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Abstract

Aconstruction of compact matrix quantum groups is
given. The construction is based on Woronowicz’s the-
ory. Afundamental role in the construction is played by a
generalized determinant, related to permutation groups.
Description of the $\mathrm{C}’-$algebras related to the quantum
groups is given in terms of irreducible ’-representations
on Hilbert spaces.

1Introduction
In [SLW2] Woronowicz presented the following idea of compact
matrix quantum groups ( $\mathrm{c}.\mathrm{f}$. the proof of Theorem 1.1). Let
$G\subset lVI_{N}(\oplus)$ be acompact group of $\mathrm{N}\mathrm{x}\mathrm{N}$ complex matrices. An
element $g\in G$ is then amatrix with entries $gjk$ and the entries’
functions $w_{jk}$ : $G\ni g\vdasharrow gjk=wjk(g)\in \mathrm{I}$ form acollection
$\{wjk : 1\leq j, \ \leq N\}$ of $N^{2}$ continuous functions on the group
$G$ . In terms of these functions we can describe various algebraic
properties of the group. The idea is that we can reflect algebraic
group properties as properties of the ’-algebra generated by these
functions, $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}*\mathrm{i}\mathrm{s}$ the complex conjugation.

Let us first consider the multiplication in $G$ . When two
matrices $g,$ $h\in G$ are multiplied, the standard rule of mul-
tiplication of entries is expressed by the entries’ functions as
$w_{jk}(g \cdot h)=\sum_{\mathrm{r}=1}^{N}w_{j\mathrm{r}}(g)\cdot w_{tk}(h)=\sum_{r=1}^{N}(w_{j_{\Gamma}}\otimes w_{\mathrm{r}k})(g\otimes l_{l})$ .
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Hence the transformation $\Phi(wjk)=\Sigma_{\mathrm{r}=1}^{N}wjf\otimes w_{\mathrm{r}k}$ reflects the
multiplication in $G$ . This transformation is therefore called c0-

multiplication.
Now let us consider the inverse in $G$ , which is the transfor-

mation $G\ni g\vdash*g^{-1}\in G$ . This can also be expressed in terms
of the entries’ functions. Namely, by achange of the scalar prod-
uct $\langle$ , $\rangle$ in $G^{N}$ we can obtain unitary representation of $G$ , so the
inverse matrix will become the conjugate matrix. If astrictly
positive matrix $M$ gives the change of the scalar product into
the new one $[,]$ , so that $[x, y]:=\langle Mx, y\rangle$ for $x,$ $y\in \mathcal{O}^{N}$ then
$M=g*Mg$ and $g^{-1}=M^{-1}g*M$ . Since $wjk(g*)=w_{kj}’\overline{(g)}$ is
acomplex conjugate combined with the transposition, it follows
that

$w_{jk}(g^{-1})= \sum_{r,s=1}^{N}(M^{-1})_{jr}w_{rs}(g*)(M)_{sk}=\sum_{r,s=1}^{N}(M^{-1})_{jt}\overline{w_{rs}(g)}(M)_{sk}$

Hence the transformation

$\kappa(w_{\mathrm{j}k}):=\sum_{r,s=1}^{N}(M^{-1})_{jr}(M)_{sk}\overline{w_{rs}}$ (1.1)

reflects taking the inverse in $G$ . This transformation $\kappa$ is
therefore called $co$-inverse. The equality above shows, that $\kappa(wjk)$

can be expressed as alinear combination of complex conjugations
of of the entries’ functions, so it is an element of the ’-algebra
generated by these functions.

Let us now look at the properties of the group identity. Let
$e\in G$ be the group identity, which is the $\mathrm{N}\mathrm{x}\mathrm{N}$ identity matrix.
Then for any $g\in G$ we have

$\delta_{jk}=w_{jk}(e)=w_{jk}(gg^{-1})=\Sigma_{r=1}^{N}w_{jr}(g)w_{rk}(g^{-1})$

$=\Sigma_{r=1}^{N}w_{jr}(g)\kappa(w_{rk})(g)=\Sigma_{r=1}^{N}(w_{j_{\Gamma}}\cdot\kappa(w_{rk}))(g)$

This yields the equalities for the entries’ functions

$\delta_{jk}\cdot I=\sum_{r=1}^{N}w_{jr}\kappa(w_{rk})=\sum_{r=1}^{N}\kappa(w_{jr})w_{rk}$

These identities reflect the properties of the identity matrix
in the group $\mathrm{G}$ , so they constitute the properties of the so called
$co$-unit. This way we see that, without having the group $\mathrm{G}$ given
itself, we can “recover” it from the properties of aassociated c0-

structure. This $\mathrm{c}\mathrm{o}$-structure is what one calls the quantum group.
The notion of acompact matrix pseudogroup, later renamed

for compact matrix quantum group, was introduced by Woronow-
icz in [SLW2], to name aC’-algebraic structure which reflects
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group properties on the $C’-$algebraic level. It consists of aC’-
algebra $A$ and an $N$ by $N$ matrix $u=(u_{jk})_{j,k=1}^{N}$ , with the ele-
ments $u_{jk}\in A$ generating a $\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}*$-subalgebraA of $A$ , and with
the following additional structure:

1. a $C^{*}$-homomorphism $\Phi$ : $Aarrow A\otimes A$ , called the $\mathrm{c}+$

multiplication, such that

$\Phi(u_{jk})=\sum_{r=0}^{N}u_{j\mathrm{r}}\otimes u_{rk}$ (1.2)

2. alinear anti-multiplicative mapping $\kappa$ : $Aarrow A$ , called
the $\mathrm{c}\mathrm{o}$-inverse, such that $\kappa(\kappa(a’)^{*})=a$ for all elements $a\in A$ ,
and

$\sum_{r=1}^{N}\kappa(u_{j_{\Gamma}})u_{\mathrm{r}k}=\delta_{jk}I$ (1.3)

$N$

$\sum u_{j\mathrm{r}}\kappa(u_{rk})=\delta_{jk}I$ (1.4)
$r=1$

Let us mention that later in 1995 Woronowicz re-formulated
this definition in the following way. The compact quantum group
is apair $(A, \Phi)$ , consisting of aunital C’-algebra $A$ and a $C’-$

homomorphism $\Phi$ , such that:
(1) $\mathrm{T}\mathrm{h}\mathrm{e}$ diagram

$Aarrow^{\Phi}A\otimes A\downarrow A\otimes A^{\underline{d\otimes\varphi}},$ $A\otimes A\otimes A$ (1.5)

is commutative
(2) The sets {(b@ $1)\Phi(c)$ : $b,$ $c\in A$} and { $(1\otimes b)\Phi(c)$ : $b,$ $c\in$

$A\}$ are both dense in $A\otimes A$ .
Comparing the two definitions one may wonder, given the

second definition, how to reconstruct the ’-subalgebra $A$ which
seems essential in the first definition. The answer comes from the
theory of unitary representations of compact quantum groups,
and says that this ’-subalgebra is generated by linear combina-
tion of matrix coefficients of the unitary representations of $A$ .

In [SLW3] Woronowicz provided ageneral method for con-
structing compact matrix pseudogroups. The method depends
on finding a$\mathrm{n}$

$N^{N}$-element array $E=(E_{i_{1},\ldots,i_{N}})_{i_{1},\ldots,i_{N}=1,\ldots,N}$ of
complex numbers, which is (left and right) non-degenerate. The
Theorem 1.4 of [SLW3] says that if a $C’-$algebra $A$ , is generated
by $N^{2}$ elements $u_{jk}$ which satisfy:

$\sum_{\mathrm{r}=1}^{N}u_{j\gamma}^{*}u_{rk}=\delta_{jk}I=\sum_{r=1}^{N}uj’.u_{rk}^{*}$ (1.6)
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$\sum_{k_{1,\ldots\prime}k_{N}}u_{j_{1}k_{1}}\ldots u_{j_{N}k_{N}}E_{k_{1\prime\cdots\prime}k_{N}}=E_{j_{1\prime}\ldots,j_{N}}I$
(1.7)

and if the array $E$ is non-degenerate, then $(A, u)$ is acompact
matrix quantum group, where $u=(ujk)_{j,k=1}^{N}$ . If for $\mu\in(0,1]$

one defines $E_{i_{1},\ldots,*_{N}}.=(-\mu)^{i(\sigma)}$ if $\sigma(k)=i_{k}$ for $k=1,$ $\ldots,$
$N$ is

apermutation of $\{1, \ldots, N\}$ and $E_{i_{1},\ldots,i_{N}}=0$ otherwise, then as
$(A,u)$ one gets the quantum group $S_{\mu}U(N)$ , called the twisted
$SU(N)$ group. Here, for apermutation $\sigma,$ $i(\sigma)$ is the number
of inversions of the permutation $\sigma$ , which is the number of pairs
$(j,k)$ such that $j<k$ and $i_{j}=\sigma(j)>\sigma(k)=i_{k}$ . In this paper
we present, for $N=3$, this construction for another function on
$\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s},\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ gives rise to another array $E$ .

2Compact quantum groups associ-
ated with cycles in permutations

In this section we describe the matrix quantum groups that arise,
through the general receipt of Woronowicz, by considering the
function related to the number of cycles on symmetric group.
We shall consider here the case of $\mathrm{N}=3$ .

For asequence $(i,j, k)$ , with $\{i,j, k\}=\{1,2,3\}$ , we define
the function $c(i,j, k)$ as the number of cycles of the permutation

$(\begin{array}{l}\mathrm{l},2,3i,j,k\end{array})$ . For $t>\mathrm{O}$ we define the array $E$ in the following way:

$E_{i,j,k}=\{$

$t^{3-\mathrm{c}(i,j,k)}$ if $\{i,j, k\}=\{1,2,3\}$

0if $\{i,j,k\}\subseteq\{1,2,3\}$ $\#\{i,j, k, \}\leq 2$

(2.8)
Then the non-zero entries of the array $E$ are $E_{1,2,3}=1$ ,

$E_{1,3,2}=E_{2,1,3}=E_{3,2,1}=t$ and $E_{2,3,1}=E_{3,1,2}=t^{2}$ .
In the sequel we shall study the Hilbert space irreducible *-

representations of the $C’-$algebra $A$ generated by the elements
$\{ujk:j, k=1,2,3\}$ . The relations generating the algebra follow
from the general theory of the unitary representations compact
quantum groups. We shall skip these considerations in this ex-
position.

Let us say only, that the $C’-$algebra $A$ , and hence the quan-
tum group $(A, u)$ is generated by five elements $a,b,c,$ $d,v$ , which
satisfy the following relations:

(1) $av=va$ (2) $cv=vc$ (3) ac-l $tca=0$
(4) $ac’+tc^{*}a=0$ (5) $cc’=c^{*}c$ (6) $vv^{*}=v’ v=I$

(7) $aa^{*}+t^{2}cc^{*}=I$ (8) a’a-l- $c^{*}c=I$
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The $\mathrm{c}\mathrm{o}$-multiplication $\Phi$ in the quantum group (A, u) is given
on generators by

$\Phi(a)=a\otimes a+tc’ v^{*}\otimes c$ , $\Phi(c)=c\otimes a+a’ v^{*}\otimes c$, $\Phi(v)=v\otimes v$ .
(2.9)

The $\mathrm{c}\mathrm{o}$-inverse $\kappa$ is defined by:

$\kappa(a)=a^{*}v’,$ $\kappa(a^{*}v’)=a,$ $\kappa(c)=tc,$ $\kappa(c^{*}v’)=\frac{1}{t}c^{*}v’,$ $\kappa(v)=v$

(2.10)
It follows from the relations (1) $-(8)$ that the elements $a,$ $c$ ,

$a^{*}v^{*},$ $c’ v^{*}$ generate adense ’-subalgebra $A$ of $A$ . Therefore, we
conclude that $G=(A, u)$ is acompact matrix quantum group,
with the $\mathrm{c}\mathrm{o}$-multiplication given by (2.8) and the $\mathrm{c}\mathrm{o}$-inverse given
by (2.9).

3Irreducible representations of the
$C^{*}$-algebra A

We shall now discuss representations of the C’-algebra $A$ as
bounded operators on Hilbert spaces. This will follow the con-
struction of Woronowicz and [SLWI].

Let us notice, that the elements $a,$ $c,$ $a^{*},$ $c^{*}$ satisfy the relations
defining the quantum group $SU_{q}(2)$ with $q=-t$ . Hence, $\mathrm{i}\mathrm{f}v=1$ ,
then $(A, u)$ is equal to this quantum group. However, the group
is different when the unitary is not identity.

We recall the construction from [SLWI] of the operators $\alpha,\gamma$

which satisfy the relations of $SU_{q}(2)$ . The Hilbert space is
$l_{2}(e_{n,k} : n\geq 0, -\infty<k<+\infty)$ , and the operators are de-

fined on the orthogonal basis as follows:

$\alpha e_{n,k}=\sqrt{1-q^{2n}}e_{n-1,k},$ $(n\geq 1),$ $\alpha e_{0,k}=0,\gamma e_{n,k}=q^{2n}e_{n,k+1}$

(3.11)
In what follows we shall assume that -1 $<t=-q<$

$1$ . Let $H$ be aseparable Hilbert space with ascalar product
$\langle| \rangle$ , and let $\pi$ : $Aarrow B(H)$ be a(continuous, faithful) $*-$

representation and let $A=\pi(a),$ $C=\pi(c),$ $V=\pi(v)$ . Let us
also assume, that there is no $\pi(A)$-invariant subspace of $H$ . Then
$A,$ $C,$ $A^{*}V$ ’, $C^{*}V^{*}$ satisfy the relations $1^{o}-8^{o}$ .

Since $V$ commutes with all the other operators, and since
there is no proper subspace of $H$ , invariant for all the operators,
it must be $V=\lambda I$ for some complex number $|\lambda|=1$ .

213



From the relations it also follows that $I\acute{\backslash }0=kerC$ is an in-
variant subspace, and so is its orthogonal complement. Hence
either (1) $K_{0}=H$ or (2) $K_{0}=\{0\}$ . In the case (1) we have
$C=0$ , and $7^{o}$ implies that $A$ is then unitary. Thus in this case,
since $A$ and $V$ commute, we have $A=\alpha I$ and $V=\lambda I$ , with
$|\alpha|=|\lambda|=1$ . It is evident that any pair of such $\alpha,$

$\lambda$ defines
an irreducible representation $\pi_{\alpha,\lambda}$ of $A$ . Therefore, we have the
following:

Proposition 3.1 Every pair $\alpha$ , Aof complex numbers, $with|\alpha|=$

$|\lambda|=1$ , defines an $irreducible*$ -representation $\pi_{\alpha,\lambda}$ of A by:

$\pi_{\alpha,\lambda}(A)=\alpha$ .I, $\pi_{\alpha,\lambda}(V)=\lambda$ .I, $\pi_{\alpha,\lambda}(C)=0$ (3.12)

Let us now consider the case (2) when $K_{0}=\{0\}$ trivial. Then
$C$ is invertible on $H$ . The kernel $H_{0}=kerA$ of $A$ is an invariant
subspace for $C,$ $C’,$ $V=\lambda\cdot$ I and $V^{*}$ . Let us first observe that
the kernel of $A$ is not the whole space $H$ . Indeed, $A=\mathrm{O}$ would
imply $CC^{*}=I=t^{2}CC’$ , which would not be possible for an
invertible $C$ and anon-zero $t$ with $|t|<1$ .

We are going to show that the kernel of $A$ is non-trivial. Let
us notice that, having trivial kernel, $A$ would be invertible, as
its image is an invariant subspace for $A,$ $A^{*},$ $C,C’$ . The proof of
$ker(A)\neq\{0\}$ follows the idea used in [C-H-M-S], in the proof of
Theorem 4.4. First observe, that $P=CC^{*}$ is apositive operator
and since $A^{*}A=I-P$ is also positive, we have $0\leq P\leq I$ . Hence
the spectrum $Sp(P)$ of $P$ is contained in the interval $[0, 1]$ . Also,
zero is out of $Sp(P)$ , because $C$ is invertible. We claim that the
spectrum $Sp(P)$ contains apoint $\lambda<1$ . Otherwise, it would
consists of 1only, and then $P$ would be aprojection onto a
subspace, on which $A^{*}A=0$ . Hence, the subspace would be
{0}, and $P=0$ . Now, having a $\lambda\in Sp(P)$ with $0<\lambda<1$

it follows, that there is asequence $\xi_{n}$ of unit vectors, for which
$||P\xi_{n}-\lambda\xi_{n}||arrow 0$ . This implies that $||A\xi_{n}||arrow 1$ –A. Hence,
for $\eta_{n}=\frac{A\xi_{\hslash}}{||A\xi_{n}||}$ one can show that $||P\eta_{n}-t^{-2}\lambda\eta_{n}||arrow 0$ , so that
$t^{-2}\lambda\in Sp(P)$ . It follows that $1\in Sp(P)$ is an eigenvalue. Taking
the associated eigenvector $\xi$ with $P\xi=\xi$ , one gets $A’ A\xi=$

$(I-P)\xi=0$ , which contradicts the invertibility of $A$ .
In what follows we shall assume that $dimH_{0}\geq 1$ , so that

there are non-zero vectors in the kernel of $A$ . If $x\in H_{0}$ and
$x\neq 0$ , then $C^{*}Cx=CC^{*}x=x-A’ Ax=x$ , so $C$ is unitary
on $H_{0}$ . This implies that $AA’ x=(1-t^{2})x$ . Let us define
$H_{n}:=(A’)^{n}H_{0}$ , then

Lemma 3.2 For all positive $intege|^{\backslash }sn\neq m$ and for all $x\in H_{0_{l}}$

the folloeoing hold:
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1. $A(A^{*})^{n}x=(1-t^{2n})(A^{*})^{n-1}x$ ,

2. $A^{n}(A^{*})^{n}x= \prod_{n}^{k=1}(1-t^{2k})x$ ,

S. $H_{n}[perp] H_{m}$

Proof:
The proof in each of the three cases is inductive. We will use

$AA^{*}=(1-t^{2})I+t^{2}A^{*}A$ , which easily follows from the relations
on $A,$ $C,$ $V$ . For the proof of (1) this relation gives the case
$n=1$ . Then, for an $x\in H_{0}$ we have $A(A^{*})^{n+1}x=AA^{*}(A^{*})^{n}x=$

$(1-t^{2})x+t^{2}A’ A(A^{*})^{n}x=(1-t^{2})x+t^{2}(1-t^{2n})A^{*}(A^{*})^{n-1}x=$

$(1-t^{2n+2})(A^{*})^{n}x$ , from which (1) follows by induction. To proof
the equality (2) we write $A^{n}(A^{*})^{n}x=A^{n-1}[A(A^{*})^{n}]x$ and then
use (1) to get $A^{n}(A^{*})^{n}x=(1-t^{2n})A^{n-1}(A^{*})^{n-1}x$ , which, through
further inductive expansion, gives the desired equation.

For the proof of (3) let us assume that $n<m$ and let $k=$

$m-n$ . Then for an $y\in H_{0}$ we have $A^{m}(A^{*})^{n}y=A^{k}[A^{n}(A^{*})n]y=$

$f_{n}(t)\cdot A^{k}y=0$ , since $k\geq 1$ . Here $f_{n}(t)$ is the coefficient that ap-
pears in (2). Therefore, for arbitrary $x,$ $y\in H_{0}$ one can compute
$\langle(A^{*})^{m}x|(A^{*})^{n}y\rangle=\langle x|A^{k}[A^{n}(A^{*})^{n}]y\rangle=f_{n}(t)\cdot\langle x|A^{k}y\rangle=0$ , and
(3) follows. $\square$

It is also easy to observe that both $C$ and C’ preserve the
subspaces $H_{n}$ , for all positive integers $n$ , and that on each of the
subspaces $C$ is ascalar multiple of aunitary operator.

Proposition 3.3 For every positive integer $n$ and for all $y\in H_{n}$

one has $CC^{*}y=t^{2n}y$

Proof: This Proposition follows from the relation $CC^{*}A^{*}=$

$t^{2}A^{*}CC^{*}$ , applied $\mathrm{n}$ times to $CC^{*}y=CC^{*}(A^{*})^{n}x$ , with $x\in H_{0}$ .
Since $C$ is normal, it follows that the operator $D$ , defined on
$y\in H_{n}$ by $Dy–( \frac{-1}{t})^{n}Cy$ is unitary on $H_{n}$ . $\square$

It follows that the orthogonal direct sum $\oplus_{n\geq 0}H_{n}$ is anon-
trivial subspace of $H$ , invariant for all the operators $A,$ $A^{*},$ $C,$ $C^{*},$ $V,$ $V$

hence it must be equal to the whole space $H$ . Thus we have the
following

Proposition 3.4 The Hilbert space $H$ has the orthogonal de-
composition

$H=\oplus H_{n}n=0\infty$

preserved by $C,$ $V,$ $C^{*},$ $V^{*}$ , and with the action of $A:H_{n}arrow H_{n-1}$

given by (1) of the Lemma (3.2).
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We are now going to show that if $dimH_{0}\geq 2$ , then there
is anon-trivial orthogonal decomposition of $H$ into invariant
subspaces. Thus, irreducibility would imply $dimH_{0}=1$ .
Lemma 3.5 If $dimH_{0}\geq 2$ then there is a subspace $K\subset H$

invariant for all the operators $A,$ $A^{*},$ $C,$ $C^{*},$ $V,$ $V’$ .
Proof: Under the assumption $dimH_{0}\geq 2$ , for the unitary $C$

on $H_{0}$ we have anon-trivial orthogonal decomposition $H_{0}=$

$K_{0}\oplus K_{0}^{[perp]}$ , invariant for the unitary operator, and for is adjoint
$C’$ . Then, each of the subspaces $K_{n}:=(A^{*})^{n}K_{0}$ is also in-
variant for both $C$ and $C^{*}$ . Moreover, the orthogonal comple-
ment of $K_{n}$ in $H_{n}$ is just $I\mathrm{f}_{n}^{[perp]}=(A’)^{n}K_{0}1$ . This can be seen
with the help of the arguments that preceded the Proposition
(3.4). The orthogonal sum $K=\oplus_{n\geq 0}K_{n}$ and its orthogonal
complement $K^{[perp]}=\oplus_{n\geq 0}K_{n}^{[perp]}$ decompose $H$ into their direct sum
$H=K\oplus K$”, which is invariant for the considered operators. $\square$

Corollary 3.6 If the representation $\pi$ is irreducible and if the
operator $A=\pi(a)$ has a non-trivial kernel $H_{0}$ , then the kernel
is one-dimensional. In this case, the representation $\pi$ has the
following form: $H=l_{f}^{2}$ and if $\{e_{n} : n\geq 0\}$ is the standard or-
thonormal basis, then $Ce_{n}=(-t)^{n}e_{n}=C’ e_{n},$ $A$ is the standard
unilateral shift with the adjoint $A^{*}$ , and $Ve_{n}=\lambda e_{n}$ for some
complex $|\lambda|=1$ .

This way we have proved the following

Theorem 3.7 The irreducible ’-representations of the C’-algebra
A form the folloeuing two series:

(1) One-dimensional characters $\pi_{\alpha,\lambda}$ with complex $\alpha,$
$\lambda\in$

$S^{1}=\{|z|=1\}$ , given by the formulae:
$\pi_{\alpha,\lambda}(a)=\alpha$ , $\pi_{\alpha,\lambda}(c)=0$ , $\pi_{\alpha,\lambda}(v)=\lambda$ (3.13)

(2) Infinite dimensional representations $\pi_{\lambda}$ with $\lambda\in S_{f}^{1}$ act-
ing on the orthonormal standard basis $\{\delta_{n} : n\geq 0\}$ of $l^{2}$ as:

$\pi_{\lambda}(a)=A,$ $A\delta_{n}=\sqrt{1-t^{2n}}\delta_{n-1},$ $A\delta_{0}=0$ ,
$\pi_{\lambda}(c)=C$ , $C\delta_{n}=(-t)^{n}\delta_{n}$ , (3.14)
$\pi_{\lambda}(v)=V$, $V\delta_{n}=\lambda\delta_{n}$ .

We end this section with description of the algebraic struc-
ture of the $C’-$algebra $A$ . The unitary $v$ is in the center of $A$ ,
and generates a $C’-$algebra A2 isomorphic to the algebra $C(S^{1})$

of continuous functions functions on the unit circle. Also, the
elements $a,c$ generate the $C’-$algebra $A_{1}$ which is isomorphic to
the $C’-$algebra of the quantum group $SU_{-t}(2)$ . Therefore the
algebra $A$ is the tensor product $A=A_{1}\otimes A_{2}$ .

216



References
[C-H-M-S] D. CALOW, P. M. HAJAC, R. MATTHES, W. Szv-

MASKI, Noncommutative quotient spaces from $Z_{2}$ -action
on quantum spheres, preprint 2000.

[J-S-W] P.E.T. JORGENSEN, L.M. sCHMITT, R.F. WERNER,
Positive representations of general commutation relations
allowing Wick ordering, J. Funct. Anal. 134 (1995), 33-99.

[P-M]P. PODLES’, E. M\"ULLER, Introduction to quantum
groups, (1999), preprint.

[P-W] P. PODLES’, S.L. WORONOWICZ Quantum deformation
of Lorentz group, Commun. Math. Phys. 130 (1990), 381-
431.

[WP] W. PUSZ, Irreducible unitary representations of quantum
Lorentz group, Commun. Math. Phys. 152 (1993), 591 -

626.

[SLWI] S.L. WORONOWICZ, Twisted $SU(\mathit{2})$ group. An exam-
ple of non-commutative differential calculus, Publ. RIMS,
Kyoto Univ. 23(1987), 117-181.

[SLW2] S.L. WORONOWICZ, Compact Matrix Pseudogroups,
Commun. Math. Phys. 111 (1987), 613-665

[SLW3] S.L. WORONOWICZ, Tannaka-Krein duality for com-
pact matrix pseudogroups. Twisted $SU(N)$ groups, Invent.
Math. (1988), 35-76.

217


