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I. INTRODUCTION

The understanding of irreversible phenomena including nonequilibrium steady states

is alongstanding problem of statistical mechanics. Since general features of irreversible

phenomena are not well understood, rigorous approaches are important.

In their purely dynamical study on nonequilibrium steady states for aclassical infi-

nite harmonic chain, Spohn and Lebowitz [1] used semiinfinite left and right segments as
reservoirs. They showed that any initial state, where the left and right reservoirs are in

equilibrium with different temperatures, evolves towards asteady state with nonvanishing

energy current. Recently, following the same line of thoughts as Spohn and Lebowitz, and

applying the method of $\mathrm{C}$ ’-algebra, Ho and Araki [2] proved the approach to nonequilibrium

steady states for an isotropic XY-chain,

As the works by Spohn-Lebowitz [1] and HO-Araki [2], we studied nonequilibrium steady

states for aone-dimensional conductor with the aid of the C’-algebra [3]. Left and right

semiinfinite segments of the lattice are assigned for electron reservoirs. Initially the two

reservoirs are set to be in equilibrium at different temperatures $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ different chemical

potentials. The evolution of the initial states for $tarrow\pm\infty$ was investigated and two differ-

ent quasi-free steady states $\omega_{\pm\infty}$ were obtained. Transports and current fluctuations were
investigated.

The steady state $\omega_{+\infty}$ carries nonvanishing electric and energy currents, which agree with

the nonlinear generalization of the Landauer conductivity and which are consistent with the
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second law of thermodynamics [3]. The state $\omega_{+\infty}$ is equivalent to the nonequilibrium steady

state proposed by MacLennan [4] and Zubarev [5]. The other steady state $\omega_{-\infty}$ carries anti-

thermodynamical currents and is the time-reversed state of $\omega_{+\infty}$ . Roughly speaking, in.(a

space of states” , the state $\omega_{+\infty}$ behaves as an “attractor” and $\omega_{-\infty}$ as a“repeller” And

initial states evolve unidirectionally from the “repeller” to the “attractor” in away consistent

with dynamical reversibility.

Now it is desirable to introduce and study entropy production as its positivity is the very

definition of irreversible processes. However, definition of nonequilibrium entropy and its

production is still controversial. And the related works are classified into two. On the one

hand, an appropriate entropy is introduced and its derivative is calculated. For example,

Ojima, Hasegawa and Ichiyanagi [6] defined entropy production for driven systems as the

time-derivative of relative entropy with respect to the initial state (see also Ichiyanagi [7] and

Ojima [8] $)$ . For other examples, see e.g., Ref. [9]. On the other hand, an entropy production

is directly introduced based on thermodynamic considerations. Along this line of thought,

Spohn and Lebowitz [10] investigated an entropy production of systems weakly coupled with

reservoirs in the scaling limit and found that it can be characterized as atime-derivative of

arelative entropy. Recently, Ruelle [11] investigated entropy production of nonequilibrium

steady states of spin systems within the framework of C’-algebra and showed its positivity.

In this article, as in the work of Ruelle [11], we study the entropy production of the

steady state $\omega_{+\infty}$ and show that it has properties fully consistent with nonequilibrium ther-

modynamics. Sec. II is devoted to the summary of the previous results [3]. In Sec. Ill,

we generally discuss the possible expressions of entropy productions. In Sec. $\mathrm{I}\mathrm{V}$ , we calcu-

late the entropy production of the steady state $\omega_{+\infty}$ and show that it is non-negaive and

vanishes only when two reservoirs are in equilibrium with each other, and that it has a

known quadratic form in the linear response regime. All those features are fully consistent

with nonequilibrium thermodynamics. Sec. $\mathrm{V}$ is devoted to the summary and concluding

remarks, where the relation between entropy production and relative entropy is discussed
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II. MODEL AND NONEQUILIBRIUM STEADY STATES

The system in question consists of electrons on an infinitely extended chain interacting

with alocalized potential and is defined on aC’-algebra as follows.

The basic dynamical variables are creation and annihilation operators, $c_{j,\sigma}^{*}$ and $c_{j,\sigma}$ re-

spectively, of an electron at site $j(\in \mathrm{Z})$ with spin $\sigma(=\pm)$ . They satisfy the canonical

anticommutation realtions (CAR):

$[c_{j,\sigma}, c_{k,\tau}]_{+}=[c_{j,\sigma}^{*}, c_{k,\tau}^{*}]_{+}=0$ , $[c_{j,\sigma}, c_{k_{7^{-}}}^{*},]_{+}=\delta_{jk}\delta_{\sigma\tau}1$ , (1)

where $[A, B]_{+}=AB+BA$ is the anticommutator, 0the null element and 1the unit. The

C’-algebra $A$ of dynamical variables is the CAR algebra [12]
$)$
i.e., a $\mathrm{B}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{c}\mathrm{h}*\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}$ with

C’ norm generated by

$B(f., g) \equiv\sum_{\sigma=\pm}\sum_{j=-\infty}^{+\infty}\{f_{j,\sigma}.c_{j,\sigma}+g_{j,\sigma}c_{j,\sigma}^{*}\}$ , (2)

where the sequences $\{f_{j,\sigma}.\}$ and $\{g_{j,\sigma}\}$ are square summable.

The physical states are defined as positive and normalized linear functionals $\omega$ over the

algebra $A$ , i.e., linear functionals satisfying (i) $\omega(B^{*}B)\geq 0$ for any $B\in A$ and (ii)

$\vee u(1)=1$ with 1the unit of $A$ .

The Hamiltonian $H$ of the system is given by

$H=- \hslash\gamma\sum_{\sigma=\pm_{j}}\sum_{=-\infty}^{+\infty}\{c_{j,\sigma}^{*}c_{j+1,\sigma}+c_{j+1,\sigma}^{*}c_{j,\sigma}\}+\sum_{\sigma=\pm}\sum_{j=1}^{L}\hslash\epsilon_{j}c_{j,\sigma}^{*}c_{j,\sigma}$ , (3)

where $\hslash$ is the Planck constant divided by $2\pi$ , $\gamma(>0)$ is the strength of the electron transfer

and $\mathrm{a}_{j}$ stands for the localized potential. The corresponding “first quantized” Schrodinger

operator is assumed to admit acomplete set of outgoing scattering states and have no bound

state. The outgoing state $\psi_{q}(j)(-\pi\leq q\leq\pi)$ is the solution of the eigenvalue equation

corresponding to an eigenvalue $E_{q}=-2\hslash\gamma\cos q$ :

$-\hslash\gamma\{\psi_{q}(j+1)+\psi_{q}(j-1)\}+\hslash\epsilon_{j}\psi_{q}(j)=E_{q}\psi_{q}(j)$ , (4)

with the outgoing boundary condition
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where $R_{q}$ is the reflection amplitude. The time-evolution automorphism $\alpha_{t}$ : $Aarrow$ $A$ is

generated via atruncated Hamiltonian in astandard way [12].

Initial states are prepared in the following way: Firstly, the chain is divided into three:

$(-\infty, -M-1]$ , $[-M, N]$ and $[N+1, +\infty)$ with $M>0$ and $N>L$ . The two semiinfinite

segments serve as reservoirs and the finite one as an embedded system. Corresponding 1 $0$

this division, the algebra $A$ is decomposed into atensor product of the three subalgebras

$A_{L}$ , As and $A_{R}:A=A_{L}$ (&As (&A $R$ . Now the Hamiltonian $H$ is represented as a $\mathrm{s}\backslash 1111$

of aleft-reservoir part $H_{L}$ , aright-reservoir part $H_{R}$ , an embedded-system part $H_{S}$ and a

reservoir-system interaction $V_{int}:H=H_{L}+H_{R}+H_{S}+V_{int}$ . There is asimilar decomposition

of the number operator: $N=N_{L}+N_{R}+N_{S}$ . Next we introduce an equilibrium state $\omega_{L}$

over the algebra $A_{L}$ of the left reservoir variables with inverse temperature $\beta_{L}$ and chemical

potential $\mu_{L}$ corresponding to the Hamiltonian $H_{L}$ and the number operator $N_{L}$ . Similarly,

let $\omega_{R}$ be an equilibrium right-reservoir state over $A_{R}$ with inverse temperature ($\mathrm{J}_{R}$ and

chemical potential $\mu_{R}$ corresponding to the Hamiltonian $H_{R}$ and the number operator $\bigwedge_{\mathit{1}T}’$ .

Then, for each embedded-system state $\omega_{S}$ over $A_{S}$ , an initial state $\omega_{in}$ is given by atensor

product

$\omega_{in}=\omega_{L}\otimes\omega_{S}\otimes\omega_{R}$ . (6)

We showed [3] that, for $tarrow\pm\infty$ , the initial state $\omega_{n}.\cdot$ weakly evolves towards unique

quasifree states $\omega_{\pm\infty}$ , i.e., for any $B\in A$ , $\lim_{tarrow\pm\infty}\omega_{in}(\alpha_{t}(B))=\omega_{\pm\infty}(B)$ , irrespective to

the choice of the separating points $M$ , $N$ and the initial system state $\omega_{S}$ . As the state $\omega_{\pm\infty}$

are quasifree, they are fully characterized by the tw0-point functions. For example,

$\omega_{+\infty}(c_{j\sigma}^{*}c_{j’\sigma’})=\delta_{\sigma\sigma’}\int_{0}^{\pi}dq\{F_{L}(E_{q})\psi_{q}(j)^{*}\psi_{q}(j’)+F_{R}(E_{q})\psi_{-q}(j)^{*}\psi_{-q}(j’)\}$ , (7)

where $F_{L}(E)=1/\{e^{\beta_{L}(E-\mu L})+1\}$ and $F_{R}(E)=1/\{e^{\beta_{R}(E-\mu R})+1\}$ are Fermi distribution

functions for the left and right reservoirs, respectively
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Eq. (7) gives tw0-probe Landauer-type formula for the particle flow and the energy flow:

$\langle J_{j-1|j}^{N}\rangle_{+\infty}\equiv\omega_{+\infty}(J_{j-1|j}^{N})=\frac{1}{\pi\hslash}\int_{-2\hslash\gamma}^{2\hslash\gamma}dE|T_{q(E)}|^{2}\{F_{L}(E)-F_{R}(E)\}$ (8)

$\langle J_{j-1|j}^{E}\rangle_{+\infty}\equiv\omega_{+\infty}(J_{j-1|j}^{E})=\frac{1}{\pi\hslash}\int_{-2\hslash\gamma}^{2\hslash\gamma}EdE|T_{q(E)}|^{2}\{F_{L}(E)-F_{R}(E)\}$ , (9)

where $\langle\cdots\rangle_{+\infty}$ stands for the average with respect to $\omega_{+\infty}$ , $q(E)\equiv\cos^{-1}\{-E/(2\hslash\gamma)\}$ , $|T_{q}|^{2}\equiv$

$1-|R_{q}|^{2}$ the transmission coefficient, and $J_{j-1|j}^{N}$ and $J_{j-1|j}^{E}$ stand, respectively, for the particle-

flow and energy-flow operators from the $(j-1)\mathrm{t}\mathrm{h}$ to the $j\mathrm{t}\mathrm{h}$ sites:

$J_{j-1|j}^{N}=i \gamma\sum_{\sigma=\pm}\{c_{j,\sigma}^{*}c_{j-1,\sigma}-c_{j-1,\sigma}^{*}c_{j,\sigma}\}$ , (10)

$J_{j-1|j}^{E}=- \hslash[\frac{i\gamma^{2}}{2}\sum_{\sigma=\pm}\{c_{j,\sigma}^{*}c_{j-2,\sigma}+c_{j+1,\sigma}^{*}c_{j-1,\sigma}-(h.c.)\}-\frac{\epsilon_{j-1}+\epsilon_{j}}{2}J_{j-1|j}^{N}]$ (11)

III. ENTROPY PRODUCTION

-thermodynamic considerations -

Entropy production may be calculated as atime-derivative of an appropriate entropy

However to avoid an arbitrariness in the definition of entropy, we follow the thermodynamic

arguments to introduce an entropy production as in the works of Ruelle [11] and of Spohn

and Lebowitz [10].

We consider asystem consisting of afinite conductor placed between two infinitely ex-

tended electron reservoirs and begin with simple assumptions:

1) Entropy of the finite part exists and is finite.

2) Reservoirs remain to be in equilibrium.

3) Any change in the reservoir state can be regarded as aquasi-static process.

Let $S$ , $S_{L}$ and $S_{R}$ be entropies of the finite part, right reservoir and left reservoir, re-

spectively, then the total entropy change per time ais obviously given by

$\sigma=\dot{S}+\dot{S}_{L}+\dot{S}_{R}$ (12)

In asteady state, all terms in the right-hand side are constant in time. Thus
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which should be finite because of the assumption 2) for all $t>0$ . And one has $\dot{S}=0$ at

steady states.

The entropy changes of the reservoirs are calculated via assumptions 2) and 3). Let $J^{E}$

and $J^{N}$ be energy and particle flows, respectively, from the left to the right reservoirs, then

the heat flows $J_{R}^{q}$ and $J_{L}^{q}$ to the right and left reservoirs are given by

$J_{R}^{q}=J^{E}-\mu_{R}J^{N}$ , (14)

$J_{L}^{q}=-J^{E}+\mu_{L}J^{N}$ , (15)

where $\mu_{R}$ and $\mu_{L}$ are chemical potentials of the right and left reservoirs, respectively. And,

assumptions 2) and 3) lead to

$\dot{S}_{R}=\frac{J_{R}^{q}}{T_{R}}=\frac{J^{E}-\mu_{R}J^{N}}{T_{R}}$ , (16)

$\dot{S}_{L}=\frac{J_{L}^{q}}{T_{L}}=-\frac{J^{E}-\mu_{L}J^{N}}{T_{L}}$ , (17)

where $T_{R}=1/(k_{B}\beta_{R})$ and $T_{L}=1/(k_{B}\beta_{L})$ are temperatures of the right and left reservoirs

with $k_{B}$ the Boltzmann constant. Eqs.(12), (16), (17) and $\dot{S}=0$ give

$\sigma=(\frac{1}{T_{R}}-\frac{1}{T_{L}})J^{E}-(\frac{\mu_{R}}{T_{R}}-\frac{\mu_{L}}{T_{L}})J^{N}$ , (18)

which is the entropy production at asteady state.

IV. POSITIVITY OF THE ENTROPY PRODUCTION

Now we return to the one-dimensional conductor discussed in Sec. $\mathrm{I}\mathrm{I}$ . Prom $\mathrm{e}\mathrm{q}\mathrm{s}.(8)$ , (9)

and (13) as well as $J^{E}=\langle J_{j-1|j}^{E}\rangle_{+\infty}$ and $J^{N}=\langle J_{j-1|j}^{N}\rangle_{+\infty}$ , we find

$\sigma=-\frac{k_{B}}{\pi\hslash}\int_{-2\hslash\gamma}^{2\hslash\gamma}dE|T_{q(E)}|^{2}\{\beta_{L}(E-\mu_{L})-\beta_{R}(E-\mu_{R})\}\{F_{L}(E)-F_{R}(E)\}$ (13)

As aresult of an inequalit$\mathrm{y}$

$-(x-y) \{\frac{1}{e^{x}+1}-\frac{1}{e^{y}+1}\}\geq 0$ ,
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where the equality holds only when $x=y$ , the entropy production is nan-negative:

$\sigma\geq 0$ , (20)

and vanishes only if $\beta_{L}=\beta_{R}$ and $\mu_{L}=\mu_{R}$ , or both reservoirs are in equilibrium.

Note that the definitions of heat flows (14) and (15) lead to

$J_{R}^{q}+J_{L}^{q}=V\langle J_{j-1|j}\rangle_{+\infty}$ (21)

where $V=(\mu_{R}-\mu_{L})/e$ is the voltage difference between the two reservoirs and $J_{j-1|j}=$

$-eJ_{j-1|j}^{N}$ is the electric current operator. This implies that the total heat flow from the

finite system is the Joule heat.

The relation with thermodynamics is more transparent in the linear transport regime.

Let $T_{0}$ be the mean temperature of the reservoirs, $\triangle T$ the temperature difference, $\mu_{0}$ the

mean chemical potential and $V$ the potential difference:

$T_{R}=T_{0}- \frac{\triangle T}{2}$ , $T_{L}=T_{0}+ \frac{\triangle T}{2}$ , $\mu_{R}=\mu_{0}+\frac{eV}{2}$ , $\mu_{L}=\mu_{0}-\frac{eV}{2}$

Then, when $|\triangle T|<<T_{0}$ and $e|V|<<\mathrm{M}\mathrm{o}$ , we have

$\langle J_{j-1|j}\rangle_{+\infty}=GV+L_{1}\frac{\triangle T}{T_{0}}$ , $\langle J_{j-1|j}^{q}\rangle_{+\infty}=L_{1}V+L_{2}\frac{\triangle T}{T_{0}}$ , (22)

where the heat flow $J_{j-1|j}^{q}=J_{j-1|j}^{E}-\mu_{0}J_{j-1|j}^{N}$ was introduced and the coefficients are [3]

$G= \frac{e^{2}}{\pi\hslash}\int_{-2\hslash\gamma}^{2\hslash\gamma}$ dE $|T_{q(E)}|^{2}(- \frac{\partial F_{0}(E)}{\partial E})$ , (23)

$L_{1}=- \frac{e}{\pi\hslash}J_{-2\hslash\gamma}^{2\hslash\gamma}$

.
dE $(E- \mu_{0})|T_{q(E)}|^{2}(-\frac{\partial F_{0}(E)}{\partial E})$ , (24)

$L_{2}= \frac{1}{\pi\hslash}\int_{-2\hslash\gamma}^{2\hslash\gamma}$ dE $(E- \mu_{0})^{2}|T_{q(E)}|^{2}(-\frac{\partial F_{0}(E)}{\partial E})$ (25)

In the above, $F_{0}(E)=1/\{e^{\beta_{0}(E-\mu_{\mathrm{O}})}+1\}$ with $\beta_{0}=1/(k_{B}T_{0})$ .

In this case, the entropy production is given by

$\sigma=\frac{\triangle T}{T\frac{)}{0}}\langle J_{j-1|j}^{q}\rangle_{+\infty}+\frac{V}{T_{0}}\langle J_{j-1|j}\rangle_{+\infty}=\frac{1}{T_{0}}[GV^{2}+2L_{1}V\frac{\triangle T}{T_{0}}+L_{2}(\frac{\triangle T}{T_{0}})^{2}]$ (26)

This agrees with the expression of the entropy production known in the linear non-

equilibrium thermodynamics [13].

All those features are fully consistent with nonequilibrium thermodynamics
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V. CONCLUSIONS

We have shown that anonequilibrium entropy production previously introduced for spin

systems by Ruelle [11] can be extended to one-dimensional conductors and that it is fully

consistent with nonequilibrium thermodynamics.

Now we explore physical implications of the results. For this purpose, we assume all

the states are described by density matrices. First we observe, because of the conservation

of energy and particle number, the average energy flow $\langle J_{j-1|j}^{E}\rangle_{+\infty}$ and the average particle

flow $\langle J_{j-1|j}^{N}\rangle_{+\infty}$ are given in terms of reservoir energies $Hl$ , $H_{R}$ and particle numbers $N_{L}$ ,

$N_{R}$ :

$\langle J_{j-1|j}^{E}\rangle_{+\infty}=-\langle\dot{H}_{L}\rangle_{+\infty}=\langle\dot{H}_{R}\rangle_{+\infty}$ , (27)

$\langle J_{j-1|j}^{N}\rangle_{+\infty}=-\langle\dot{N}_{L}\rangle_{+\infty}=\langle\dot{N}_{R}\rangle_{+\infty}$ , $(\underline{9}8)$

where $\dot{H}_{L}=\frac{d}{dt}\alpha_{t}(H_{L})|_{t=0}$ . Furthermore, if an observable $A$ admits afinite average $\langle A\rangle_{+x}$ .

$\langle_{r}\dot{4}\rangle_{+\infty}=0$ because of the invariance of the state $\omega_{+\infty}$ .

Then, (27) and (28) give

$\sigma=k_{B}\langle\beta_{L}(\dot{H}_{L}-\mu_{L}\dot{N}_{L})\rangle_{+\infty}+k_{B}\langle\beta_{R}(\dot{H}_{R}-\mu_{R}\dot{N}_{R})\rangle_{+\infty}$ . (29)

Now let $\overline{H}_{R}\equiv H-H_{L}$ , then the difference $\overline{H}_{R}-H_{R}$ admits finite average with respect

to $\omega_{+\infty}$ and $\langle\{\overline{H}_{R}-\dot{H}_{R}\}\rangle_{+\infty}=0$. This, asimilar equation for $N_{R}$ and (29) lead to

$\sigma=k_{B}\langle\beta_{L}(\dot{H}_{L}-\mu_{L}\dot{N}_{L})\rangle_{+\infty}+k_{B}\langle\beta_{R}(\overline{H}_{R}.-\mu_{R}\overline{N}_{R}.)\rangle_{+\infty}$

$=-k_{B} \frac{d}{dt}\mathrm{T}\mathrm{r}(\rho(t)\ln\rho_{\mathrm{L}\mathrm{o}\mathrm{c}})|_{\rho(t)arrow\rho+\infty}$ (30)

where Tr stands for the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ , $\rho(t)$ and $\rho_{+\infty}$ are density matrices for the state at time $t$ and

the steady state $\omega_{+\infty}$ . The density matrix $\rho_{\mathrm{L}\mathrm{o}\mathrm{c}}$ corresponds to the local equilibrium state:

$\rho_{\mathrm{L}\mathrm{o}\mathrm{c}}=\frac{1}{Z_{\mathrm{L}\mathrm{o}\mathrm{c}}}\exp\{-\beta_{L}(H_{L}-\mu_{L}N_{L})-\beta_{R}(\overline{H}_{R}-\mu_{R}\overline{N}_{R})\}$ , (31)

with $Z_{\mathrm{L}\mathrm{o}\mathrm{c}}$ the normalization constant. The expression (30) suggests that anonequilibrium

entropy is given by $S=-k_{B}\mathrm{R}(\rho\ln\rho_{\mathrm{L}\mathrm{o}\mathrm{c}})$ , which is nothing but Zubarev’s definition of

nonequilibrium entropy [5].
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Since von Neumann entropy $\mathrm{R}(\rho(t)\ln\rho(t))$ is constant in time, one also has

$\sigma=-k_{B}\frac{d}{dt}S(\rho(t)|\rho_{\mathrm{L}\mathrm{o}\mathrm{c}})|_{\rho(t)arrow\rho+\infty}$ (32)

where $S(\rho(t)|\rho_{\mathrm{L}\mathrm{o}\mathrm{c}})$ is the relative entropy [14,15,12]

$S(\rho(t)|\rho_{\mathrm{L}\mathrm{o}\mathrm{c}})=$ -Tr $(\rho(t)\{\ln\rho(t)-\ln\rho_{\mathrm{L}\mathrm{o}\mathrm{c}}\})$ (33)

Asimilar formula to (32) was derived by Spohn and Lebowitz [10] for systems weakly

coupled with reservoirs in the scaling limit, where the local equilibrium state is replaced by

an equilibrium state.

The entropy production acan be represented in adifferent way. By noting that the

logarithm of the initial density matrix of the embedded $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}:\ln\rho_{S}(0)$ admits afinite

steady-state average, one has

$\sigma=-k_{B}\frac{d}{dt}S(\rho(t)|\rho(0))|_{\rho(t)arrow\rho+\infty}$ , (34)

where $\rho(0)$ stands for the initial state of the whole system. For driven systems, Ojima,

Hasegawa and Ichiyanagi [6] introduced entropy production as time-derivative of the relative

entropy with respect to the initial state $S(\rho(t)|\rho(0))$ (see also Ichiyanagi [7] and Ojima [8]).

Eq.(34) suggests that the same formula holds for internally disturbed systems.

We emphasize again that the above arguments are formal and rigorous discussions will

be presented elsewhere.
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