
Non-Hermitian dynamics of vortices in a shear flow

東大新領域 吉田善章, 龍野智哉 (Zensho Yoshida, Tomoya Tatsuno)
Graduate School of Frontier Sciences, University of Tokyo

1 Introduction
Non-0rthogonality of eigenfunctions (modes) is the determining characteristic of non-Her-
mitian systems, which brings about interactions among different modes. This resembles
the mode couplings in nonlinear systems, and hence, the diversity of transient behavior in
non-Hermitian system is rather rich.

Let $1\mathrm{i}\mathrm{S}$ consider an abstract autono nous evolution equation of the Schr\"odinger tvpe

$\{$

$\dot{\uparrow,}\partial_{t}u=llu$

$\iota x$ (0) $=\iota\iota_{()}$

(1)

where $\mathcal{H}$ is acertain linear operator. When we can generate an exponential function
(propagator) $e^{-it\mathcal{H}}$ , we can write thc solution of (1) as

$u(t)=e^{-it\mathcal{H}}\iota\iota_{0}$ .

When $u\in \mathrm{C}$ and $\mathcal{H}$ $\in \mathrm{C}$ , then $e^{-it?t}$ is nothing but the exponential function $()\mathrm{f}$ elementary
mathematics. For vectors $\mathrm{s}\iota$

$\in \mathrm{C}^{N}$ and alinear map $lt$ : $\mathrm{C}^{N}arrow \mathrm{C}^{N}$ , we call define $e^{-it\mathcal{H}}\mathrm{b}.\mathrm{v}$

the standard power series
$c^{-i\mathrm{f}H}=$

$n-,1 \sum_{--}^{\infty}\frac{(-it\mathcal{H})^{n}}{n!}$ , (2)

or the Cauchy integral (inverse Laplace transform)

$e^{-it\mathcal{H}}= \frac{1}{2\pi i}\oint e^{-- it\lambda}(\lambda I-\mathcal{H})^{-1}d\lambda$ . (3)

For $u$ in aHilbert space 1 $r$

, $\mathcal{H}$ is an operator in I’. For some different $\mathrm{c}1\mathrm{a}\mathrm{s}‘ \mathrm{s}.\epsilon_{\iota}\backslash \mathrm{s}$ of operators,
we have theories to generate $\epsilon^{t}-it\mathcal{H}$ . For bounded operators, we can invoke the Dunford
integral that is similar to (3). Amost general theory of generating an exponential function
of the type $e^{tA}$ for positive $t$ (so-called semigroup theory) is due to Hille and Yosidafl].
$\mathrm{A}1\mathrm{t}_{)}\mathrm{h}\mathrm{o}1\iota \mathrm{g}\mathrm{h}$ this theory warrants the solvability of initial value problems for $\dot{\mathrm{e}}1$ wide class
of generators, understanding of the behavior of the solution is not simple. Indeed, the
exponential functions of matrices or operators are not necessarily “exponential” in the
conventional sense.

The von Neumallll theory for Hermit ian (self-acjjoint) operators provides adeep $\mathrm{i}_{11\mathrm{S}},$
$\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$

into the structure of $e_{\backslash }^{-- it\mathcal{H}}$ which invokes the spectral resolution of the generator $\mathcal{H}$ in term
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of acomplete set of orthogonal modes. The basic idea is that the $e^{-it\mathcal{H}}$ may be represented
as asum of independent harmonic oscillators, each of which is an eigenfunction of $H$ and
the corresponding eigenvalue (real number) gives the frequency of the oscillation. Unlike
the case of finite dimension vector space, however, the conventional eigenfunctions may not
be complete to span the Hilbert space. The most essential generalization needed to study
an infinite dimension space was the introduction of continuous spectra that correspond to
singular eigenfunctions. The spectral resolution of $\mathcal{H}$ is, in general, given by an integral
over the spectra (an example will be given in Sec. 3.1). The contribution to the $e^{-it?t}$ from
the continuous spectra brings about the “phase mixing” of oscillations with continuous
frequencies, resulting in various types of damping. Hence, the reality of the spectra of an
Hermitian operator does not necessarily imply stationary (non-dumping) oscillations.

For alinear map in afinite dimension vector space, the spectral resolution yields the
Jordan canonical form, and the explicit representation of $e^{-it\mathcal{H}}$ can be constructed using
the canonical form. It is well known that anilpotent yields secular behavior of the corre-
sponding generalized eigenvector. Therefore, even if every eigenvalue $\lambda_{j}$ is real, the $e^{-it\mathcal{H}}$

can describe “instabilities” (growth of oscillations).
In aHilbert space, however, such ageneral theory of spectral resolution is limited to

either compact operators or Hermitian operators. This paper is an attempt to obtain a
spectral resolution of anon-Hermitian operator that is not included in the above mentioned
categories. This operator is related to an important physics problem (Sec. 2).

2 Non-Hermitian dynamics of vortices
The vortex dynamics equation in $\mathrm{R}^{2}$ [the coordinates are denoted by ($x$ , $y$ )] reads as a
Liouville equation

$\partial_{t}\Psi+\{H, \Psi\}=0$ , (4)
where 1is the vorticity, $H$ is the Hamiltonian (stream function) of an incompressible flow
$v=(\partial_{y}H, -\partial_{x}H)^{t}$ that transports the vortices, and

$\{a, b\}=(\partial_{y}a)(\partial_{x}b)-(\partial_{x}a)(\partial_{y}b)=-\nabla a\mathrm{x}$ $\nabla b\cdot\nabla z$

is the Poisson bracket.
When the Hamiltonian $H$ depends o$\mathrm{n}$

$\Psi$ , the evolution equation (4) is nonlinear. The
dynamics of $\Psi$ can couple with other fields when they are included in $H$ . The simplest
example of nonlinear vortex dynamics is that of the Euler fluid (incompressible ideal flow),
where

$-\triangle H=\Psi$ , (5)
or, denoting the Green operator of the $\mathrm{L}\mathrm{a}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{n}-\Delta$ by $\mathcal{G}$

$H=\mathcal{G}\Psi$ . (6)

Let us linearize (4) with decomposing 1and $H$ into their ambient (denoted by subscript
0) and fluctuation parts:

$\Psi$ $=$ $\Psi_{0}+\psi$ ,
$H$ $=$ $H_{0}+h=\mathcal{G}\Psi_{0}+\mathcal{G}\psi$ .
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Neglecting the second-0rder terms, (4) reads

$\partial_{t}\psi+\{H_{0}, \psi\}-\vdash\{\triangle H_{0}, \mathcal{G}\psi\}=0$ . (7)

In this PaPer, we consider one-dimensional problem with

$H_{0}=H_{0}(x)$ .

Since the ambient Hamiltonian $H_{0}$ is independent of $y$ , the wavenumber in $y$ is agood
quantum number, and we can replace $\partial_{y}$ by $ik$ . In what follows, we assume $k\neq 0$ , and
normalize $k=1[2]$ . We write

$v(x)=-\partial_{x}H_{0}(x)$ ,

to obtain the standard Rayleigh equation

$i\partial_{t}\psi=v(x)\psi+v’(x)\mathcal{G}\psi$ . (8)

The Green operator $\mathcal{G}$ is represented by aconvolution integral

$( \mathcal{G}f)(x)=\int_{-\infty}^{+\infty}\frac{e^{-|x-\xi|}}{2}f(\xi)d\xi$. (9)

In what follows, we denote by $G(x, \xi)$ the Green function;

$G(x, \xi)=\frac{e^{-|x-\xi|}}{2}$ . (10)

3Convection and oscillations
The generator of the vortex dynamics equation (8) consists of two terms, each of which
describes different mechanism of vortex motion. The first term on the right-hand side of (8)
[originating from $\{H_{0}$ , $\psi\}$ in (7)] represents the transport of the vorticity by the ambient
flow $v(x)$ . An inhomogeneous (sheared) flow distorts vortices, and hence, no stationary
structure can persist in ashear flow $(v(x)\neq \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t})$ . Such adynamics is described by
acontinuous spectrum (Sec. 3.1). On the other hand, the second term [originating from
$\{\triangle H_{0}, \mathcal{G}\psi\}$ in (7) $]$ describes the interaction between the perturbation and the ambient
field. When the ambient vorticity $\Psi_{0}=-\triangle H_{0}$ has aspatial gradient, aflow induced by a
perturbation yields alocal change of the vorticity. This term, hence, can create perturbed
vortices from the ambient field.

In this section, we study the role of both terms by formal calculations. In what follows,
it is convenient to generalize (8) with replacing $v’(x)$ by acertain “real” function $w(x)$

that is independent of $v(x)$ . With assuming $k\neq 0$ , we consider

$i\partial_{t}\psi=v(x)\psi+\tau v(x)\mathcal{G}\psi$ . (11)

The case when $w(x)–v’(x)$ recovers the physically relevant equation (8)
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3.1 Convection –shear flow transport
Here, we assume $w(x)=0$ in (11) and consider

$i\partial_{t}\psi=v(x)\psi$ (12)

with a“continuous” real function $v(x)$ , which reads as aSchr\"odinger equation with a
Hamiltonian $v(x)$ .

The formal eigenvalue and the corresponding eigenfunction of the generator of (12), with
setting

$v(x)\psi=\omega\psi$

(i.e., $\psi(t)=e^{-i\omega t}\psi$), is given by

$\omega$ $=v(\mu)$ , $\iota[$) $=\delta(x-\mu)$ , (13)

where $\mu$ is an arbitrary real number and $\delta$ denotes the delta-measure. For the convenience,
we write

$(f(x), \delta(x-l^{l))=}\int_{-\infty}^{+\infty}f(x)\delta(x-\mu)dx=f(l^{l})$ .

Aformal spectral resolution of the generator is written as

$v(x)f(x)$ $=$ $\int_{-\infty}^{+\infty}v(\mu)(f, \delta(x-\mu))\delta(x-l^{l})d/\iota$ (14)

$=$ $\int_{-\infty}^{+\infty}v(_{l}\iota)f(\mu)\delta(x-\mu)d\mu$.

Rigorous mathematical representation of this “continuous spectrum” is given by the
spectral resolution of the coordinate operator:

$xf(x)= \int_{-\infty}^{+\infty}\mu dE(\mu)f(x)$ , (13)

where $\{E(\mu);\mu\in \mathrm{R}\}$ is afamily of projectors (resolution of the identity) defined by

$E(\mu)f(x)=\{$
$f(x)$ for $x\leq\mu$

0for $x>\mu$
(16)

The projector $E(\mu)$ gives aresolution of the identity:

$I= \int_{-\infty}^{+\infty}$ dE(\mu ). (17)

Using this representation of the coordinate operator, we can write

$v(x)f(x)= \int_{-\infty}^{+\infty}v(l^{l})dE(\mu)f(x)$ . (18)

The solution of (12) with initial condition $\psi(x, 0)=\psi_{0}(x)$ is given by

$\psi(x, t)=\int_{-\infty}^{+\infty}e^{-:tv(\mu)}dE(\mu)\psi_{0}(x)=e^{-:tv(x)}\psi_{0}(x)$ . (19)
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3,2 Chandrasekhar model of surface-waves
Non-Hermitian property stems from the second term on the right-hand side of (11), because
the multiplication of $w(x)$ and the integral operator (; does not commute. As we have noted,

this term represents the interaction between the perturbed flow and the ambient vorticity.

Physically, the non-Hermitian property implies the non-conservation of the ”energy” of the
vorticity, i.e., the enstrophy $\mathrm{J}^{\cdot}|\psi|^{2}dx$ . We also remark that the original nonlinear system
(4) conserves the enstrophy, as well as all “Casimirs” $\int f(\Psi)dx(f$ is an arbitrary smooth
function). The non-conservation of the enstrophy in the linearized system is due to the
separation of the vorticity into the perturbed component and the ambient field. Because
of the interaction between these two parts, which is enabled by the term $\{h, \Psi_{0}\}$ , the
perturbed component $\psi$ does not describe aclosed dynamical system.

The role of the non-Hermitian term [$w(x)\mathcal{G}\psi$ in (11)] is most simply highlighted by
Chandrasekhar’s model of ashear flow, which assumes apiece-wise linear flow $v(x)$ and
the corresponding delta measure $v’(x)[3]$ . Before giving amathematical justification, let
us examine formal solutions of this model.

In this subsection, we assume $v(x)=0$ and consider

$i\partial_{t}\psi=w(x)\mathcal{G}\psi$ (20)

with
$w(x)=A\delta(x-a)$ $(A, a\in \mathrm{R})$ . (21)

The formal eigenfunction of the generator, under the setting of $i\partial_{t}=\omega$ in (20), is deter-
mined by

$A \delta(x-a)\int_{-\infty}^{+\infty}G(x, \xi)\psi(\xi)d\xi=\omega\psi(x)$ , (22)

where $G(x, \xi)$ is the Green function of $\mathcal{G}$ [see (10)]. Solving (22), we obtain

$\omega$
$= \frac{A}{2}$ , $\psi=\delta(x-a)$ . (23)

We thus have an oscillation of a“surface wave” that is localized at $x=a$ and has the
wavenumber $k$ in the $y$ direction [4].

If we have multiple “sources” of the surface waves, these waves interact through spatial
couplings induced by perturbed flows. Let us consider $N$ (finite number) sources

$w(x)= \sum_{j=1}^{N}A_{j}\delta(x-a_{j})$ $(A_{j}, a_{j}\in \mathrm{R}, j=1, \ldots, N)$ . (24)

The frequencies of the coupled surface waves are given by solving

$\sum_{j=1}^{N}A_{j}\delta(x-a_{j})\int_{-\infty}^{+\infty}G(x, \xi)\mathrm{s}\mathit{1})(\xi)d\xi=\omega\psi(x)$ . (25)

Substitutin

$\psi=\sum_{j=1}^{N}\alpha_{j}\delta(x-a_{j})$ ,
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into (25), we obtain the “dispersion relation”

$\Lambda I$ $\{$

$\alpha_{1}$

.$\cdot$

. –

$\alpha_{N}/$

$=\omega$ $\{$

$\alpha_{1}$

.$\cdot$

.

$\alpha_{N}/$

(26)

with
$M_{i,j}=A_{i}G(a_{i}, a_{j})=A_{i} \frac{e^{-|a-a_{j}|}}{2}$ . (27)

The eigenvalue problem (26) determines the frequencies of the coupled oscillations. Ob-
viously, the matrix $M$ is non-symmetric (except for the case of $A_{j}=C$ for all $j$ ), rep-
resenting the non-Hermitian property of the generator. For some sets of coefficients $A_{j}$

$(j=1, \cdots, N)$ , the frequency $\omega$ can be complex. The imaginary part of $\omega$ gives the growth
rate of the unstable mode of oscillation which corresponds to the “Kelvin-Helmholtz in ta-
bility”.

3.3 Coupling of the two generators
We have seen the dynamics of vortices induced by each of the two different generators in
(11), separately. Now, we study the coupling of these two generators.

Let us first consider the case of single source; see $(2\mathrm{i})$ . The eigenvalue problem associated
with the generalized Rayleigh equation (11) reads

$v(x) \psi+A\delta(x-a)\int_{-\infty}^{+\infty}G(x, \xi)\psi(\xi)d\xi=\omega\psi$ , (28)

where $G(x, \xi)=e^{-|x-\xi|}/2$ is the Green function [see (10)]. Let us try to find aformal
solution with assuming

$\psi=\alpha\delta(x-a)+\beta\delta(x-\mu)$ , (29)
where $\mu$ is an arbitrary “fixed” real number [see (13) and (23)]. Substituting (29) into (28.),
we obtain an eigenvalue problem

$L$ $(\begin{array}{l}\alpha\beta\end{array})=\omega$ $(\begin{array}{l}\alpha\beta\end{array})$ (30)

where

$L=\{$ $v(a)+AG(a, a)0$ $AG(a,\mu)v(\mu))$ . (31)

We can solve (30) to find aset of eigenvalues and eigenfunctions:

$\omega$ $= \Omega_{1}(a):=v(a)+\frac{A}{2}$ , $(\begin{array}{l}\alpha\beta\end{array})=U_{1}:=(\begin{array}{l}10\end{array})$ , (32)

and
$\omega$ $=\Omega_{c}(\mu):=v(\mu)$ , $(\begin{array}{l}\alpha\beta\end{array})=U_{c}:=m(\mu)(\frac{AG(a,\mu)}{\Omega_{c}(\mu)-\Omega_{1}(a),1},$ $)$ , (33)
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where the normalization factor is

$m( \mu)=[1+(\frac{AG(a,\mu)}{\Omega_{c}(\mu)-\Omega_{1}(a)})^{2}]-1/2$ (34)

The first eigenvalue $\Omega_{1}=v(a)+(A/2)$ gives the “Doppler-shifted” frequency of the surface
wave [see (23)]. The corresponding formal eigenfunction is exactly $\psi=\delta(x-a)$ . The
second eigenvalue $\Omega_{c}=v(\mu)$ represents the local flow velocity [see (13)], while the cor-
responding formal eigenfunction describes acombination of the surface wave and alocal
vortex.

By the transforms

$T=(U_{1}U_{c})=(01$ $\frac{m(\mu)AG(a,\mu)}{\Omega_{c}(\mu)-\Omega_{1}(a),7n(\mu)},$ $)$ , $T^{-1}=(01$ $- \frac{AG(a,\mu)}{\Omega_{c}(\mu)-\Omega_{1}(a),m(\mu)^{-1}},$ $)$ , (35)

the matrix $L$ is diagonalized;

$T^{-1}LT=(\begin{array}{ll}\Omega_{1} 00 \Omega_{c}\end{array})$ .

We note that $T$ is not aunitary transform, reflecting the fact that the generator is not a
Hermitian operator.

If the “resonance” $\Omega_{1}=\Omega_{c}[v(a)+A/2=v(\mu)]$ occurs, the second solution (33) de-
generates into the first one (32). This is the case when the matrix $L$ of (30) transforms
into aJordan block. We introduce ageneralized eigenfunction belonging to the degenerate
eigenvalue $\Omega_{1}$ ;

$U_{c}’=(\begin{array}{l}1(AG(a,\mu))^{-1}\end{array})$ , (36)

which satisfies $(L-\Omega_{1}I)^{2}U_{c}’=0$ . By transforms

$T’=(U_{1}U_{c}’)=(\begin{array}{ll}1 10 (\Lambda G(a,l^{l}))^{-1}\end{array})$ , $T^{\prime-1}=(\begin{array}{lll}1 -AG(a \mu)0 AG(a,\mu) \end{array})$ ,

we can transform $L$ into aJordan canonical form

$T^{\prime-1}LT’=(\begin{array}{ll}\Omega_{1} 10 \Omega_{1}\end{array})$ .

To unify both the non-resonant and resonant (nilpotent) cases, we define

$\tilde{m}(\mu)=\{$
$m(\mu)$ if $\Omega_{c}(\mu)\neq\Omega_{1}(a)$

$(AG(a, \mu))^{-1}$ if $\Omega_{c}(\mu)=\Omega_{1}(a)$ (i.e. $m(\mu)=0$), (37)

and combine $U_{c}$ and $U_{c}’$ as

$\tilde{U}_{c}(\mu)=(\frac{m(\mu)AG(a,\mu)}{\Omega_{\mathrm{c}}(l^{l})-\Omega_{1}(a),\tilde{m}(\mu)},$ $)$ . (38)
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The transform
$\tilde{T}=(U_{1}\tilde{U}_{c}(\mu))=(01$ $\frac{n\iota(\mu)AG\prime(a,\mu)}{\Omega_{r}(\mu)-\Omega_{1}(a),\tilde{m}(\mu)},$ $)$ (39)

is regular for all $\mu$ .
Next, we study the case of multiple sources; see (24). We solve

$v(x) \psi+\sum_{j=1}^{N}A_{j}\delta(x-a_{j})\int_{-\infty}^{+\infty}G(x, \xi)\psi(\xi)d\xi=\omega\psi$ (40)

with assuming

$\psi=\sum_{j=1}^{N}\alpha_{j}\delta(x-a_{j})+\beta\delta(x-\mu)$ .

To generalize the above calculations, we prepare notation [see (32)]

$\Omega_{j}(a_{j})=v(a_{j})+\frac{A_{j}}{2}$ $(j=1, \ldots, N)$ . (41)

The dispersion relation is

$L$ $(\begin{array}{l}\alpha_{1}\vdots\alpha_{N}\beta\end{array})=\omega$ $(\begin{array}{l}\alpha_{1}\vdots\alpha_{N}\beta\end{array})$ . (42)

where the matrix $L$ generalizes (31) as

$L=\{$ $\mathrm{f}l_{1}(..\cdot a_{1})0^{\cdot}.$
.

$A_{1}G(a_{1}.\cdot.’ a_{N})\Omega_{N}(a_{N})0$ $A_{N}G(..\cdot a_{N},\mu)A_{1}G(a_{1},\mu)\Omega_{c}(\mu))$ .
$A_{N}G(a_{r\mathrm{V}}, a_{1})$

(43)

We have two different classes of solutions. The first group, corresponding to (32), is ob-
tained with setting $\beta$ $=0$ . Then, the eigenvalue problem (42) reduces into

$(\begin{array}{lll}\Omega_{1}(a_{1})\ddots A_{1}G(a_{1},a_{N})\vdots \ddots \vdots A_{N}G(a_{N},a_{1}) \Omega_{N}(a_{N})\end{array})(\begin{array}{l}\alpha_{1}\vdots\alpha_{N}\end{array})=\omega$ $(\begin{array}{l}\alpha_{1}\vdots\alpha_{N}\end{array})$ , (44)

which reads as the dispersion relation that is Doppler shifted from (26). The second class
of eigenvectors, corresponding to (33), is given by setting $\beta\neq 0$ . The eigenvalue is

$\Omega_{c}(\mu)=v(\mu)$ ,

and the corresponding eigenfunction is determined by

$(\begin{array}{lll}\Omega_{1}(a_{1})-\Omega_{c}(\mu) A_{1}G(a_{1},a_{N})\vdots \ddots \vdots A_{N}G(a_{N},a_{\mathrm{l}}) \Omega_{N}(a_{N})-\Omega_{c}(\mu)\end{array})(\begin{array}{l}\alpha_{1}\vdots\alpha_{N}\end{array})=-\beta$ $(\begin{array}{l}A_{1}G(a_{1},\mu)\vdots A_{N}G(a_{N},\mu)\end{array})$ . (45)

As discussed above, the resonances $\Omega_{j}(a_{j})=\Omega_{c}(\mu)(j=1, \cdots, N)$ yield singularities in
the matrix of (45), and then, we must consider nilpotents
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4 Spectral resolution of coupled non-Hermitian gen-
erator

In this section, we formulate the vortex dynamics equation (11) with the delta-measure

field (24) as an evolution equation in an appropriate Hilbert space, and give aspectral

resolution of the generator. The generator reads

$\mathcal{L}\psi=v(x)\psi+\sum_{j=1}^{N}A_{j}\delta(x-a_{j})\int_{-\infty}^{+\infty}G(x, \xi)\psi(\xi)d\xi$ , (46)

where $v(x)\in C(\mathrm{R})$ , $A_{j}\in \mathrm{R}$ , $a_{j}\in \mathrm{R}(j=1, \ldots, N)$ , and $G(x, \xi)=e^{-|x-\xi|}/2$ is the Green
function [see (10)]. In what follows, we assume $|v(x)|<c(\forall x)$ with some finite number $c$ .

Since the delta measure $\delta(x-a_{j})$ is not amember of the Lebesgue space, we encounter
adifficulty in formulating the problem in the conventional $L^{2}$ Hilbert space.

4,1 Mathematical formulation of the generator

Let us consider aHilbert space
$V=\mathrm{C}^{N}\oplus L^{2}(\mathrm{R})$ , (47)

where $\mathrm{C}^{N}$ is the unitary space of dimension $N$ , and $L^{2}(\mathrm{R})$ is the complex Lebesgue space
on $\mathrm{R}$ endowed with the standard inner product. The member of $V$ is written as

$\psi=(\varphi(x)\alpha)$ $[\alpha\in \mathrm{C}^{N}, \varphi(x)\in L^{2}(\mathrm{R})]$ . (48)

The inner product of $V$ is, thus, defined as

$\langle\psi, \psi’\rangle=(\alpha, \alpha’)+(\varphi, \varphi’)=\sum_{j=1}^{N}\alpha_{j}\overline{\alpha}_{j}’+\int_{-\infty}^{+\infty}\varphi(x)\overline{\varphi}’(x)dx$ (49)

We identify

$\uparrow\int J=(\varphi(x)\alpha)\Leftrightarrow\psi(x)=\sum_{j=1}^{N}\alpha_{j}\delta(x-a_{j})+\varphi(x)$ . (50)

It is essential to decompose the delta-measure part (representing the surface waves) from the

total vorticity $\psi$ . Although the supports (in the sense of distributions) of both components
$\delta(x-a_{j})$ and $\varphi(x)$ may overlap, we separate them into different degrees of freedom.

Because $\mathcal{G}\psi\in C(\mathrm{R})$ for all $\psi\in V$ , the generator $\mathcal{L}$ is abounded operator on $V$ .
Following (50), the generator $\mathcal{L}$ of (46) is now written in amatrix form [see (43)]

$\mathcal{L}\psi=\{$ $\Omega_{1}(...a_{1})0^{\cdot}.$
. $A_{1}G(a_{1}.\cdot.’ a_{N})0$ $\int A_{N}G(a_{N}.\cdot.,x)\cdot dx\int A_{1}G(a_{1},x)\cdot dx\Omega_{c}(x))$ $(\begin{array}{l}\alpha_{1}\vdots\alpha_{N}\varphi(x)\end{array})$

$A_{N}G(a_{N}, a_{1})$ $\Omega_{N}(a_{N})$

(51)

In the previous section, we dealt delta functions in aformal way and did calculations
using $\delta(x-\mu)$ with an arbitrary $\mu\in \mathrm{R}$ [see (13) and (29)]. We note that such formal
functions are not the member of the Hilbert space $V$ . In this section, they are justified as
generalized eigenfunctions corresponding to “continuous spectr\"a”.
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4.2 Spectral resolution of the generator
First, we consider the simple case of single “source”, i.e., $w(x)=A\delta(x-a)$ [see (21)]. The
surface wave mode has only one degree of freedom $(N=1)$ . Here, the generator $\mathcal{L}$ of (51)
simplifies as

$\mathcal{L}=($ $\Omega_{1}(a)0$ $\int AG(a,x)\Omega_{c}(x)$

. $dx$ ). (52)

As we have shown in Sec. 3.3, there are two different classes of formal eigenfunctions [see
(32) and (33) $]$ ; In the form consistent to the notation of (48), they read

$\Omega_{1}(a)=v(a)+\frac{A}{2}$ , $U_{1}=(\begin{array}{l}\mathrm{l}0\end{array})$ $(53\grave{J}$

$\Omega_{c}(\mu)=v(\mu)$ , $\tilde{U}_{c}(\mu)=(\tilde{m}’\mu)\frac{m(\mu)AG(a,\mu)}{\Omega_{c}(\mu)-\Omega_{1}(a),(\mu)\delta(x-})$ . (54)

The first eigenfunction represents the surface wave. The second one includes an arbitrary
real number $\mu$ , corresponding to the continuous spectrum, and asingular function $\delta(x-\mu)$ .
We must integrate (54) over $\mu\in \mathrm{R}$ to span the complete basis of $V$ . Formally, we can
generalize the transform $\tilde{T}$ of (39) as

$\mathcal{T}=(U_{1}\int(\cdot, \delta(x-\mu))\tilde{U}_{c}(\mu)d\mu)=(01$ $\int(\cdot,\delta(x-\mu))\tilde{m}’\mu)d\mu\int(\cdot,\delta(x-\mu))\frac{m(\mu)AG(a,\mu)}{\Omega_{c}(\mu)-\Omega_{1}(a),(\mu)\delta(x-}d\mu)$ . (55)

To cast this formal expression in an appropriate mathematical representation, we invoke
the resolution of the identity (17). The formal correspondence is

$\int_{-\infty}^{+\infty}(u(x), \delta(x-\mu))\delta(x-\mu)d\mu=\int_{-\infty}^{+\infty}$ dE(\mu )u $=u$ .

We also define
$F( \mu)u=\int_{-\infty}^{\mu}u(x)dx$, (56)

which gives
$dF(\mu)u=u(\mu)d\mu$ .

Using this notation, we can write

$\int f(\mu)dF(\mu)u(x)=\int f(\mu)u(\mu)d\mu=\int f(x)u(x)dx$ .

The operator $\mathcal{T}$ is now written in arigorous form of

$\mathcal{T}=($ $01$ $\int\frac{m(\mu)AG(a,\mu)}{\Omega_{c}(\mu)-\Omega_{1}(a),\int\tilde{m}(\mu)dE},dF(\mu)(\mu))=(01$ $\int\frac{m(x)AG(a,x)}{\Omega_{c}(x)-\Omega_{1}(a),\tilde{m}(x)},$ $\cdot dx)$ (57)

Reflecting the non-Hermitian property of the generator $\mathcal{L}$ , the operator $\mathcal{T}$ is not aunitary
transform. By combing both non-resonant and resonant (nilpotent) cases [cf. (39)], this $\mathcal{T}$

is aregular transform. The inverse operator is

$\mathcal{T}^{-1}=($ $01$ $- \int(\frac{m(x)}{\overline{m}(x)})(\frac{AG(a,x)}{\Omega_{c}(x)-\Omega_{1}(a),(x)^{-1}},)\tilde{m}$

. $dx$ ). (581

248



Using the transforms $\mathcal{T}$ and $\mathcal{T}^{-1}$ , we obtain the Jordan canonical form of $\mathcal{L}$ ;

$\mathcal{T}^{-1}\mathcal{L}\mathcal{T}=$ $(\Omega_{1}0$ $\int\Omega_{c}(\mu)dE(\mu)\int\rho(\mu)dF(\mu))$

$=$ $(\begin{array}{llll}\Omega_{1} /\backslash \rho(x)\cdot dx0 \Omega_{c}(x) \end{array})$ , (59)

where
$\rho(x)=\{$

1if $\Omega_{c}(\mu)=\Omega_{1}(a)$

0if $\Omega_{c}(\mu)\neq\Omega_{1}(a)$

The support of $\rho(x)$ can have afinite measure when the resonance condition $\Omega_{c}(\mu)=\Omega_{1}(a)$

holds on a finite interval of $x$ .

4.3 Spectral representation of the propagator
The propagator $e^{-it\mathcal{L}}$ is defined by solving the initial value problem for (11)

$\{$

$i\partial_{t}\psi=\mathcal{L}\psi$ ,

$\psi(0)=\psi_{0}$

(60)

and writing the solution as
$(/)(t)=e^{-it\mathcal{L}}\psi_{J_{0}}$ .

Defining $\psi=\mathcal{T}\chi$ , we transform (60) into

$\{$

$i\partial_{t}\chi=\mathcal{T}^{-1}\mathcal{L}\mathcal{T}\chi$ ,

$\chi(0)=\mathcal{T}^{-1}\psi_{0}$ .
(61)

Using the spectral resolution (59), the solution of (61) is given by

$e^{-it\mathcal{T}^{-1}\mathcal{L}\mathcal{T}}$

$=$ $(c_{0}^{\mathrm{J}}-it\Omega_{1}$ $- \int ite^{-it\Omega_{1}}\rho(\mu)dF(\mu)\int e^{-il\Omega_{c}(\mu)}dE(\mu))$

$=$ ( $e_{0}^{-it\Omega_{1}}$
-/

$\cdot$

$ite^{-it\Omega_{1}},\rho(x)e^{-it\Omega_{c}(x)}\cdot d.c$ ). (62)

The solution of (60) is given by

$\psi(t)=\mathcal{T}[e^{-it\mathcal{T}^{-1}\mathcal{L}\mathcal{T}}]\mathcal{T}^{-1},\psi_{0}$ .

Using (57) and (58), we obtain

$e^{-it\mathcal{L}}$
$=$ $\mathcal{T}$ ( $e_{0}^{-it\Omega_{1}}$ $- \int ite^{-it\Omega_{1}},\rho(x)e^{-it\mathrm{f}\mathit{1}_{c}(x)}\cdot dx$ ) $\mathcal{T}^{-1}$

$=$ $(\begin{array}{ll}e^{-il\Omega_{1}} \lrcorner \mathrm{Y}0 e^{-it\Omega_{c}(x)}\end{array})$ , (63)
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[e $\ovalbox{\tt\small REJECT} t\mathrm{O}_{c}(x)$e $\ovalbox{\tt\small REJECT} t0_{1}(a)]_{\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}}1\mathrm{C}\mathrm{I}\ovalbox{\tt\small REJECT}(a,$r)
$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}\ldots$$\yen$ ile $AG(a_{\ovalbox{\tt\small REJECT}}x)p(x)$ . dx,

$\mathrm{O}_{c}(\ovalbox{\tt\small REJECT} \mathrm{r})-\mathrm{O}.(a)$

and we have used the relations

$\{$

$\frac{m(x)}{\tilde{m}(x)}=1-\rho(x)$

$\frac{\rho(x)}{\tilde{m}(x)}=AG(a, x)\rho(x)$

The off-diagonal part $X$ of the matrix operator (63) represents the mode interactions
originating from the non-Hermitian property of the generator. The $X$ consists of two parts;
one is the contribution from the non-resonant flow in the region of the support of $1-\rho(x)$ ,
and the other is from the resonant flow in that of $l^{y}(x)$ . The latter produces secular behavior
(represented by the factor $ite^{-it\Omega_{1}}$ ).
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