induced by a
perturbation yields a local change of the vorticity. This term, hence, can create perturbed
vortices from the ambient field.

In this section, we study the role of both terms by formal calculations. In what follows,
it is convenient to generalize (8) with replacing v”(z) by a certain “real” function w(x)
that is independent of v(z). With assuming k # 0, we consider

10 = v(z)yY + w(z)Gy. (11)

The case when w(z) = v" (J:) recovers the physically relevant equation (8).
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3.1 Convection — shear flow transport

Here, we assume w(z) = 0 in (11) and consider
0y = v(z)y (12)

with a “continuous” real function v(z), which reads as a Schrodinger equation with a
Hamiltonian v(z).

The formal eigenvalue and the corresponding eigenfunction of the generator of (12), with
setting

v(z)y = wp
(i.e., Y(t) = e"**yp), is given by
w=v(p), ¥ =46z p), (13)

where p is an arbitrary real number and ¢ denotes the delta-measure. For the convenience,
we write

(f@)6z—p) = [ F@)(e - w) dz = f(u).

A formal spectral resolution of the generator is written as
+00
v@f@) = [ o), 8e - m)se - ) du (14)
+o00
= [ oot - ) du.

Rigorous mathematical representation of this “continuous spectrum” is given by the
spectral resolution of the coordinate operator:

+o00
of (@)= [ ndB(u)f(a), (15)

where {E(u); p € R} is a family of projectors (resolution of the identity) defined by

| f(x) forz<p
B ={ 1 rsh. (16)
The projector E(u) gives a resolution of the identity:
+o00
I= / dE(u). (17)
—00
Using this representation of the coordinate operator, we can write
+00
v(@)f(@) = [ vWdEWS (). (18)
The solution of (12) with initial condition ¥(z,0) = ¥e(z) is given by
+00 . .
9@t = [ e WaBu)o(a) = e y(z). (19)
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3.2 Chandrasekhar model of surface-waves

Non-Hermitian property stems from the second term on the right-hand side of (11), because
the multiplication of w(z) and the integral operator G does not commute. As we have noted,
this term represents the interaction between the perturbed flow and the ambient vorticity.
Physically, the non-Hermitian property implies the non-conservation of the “energy” of the
vorticity, i.e., the enstrophy [ |1/|?dz. We also remark that the original nonlinear system
(4) conserves the enstrophy, as well as all “Casimirs” [ f(¥) dz (f is an arbitrary smooth
function). The non-conservation of the enstrophy in the linearized system is due to the
separation of the vorticity into the perturbed component and the ambient field. Because
of the interaction between these two parts, which is enabled by the term {h,¥o}, the
perturbed component v does not describe a closed dynamical system.

The role of the non-Hermitian term [w(z)Gy in (11)] is most simply highlighted by
Chandrasekhar’s model of a shear flow, which assumes a piece-wise linear flow v(z) and
the corresponding delta measure v"(z) [3]. Before giving a mathematical justification, let
us examine formal solutions of this model.

In this subsection, we assume v(z) = 0 and consider

0y = w(z)G (20)

with

w(z) = Aé(x —a) (A,a € R). (21)
The formal eigenfunction of the generator, under the setting of i0; = w in (20), is deter-
mined by

Az —a) [ Gl v(© dE=wi@), (22)
where G(z,£) is the Green function of G [see (10)]. Solving (22), we obtain
w= %’ Y = 8(z — a). (23)

We thus have an oscillation of a “surface wave” that is localized at £ = a and has the
wavenumber k in the y direction [4].

If we have multiple “sources” of the surface waves, these waves interact through spatial
couplings induced by perturbed flows. Let us consider N (finite number) sources

N
w(x) :ZA]’5(.'L'—CLJ‘) (Aj, a; ER, ] = 1,,N) (24)
j=1
The frequencies of the coupled surface waves are given by solving
- e
S A8~ ) [ Gla,)u(©) dE = wi(a). (25)
=1 —oo

Substituting
N
¥ =2 0;6(z —aj),
j=1
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into (25), we obtain the “dispersion relation”

M| : =w| : (26)
ay anN
with
e—lai—a;l
2

The eigenvalue problem (26) determines the frequencies of the coupled oscillations. Ob-
viously, the matrix M is non-symmetric (except for the case of A; = C for all j), rep-
resenting the non-Hermitian property of the generator. For some sets of coefficients Aj
(j =1,---,N), the frequency w can be complex. The imaginary part of w gives the growth

rate of the unstable mode of oscillation which corresponds to the “Kelvin-Helmholtz insta-
bility”.

M,'J = A,-G(ai, aj) = Ai

(27)

3.3 Coupling of the two generators

We have seen the dynamics of vortices induced by each of the two different generators in
(11), separately. Now, we study the coupling of these two generators.

Let us first consider the case of single source; see (21). The eigenvalue problem associated
with the generalized Rayleigh equation (11) reads

vayh+ bz —a) [ Glz,(e) dE = wr, (29)

where G(z,£) = e71#7¢1/2 is the Green function [see (10)). Let us try to find a formal
solution with assuming

¥ = ad(z — a) + Bé(z — p), (29)
where p is an arbitrary “fixed” real number [see (13) and (23)]. Substituting (29) into (28),

we obtain an eigenvalue problem
o o
L = 30
(5)=-+(3) 0

_ [ v(a) + AG(a,a) AG(a,p)
L= ( 0 (1) ) : (31)

We can solve (30) to find a set of eigenvalues and eigenfunctions:

where

w=(a) =v(a) + 3, (g>=ul:=(})), (32)

and
AG(a,

o __AG(ap)
w = Qe(p) := v(p), ( 3 ) =U, = m(p) ( el @) ) ; (33)



245

where the normalization factor is

97 —1/2
AG(a, i)
tr (Qc(u) = Ql(a>) } | 9

The first eigenvalue ; = v(a) + (A/2) gives the “Doppler-shifted” frequency of the surface
wave [see (23)]. The corresponding formal eigenfunction is exactly ¥ = §(x — a) . The
second eigenvalue €}, = v(u) represents the local flow velocity [see (13)], while the cor-
responding formal eigenfunction describes a combination of the surface wave and a local
vortex.

By the transforms

m(p) =

L Ghas R B O
r=UU)={ , Cfn(u)la T =1, ni(”u)—ll o (39)

the matrix L is diagonalized;

—-1 _ Ql 0
T LT—< 0 Qc>'

We note that T is not a unitary transform, reflecting the fact that the generator is not a
Hermitian operator.

If the “resonance” Q; = Q. [v(a) + A/2 = v(p)] occurs, the second solution (33) de-
generates into the first one (32). This is the case when the matrix L of (30) transforms
into a Jordan block. We introduce a generalized eigenfunction belonging to the degenerate

eigenvalue (y;
1
U = , 36
c ((AG(a,u))‘1> (36)

which satisfies (L — Q,1)2U’, = 0. By transforms

’ AN 1 1 /;1__ 1 v_AG(a’ )
=, Uc)“(o (AG(a, 1))~} ) T “(0 AG(o ) )

we can transform L into a Jordan canonical form

Q1
—1 ! 1
T LT_<0 Ql>'

To unify both the non-resonant and resonant (nilpotent) cases, we define

_ m(p)  if Qu(p) # Q(a) ‘
= { (AG(a, 1))~ if Qc(p) = Qu(a) (ie. m(p) =0), (37)

m

and combine U, and U’, as

Uup) = | 20l

- m(p)AG(a,u)
( ) . (38)
()
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The transform

(U L pictes
T= (U, U, = o(p)~ {1 (a 39
is regular for all .
Next, we study the case of multiple sources; see (24). We solve
N +00 ‘
v@)p+ Y A8 — o) [ Gl )u(E) dE = wi (40)
=1 -0
with assuming
N
Y= ajb(x —a;)+ Bé(z — p).
j=1
To generalize the above calculations, we prepare notation [see (32)]
Q(a) =vla) + 5 (=1, N). (1)
The dispersion relation is
(03] (831
Ll =0l | (42)
(434 (634
\ 8 g
where the matrix L generalizes (31) as
Ql((ll) e AIG(al,aN) AlG(a1,ﬂ)
ANG(aN,al) QN(O,N) ANG(aN,u)
0 e 0 Qe()

We have two different classes of solutions. The first group, corresponding to (32), is ob-
tained with setting 3 = 0. Then, the eigenvalue problem (42) reduces into

Q;(ay) .o A1G(ay,an) o o
: - : Pl=w] ot (44)
ANG(aN,al) QN(GN) anN anN

which reads as the dispersion relation that is Doppler shifted from (26). The second class
of eigenvectors, corresponding to (33), is given by setting 8 # 0. The eigenvalue is

Qe(p) = v(p),

and the corresponding eigenfunction is determined by
Q(ar) = Qe(p) --- A1G(ay,an) a; AG(ar, p)
E .. . E E g —ﬂ E . (45)
AnG(an,a1) - Qn(an) — Qe(p) an AnG(an, p)

As discussed above, the resonances ;(a;) = Qc(¢) (j = 1,---, N) yield singularities in
the matrix of (45), and then, we must consider nilpotents.
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4 Spectral resolution of coupled non-Hermitian gen-
erator

In this section, we formulate the vortex dynamics equation (11) with the delta-measure
field (24) as an evolution equation in an appropriate Hilbert space, and give a spectral
resolution of the generator. The generator reads

Lo =+ 3 Ablo— o) [ Gl e de (46)

where v(z) € C(R), 4; € R,q; € R (j =1,...,N), and G(z,€) = e”1#~¢1/2 is the Green
function [see (10)]. In what follows, we assume |v(z)| < ¢ (Vx) with some finite number c.

Since the delta measure §(x — a;) is not a member of the Lebesgue space, we encounter
a difficulty in formulating the problem in the conventional L? Hilbert space.

4.1 Mathematical formulation of the generator

Let us consider a Hilbert space
V =CV o L*R), (47)

where CV is the unitary space of dimension N, and L*(R) is the complex Lebesgue space
on R endowed with the standard inner product. The member of V' is written as

(81 N 2
P = ( o(z) ) [ € CN, p(z) € L*(R)].. (48)

The inner product of V' is, thus, defined as

.0) = (e 0) + (,0) = Yoy + [ p(@)(e) do (49)
We identify
= ( 90?;) > & Y(z) = Z_:lajé(x —aj) + ¢(2). (50)

It is essential to decompose the delta-measure part (representing the surface waves) from the

total vorticity ¥. Although the supports (in the sense of distributions) of both components

§(z — a;) and ¢(z) may overlap, we separate them into different degrees of freedom.
Because Gy € C(R) for all ¢ € V, the generator L is a bounded operator on V.
Following (50), the generator £ of (46) is now written in a matrix form [see (43)]

Q1(ay) .o A1G(ay,ay)  [AG(ay,x)- dx o)
Lw — : "- E E E (51)
ANG(aN,al) v QN(aN) fANG(aN,x) - dx N
0 oo 0 Qc(z) o)

In the previous section, we dealt delta functions in a formal way and did calculations
using &(z — p) with an arbitrary p € R [see (13) and (29)]. We note that such formal
functions are not the member of the Hilbert space V. In this section, they are justified as
generalized eigenfunctions corresponding to “continuous spectra”.
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4.2 Spectral resolution of the generator

First, we consider the simple case of single “source”, i.e., w(z) = Ad(z — a) [see (21)]. The
surface wave mode has only one degree of freedom (N = 1). Here, the generator £ of (51)

simplifies as
_ [ ®(a) [AG(a,z)- dz
L= ( 10 0.(2) ) (52)

As we have shown in Sec. 3.3, there are two different classes of formal eigenfunctions [see
(32) and (33)]; In the form consistent to the notation of (48), they read

@ =v+3 U= () (53

() ( m (i) AG(au) )

- Qe (u)—$ (a)
m(p)d(z — p)
The first eigenfunction represents the surface wave. The second one includes an arbitrary
real number y, corresponding to the continuous spectrum, and a singular function o(z — p).

We must integrate (54) over 4 € R to span the complete basis of V. Formally, we can
generalize the transform T of (39) as

Qc(ﬂ) = v(,u), (54)

2 (u)—1(a)
0 S(,6(z — p))m(u)é(z — p) du

To cast this formal expression in an appropriate mathematical representation, we invoke
the resolution of the identity (17). The formal correspondence is

[;w(u(x),5($ — 1)o(z — p) dp = /+°° dE(p)u =

1 f(,(S(.'I? - u))ﬂ&)ﬂa—”il dﬂ ) (55)

T= (U1 [C.6— )Olu) du) = (

We also define u
F(u)u = / u(z) de, (56)
— 00
which gives
dF (p)u = u(p) du
Using this notation, we can write '

[ £ dF @) = [ f(uyu(u) du = [ f()u(e) de.
The operator 7 is now written in a rigorous form of

—_ ( 1 fmgp.!AGgau!dF( ) ) _ ( 1 fmg:t!AG!a,z! . dzx )

Q:(1)—1 (a) QC(z):Ql(a)
0  Jm(p)dE(u) 0 m(z)

Reflecting the non-Hermitian property of the generator £, the operator 7 is not a unitary
transform. By combing both non-resonant and resonant (nilpotent) cases [cf. (39)], this T
is a regular transform. The inverse operator is

-1 = ( . 1 (38) (a '&();(fnf)w)' dz ) : | (58)

(57)

m
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Using the transforms 7 and 7!, we obtain the Jordan canonical form of £;

e [ [p(R)dF (k)
TOAT = ( 0 fﬂc(u)dE(u)>

Qi [plz)- dr =
( 0 Q) ) (59)

where

1 Q) = Y (a)
Mﬂ—{oiﬂub¢9m0'

The support of p(z) can have a finite measure when the resonance condition Qc(u) = 1 (a)
holds on a finite interval of z.

4.3 Spectral representation of the propagator

The propagator e~ ** is defined by solving the initial value problem for (11)

iat/l/) = £d)a
(60)
¥(0) = o
and writing the solution as _
b(t) = e .
Defining ¢ = T x, we transform (60) into
iatX = T—]ETX,
(61)
3((0) = T‘I’l/)().
Using the spectral resolution (59), the solution of (61) is given by
o—iUTIET e™M — [ite”" M p(p)dF (u)
‘ 0 [eWdE(y)
e~ _ [ite” (7). dx
= ( 0 J e—itﬂﬁa(v) ) ) . (62)

The solution of (60) is given by
P(t) =T [T ET] T2y,
Using (57) and (58), we obtain

_‘iu: _ 7.( " — [ite” "™ p(z) - dr )7'*1

€ = 0 o—it(x)

/~ith ‘X .
= < 0 e—ith(z) )’ (63)
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—itQe(z) _ o—itQ(a) . _
X = / ([1 — p(z)] e Qc(;) ! Ql(]af)lG(a, z) z’te—zthG(a,x)p(g;)) . dz,

and we have used the relations

mz) _
pz) _
) = AC(a.2)(@)

The off-diagonal part X of the matrix operator (63) represents the mode interactions
originating from the non-Hermitian property of the generator. The X consists of two parts;
one is the contribution from the non-resonant flow in the region of the support of 1 — p(z),
and the other is from the resonant flow in that of p(z). The latter produces secular behavior
(represented by the factor ite ).
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