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Abstract

In this note, we introduce acertain graphical representations of the
$q$-creation the $q$-annihilation, the $q$-number, and the scalar operators
on the $q$-Fock space. These are given as the cards on which some flow
lines are drawn and increasing and decreasing of the number of lines
correspond to creation and annihilation, respectively. By the cards ar-
rangement technique with these cards, of which machinery is the same
as of the partition function for the lattice spins model in statistical me-
chanics, we write the moments of the $q$-Poisson random variable using
the number of arc crossings, which is the same set partition statistic
as restricted crossings investigated by P. Biane. This result suggests
another $q$-deformed moments-cumulants relations, which interpolates
between the usual and the free cases exactly. This is the joint work
with Naoko Saitoh at Ochanomizu University.

1The $q$-Fock space
For aHibert space 7{ and $q\in(-1,1)$ , the $q$-Fock space $\mathcal{F}_{q}(\mathcal{H})$ can be defined
as follows: (see, for instance, [BS1], [BKS]) Let $\mathcal{F}^{fin}(\mathcal{H})$ be the linear span of
vectors of the form $\xi_{1}\otimes\cdots\otimes\xi_{n}\in \mathcal{H}^{\otimes n}$ , where $n$ varies in $\mathrm{z}_{\geq 0}$ and we put
$\mathcal{H}^{\otimes 0}\cong \mathrm{C}\Omega$ for some distinguished vector $\Omega$ called vacuum. We consider the
sesquilinear form $\langle\cdot|\cdot\rangle_{q}$ on $\mathcal{F}^{J^{jn}}(\mathcal{H})$ given by the sesquilinear extension of

$\langle\xi_{1}\otimes\cdots\otimes\xi_{n}|\eta_{1}\otimes\cdots\otimes\eta_{m}\rangle_{q}=\delta_{n,m}\sum_{\pi\in S_{n}}q^{i(\pi)}\langle\xi_{1}|\eta_{\pi(1)}\rangle\cdots\langle\xi_{n}|\eta_{\pi(n)}\rangle$
,
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where $S_{n}$ denotes the symmetric group of permutations of n elements and $i(\cdot)$

is the number of the inversions of permutation vr cE S. defined by

$i(\pi)=\{\#(i,j)|1\leq i<j\leq n, \pi(i)>\pi(j)\}$ .

The strict positivity (see [BS2]) of $\langle\cdot|\cdot\rangle_{q}$ allows the following definitions:
Definition 1.1. The $q$-Fock space $F_{q}(?t)$ is the completion of $\mathcal{F}^{fn}:(\mathcal{H})$ with
respect to $\langle\cdot|\cdot\rangle_{q}$ , and given the vector $\xi\in \mathcal{H}$ , we define the $q$ -creation operator
$a^{*}(\xi)$ and the $q$ -annihilation operator $a(\xi)$ on Fq(H) by

$a^{*}(\xi)\Omega=\xi$ ,
$a^{*}(\xi)\xi_{1}\otimes\cdots\otimes\xi_{n}=\xi\otimes\xi_{1}\otimes\cdots\otimes\xi_{n}$

and
$a(\xi)\Omega=0$ ,

$a( \xi)\xi_{1}\otimes\cdots\otimes\xi_{n}=\sum_{i=1}^{n}q^{i-1}\langle\xi|\xi_{i}\rangle\xi_{1}\otimes\cdots\otimes\xi_{i}\otimes\cdots\otimes\xi_{n}\vee$,

respectively, where the symbol $\xi_{i}\vee$ means that $\xi_{i}$ has to be deleted in the tensor
product.

They are adjoints of each other with respect to the scalar product $\langle\cdot|\cdot\rangle_{q}$ .
Furthermore, it is very important to note that they fulfill the q-commutation
relations,

$a(\xi)a^{*}(\eta)-qa^{*}(\eta)a(\xi)=\langle\xi|\eta\rangle\cdot 1$ $\xi$ , $\eta\in \mathcal{H}$ .
We can easily see from the definition that, for $\xi$ $\in \mathcal{H}$ with $||\xi||=1$ , we

obtain that
$a^{*}(\xi)\xi^{\otimes n}$ $=\xi^{\otimes(n+1)}$ ,

$(n(n\geq\geq 0)1)$

$a(\xi)\xi^{\otimes n}$ $=[n]_{q}\xi^{\otimes(n-1)}$ ,

where we use the convention that $\xi^{\otimes 0}=\Omega$ . Combining these relations, we
have thatfor $\xi\in \mathcal{H}$ with $||\xi||=1$ and $n\geq 1$ ,

$a^{*}(\xi)a(\xi)\xi^{\otimes n}=[n]_{q}\xi^{\otimes n}$ .

Hence we may regard $a^{*}(\xi)a(\xi)$ as the $q$ -number operator.

2The $q$-Poisson random variable
In [SY1], we introduced, for $q\in[0,1)$ , the $q$-deformed Poisson distribution as
the orthogonalizing probability measure for acertain $q$-deformation of Charlier
polynomials, which interpolates the usual $(q=1)$ and the free $(q=0)$ Poisson
distributions
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Definition 2.1. For qe [0,1) and A $>0$ , we define the $q$-deformed Poisson
distr ibution of the parameter Aas the orthogonalizing probability measure for
the sequence of polynomials

$P_{0}(X)=1$ , $P_{1}(X)=X-\lambda$ ,
$P_{n+1}(X)=(X-(\lambda+[n]_{q}))P_{n}(X)-\lambda[n]_{q}P_{n-1}(X)$ $(n\geq 1)$ .

In the subsequent paper [SY2], we gave the $q$-Poisson random variable
on the $q$-Fock space, of which the distribution with respect to the vacuum
expectation is the $q$-deformed Poisson distribution.

Definition 2.2. For $\xi\in \mathcal{H}$ with $||\xi||=1$ and $\lambda>0$ , we call the operator

$(a^{*}(\xi)+\sqrt{\lambda}\cdot 1)(a(\xi)+\sqrt{\lambda}\cdot 1)$

$=$ $a^{*}(\xi)a(\xi)+\sqrt{\lambda}(a^{*}(\xi)+a(\xi))+\lambda\cdot 1$

the $q$-Poisson random variable of the parameter A.

It is the sum of the $q$-number operator, $a^{*}(\xi)a(\xi)$ , the $q$-Gaussian random
variable $\sqrt{\lambda}(a^{*}(\xi)+a(\xi))$ , and the scalar operator $\lambda$ . 1, which is natural q-
deformation compatible with the result of Hudson-Pathasarathy in [HP].

3The moments of the $q$-Poisson random vari-
able

The $n\mathrm{t}\mathrm{h}$ moment of the $q$-Poisson random variable of the parameter Acan be
given as the monic polynomial in Aof degree $n$ without constant. Thus we can
put the $n\mathrm{t}\mathrm{h}$ moment as in the form,

$\phi(x^{n})=\sum_{k_{-}^{-}1}^{n}S_{q}(n, k)\lambda^{k}$ ,

where $S_{q}(n, k)$ is the some constant.

In order to evaluate the constants $S_{q}(n, k)$ , we shall recall the set partition
statistic, the number of restricted crossings which was introduced in [F1] and
also studied in [Bi]. Here, we will call it the number of arc crossings because
we would like to use the terminology arcs.

We call the set $\pi=\{B_{1}, B_{2}, \ldots, B_{k}\}$ is the partition of $\{$ 1, 2, $\ldots$ , $n\}$ if $B_{i}’ \mathrm{s}$

are disjoint sets, of which union is $\{$ 1, 2, $\ldots$ , $n\}$ . We shall call $B_{i}\in\pi$ ablock of
the partition $\pi$ . For $n\geq 1$ , we denote by $\mathcal{P}(\{1, 2, \ldots, n\})$ the set of partitions
of $\{1, 2, \ldots, n\}$ .
Definition 3.1. Let $\pi=\{B_{1}, B_{2}, \ldots, B_{k}\}$ be apartition in $P(\{1, \ldots,n\})$ . If the
block $B_{j}$ has more than one elements (i.e. $|Bj|=mj\geq 2$), put $B_{j}=$ {&j,i, {1,2,
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..., $b_{j,m_{J}}$ } where $b_{j,1}<b_{j,2}<\ldots<b_{j,m_{j}}$ , then we make $(m_{j}-1)$ connections
like bridges ( $b_{j,1},$ $\mathrm{b}\mathrm{j}|2,$ $(b_{j,2}, b_{j,3})$ , ..., $(b_{j,m_{j}-1}, b_{j,m_{j}})$ , successively. We have, of
course, totally $\sum_{j=1}^{k}(]B_{j}|-1)$ connections and we shall call them arcs of the
partition $\pi$ .

The number of arc crossings for apartition $\pi$ $\in \mathcal{P}(\{1, \ldots, n\})$ is the number:

$c_{a}(\pi)=\#$ $\{(m_{1}, m_{2},m_{3},m_{4})|\mathrm{o}\mathrm{f}\pi(m_{1},m_{3})\mathrm{a}\mathrm{n}\mathrm{d}1\leq m_{1}<m_{2}(m_{2},m_{4})\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}<m_{3}<m_{4}\leq n$

,
$\}$ .

Theorem 3.2.
$S_{q}(n, k)=$ $\sum$ $q^{c_{a}(\pi)}$ ,

$\pi\in P(\{.1,\ldots,n\})$

yr has precisely $k$ blocks

where $c_{a}(\pi)$ denotes the number of the arc crossings for the partition $\pi$ .

In order to see the above statement, we shall adopt the cards arrangement
technique which is similar as in [ER] for juggling patterns but we will use
considerably different kinds of cards.

Notation 3.3. We prepare the cards $C_{i}$ $(i=0,1,2, \ldots)$ for the $q$-creation oper-
ator. The card $C_{i}$ has $i$ inflow lines from the left and $(i+1)$ outflow lines to
the right, where one new line starts from the middle point on the ground level.
For each $j\geq 1$ , the inflow line of the $j\mathrm{t}\mathrm{h}$ level goes out to the $(j+1)\mathrm{s}\mathrm{t}$ level
without any crossing. We call the card $C_{i}$ the creation card of level $i$ (See Fig.
3.1).

[Level 0] [Level 3]

Fig. 3.1. The creation cards and the weights for the first few levels

Next we shall make the cards for the $q$-annihilation operator. For $i\geq 1$ ,
we consider the cards $A_{i}^{(j)}$ $(j=1,2, \ldots, i)$ which has $i$ inflow lines from the left
and $(i-1)$ outflow lines to the right. On the card $A_{i}^{(j)}$ , only the inflow line
of the $j\mathrm{t}\mathrm{h}$ level goes down to the middle point on the ground level and will
be annihilated. The lines flowed into lower than $j\mathrm{t}\mathrm{h}$ level go in horizontally
parallel and keep the levels. Hence $(j-1)$ crossings will occur. Moreover if the
line flow into the $k(>j)\mathrm{t}\mathrm{h}$ level, it will flow out to the $(k-1)\mathrm{s}\mathrm{t}$ level without
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any crossing. We call the cards $A_{i}^{(j)}$ the annihilation cards of level $i$ (See Fig.
3.2).

We shall give the weight to the card by $q$ to the number of the crossings
that occur on the card, thus the card $A_{i}^{(j)}$ has the weight $q^{j-1}$ and the card $C_{i}$

has 1.

Fig. 3.2. The annihilation cards and the weights of the first few levels

Remark 3.4. The creation cards represent the relations $a^{*}\xi^{\otimes i}=\xi^{\otimes(:+1)}(i\geq 0)$ ,
where the number of lines correspond to the power of tensor products.

The annihilation cards reflect the relations
$a\xi^{\otimes i}$ $=$

where the annihilating line indicates the position of the factor in the tensor
product which should be deleted
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Notation 3.5. For $i\geq 1$ , we consider the cards $N_{i}^{(j)}$ $(j=1,2, \ldots, i)$ for the
$q$-number operator. The card $N_{i}^{(j)}$ has $i$ inflow lines and, the same number of,
$i$ outflow lines. Only the inflow line of the $j\mathrm{t}\mathrm{h}$ level goes down to the middle
point on the ground and continue its flow as the first (lowest) line. The inflow
lines of lower than $j\mathrm{t}\mathrm{h}$ level will be increased only one in upper level and ones
of higher than $j\mathrm{t}\mathrm{h}$ level will keep their levels. Hence it will occur $(j-1)$
crossings on the card $N_{i}^{(j)}$ , hence, it has the weight $q^{j-1}$ . We call the card $N^{(j)}.\cdot$

the number card of level $i$ (See Fig. 3.3).

[Level 1] [Level 2]

Fig. 3.3. The number cards and the weights of the first few levels

Remark 3.6. It is obvious that the number card $N_{i}^{(j)}$ can be obtained by
composition of the annihilation card $A_{i}^{(j)}$ and the creation card $C_{i-1}$ with
identifying the two middle points on the ground. For instance, by gluing the
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cards A4 and $C_{3}$ , we have the card $N\ovalbox{\tt\small REJECT}^{3)}$ as follows:(3)
4

$\Rightarrow$

Notation 3.7. Furthermore, we shall make the scalar cards $K_{j}(i=0,1,2, \ldots)$

for the scalar operator. The card K.$\cdot$ has $i$ horizontally parallel lines and the
short pole like segment of line at the middle point on the ground without any
crossing, thus it has the weight 1. We call the card $K_{i}$ the scalar card of level
$i$ (See Fig. 3.4).

Fig. 3.4. The scalar cards and the weights of the first few levels

In order to evaluate the yrth moments, we expand

$x^{n}=(N+\sqrt{\lambda}a^{*}+\sqrt{\lambda}a+\lambda\cdot 1)^{n}$

and consider in amonomial wise. Now we consider the monomial

$y=f_{n}f_{n-1}\cdots f_{2}f_{1}$ ,

where each $f_{j}$ is one of $N$ , $(\sqrt{\lambda}a^{*})$ , $(\sqrt{\lambda}a)$ , and $(\lambda$ . 1 $)$ . Here we should be
aware of that the position numbers are labeled from the right. Put the sets as

$N(y)$ $=\{j : f_{j}=N\}$ , $C(y)$ $=\{j : f_{j}=(\sqrt{\lambda}a^{*})\}$ ,
$A(y)$ $=\{j : f_{j}=(\sqrt{\lambda}a)\}$ , and $K(y)$ $=\{j : f_{j}=(\lambda\cdot 1)\}$ ,

and $\mathrm{d}\mathrm{e}_{1}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}k_{N}=\#_{N(y)}$ , $kc=\#_{C(y)}$ , $k_{A}=\#_{A(y)}$ , and $k_{K}=\#_{K(y)}$ . It is
trivial that we have the disjoint union of

$\{1, 2, \ldots, n\}=N(y)\cup C(y)\cup A(y)\cup K(y)$
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and $k_{N}+k_{C}+k_{A}+k_{K}=n$ .
For the monomial $y$ , we define the level of the $k\mathrm{t}\mathrm{h}$ factor $f_{k}$ , $L(k)(k\geq 2)$ ,

by

$\mathrm{L}(\mathrm{k})=\sum_{j=1}^{k-1}\mathrm{x}(\mathrm{j})$ , with $L(1)=0$ ,

where $\mathrm{x}(\mathrm{j})$ is the step function defined by

$\chi(j)=\{$

1if $j\in \mathrm{C}(\mathrm{y})$ ,
-1, if $j\in A(y)$ ,
0if $j\in N(y)\cup K(y)$ .

Then, we can easily obtain that the monomial $y$ has non-zero vacuum expec-
tation if and only if the following conditions:

(a) $L(k)\geq 0$ for every $1\leq k\leq n$ ,

(b) $\mathrm{L}(\mathrm{k})\geq 1$ if $k\in \mathrm{N}(\mathrm{y})$ , and

(c) $\sum_{j=1}^{n}\chi(j)=0$ .

Especially, we have that $\phi(y)\neq 0$ implies $k_{A}=kc$ .

Let $y$ be the monomial of non-zero vacuum expectation as above, then we
have

$\phi(y)=(\prod_{k\in A(y)\cup N(y)}[L(k)]_{q})\lambda^{(k_{K}+k_{C})}$ ,

where $[x]_{q}$ denotes the $q$-number. Because the level $\mathrm{L}\{\mathrm{k}$ ) reflects the fact

$(f_{k-1}f_{k-2}\cdots f_{1})\Omega\in \mathbb{C}\xi^{\otimes L(k)}$ .

For the monomial $y$ of non-zero vacuum expectation, we will make the set
of partitions, $\Psi_{n}(y)$ , of the ordered set $\{$ 1, 2, $\ldots$ , $n\}$ as follows: The partition
has $(k_{K}+k_{C})$ blocks where each number in the set $K(y)$ makes ablock of size
1and each of the rest $k_{C}$ blocks starts from anumber in $C(y)$ and ends by a
number in $A(y)$ , and the intermediate numbers are in the set $N(y)$ . Of course,
we consider the numbers in each block are arranged in increasing order. That
is,

$\Psi_{n}(y)=|\pi$ $=\{B_{1}, B_{2}, \ldots, B_{k}\}$
$\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}\mathrm{b}1\mathrm{o}\mathrm{c}\mathrm{k}B_{j}=\{b_{j\mathrm{J}},b_{j,2},\ldots,b_{j,m}\}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}m_{j}=|B_{j}|\mathrm{a}\mathrm{n}\mathrm{d}b_{j},<b_{j,\ell+1}k=k_{C}+k_{K},\pi \mathrm{i}\mathrm{s}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{f}m_{j}--\mathrm{l}\mathrm{t}^{t}\mathrm{h}\mathrm{e}\mathrm{n}b_{j,1}\in b_{j,m}\in A(y),\mathrm{a}\mathrm{n}\mathrm{d}b_{j,\ell}\in N(\acute{y})\mathrm{f}\mathrm{o}\mathrm{r}\ell\neq \mathrm{A}’(y),\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{f}m_{j}\geq 2\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}b_{j1}\in C(y)1,m_{j}^{J}.j’,’\}$ .
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Proposition 3.8. Let $\ovalbox{\tt\small REJECT} j/\ovalbox{\tt\small REJECT}$

$f_{n}f_{n-\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}$ $f_{2}fr$ be a monomial of non-zero vacuum
expectation, where each $I\ovalbox{\tt\small REJECT}$ is one of N, $(\mathrm{J}_{\ovalbox{\tt\small REJECT}}’)$ , $(\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT})$ , and (A .1), and $\ovalbox{\tt\small REJECT} \mathrm{I}_{n}^{\ovalbox{\tt\small REJECT}}(\mathrm{y})$

be the subset of $\ovalbox{\tt\small REJECT} \mathrm{P}(\{1,$2, \ldots ,
$\mathrm{r}\mathrm{z}\})$ as described above. Then we have that

$\phi(y)=(\sum_{\pi\in\Psi_{n}(y)}q^{c_{a}(\pi)})\lambda^{(k_{K}+k_{C})}$ ,

where $c_{a}(\pi)$ is the number of arc crossings for the partition $\pi$ .

Proof. For the monomial $y$ of non-zero vacuum expectation, we will arrange
the cards along with the following rule: If $k\in C(y)$ , that is, if $f_{k}=(\sqrt{\lambda}a^{*})$

then we will put the creation card of level $L(k)$ at the $k\mathrm{t}\mathrm{h}$ position with the
$\sqrt{\lambda}$-multiplicated weight, which is unique. If $k\in A(y)$ , that is, if $f_{k}=(\sqrt{\lambda}a)$

then we will put the annihilation card of level $L(k)$ at the $k\mathrm{t}\mathrm{h}$ position. At
this time, $L(k)$ cards are available for our arrangement and the weights should
be also multiplicated by $\sqrt{\lambda}$. If $k\in N(y)$ , that is, if $f_{k}=N$ then we will use
the number card of level $L(k)$ with the original weight, where $L(k)$ cards are
also available. If $k\in K(y)$ , that is, if $f_{k}=(\lambda\cdot 1)$ then the scalar card of level
$L(k)$ with the weight Awill be used at the $k\mathrm{t}\mathrm{h}$ position.

We will consider all the admissible cards arrangements then it is trivial
that there are $\prod_{k\in A(y)\cup N(y)}L(k)$ ways of cards arrangements. We also obtain
easily that the sum of the products of the weights for all the admissible cards
arrangements can be given as

$\lambda^{k_{K}}(\sqrt{\lambda})^{(k_{C}+k_{A})}(\prod_{k\in A(y)\cup N(y)}[L(k)]_{q})=\lambda^{(k_{K}+k_{C})}(\prod_{k\in A(y)\cup N(y)}[L(k)]_{q})$ ,

because we know $k_{A}=k_{C}$ . By the rule for our cards arrangements, it follows
that the partitions determined by the connected lines in the pattern of the
above cards arrangements and the set $\Psi_{n}(y)$ are in aone-t0-0ne correspon-
dence.

It is not so difficult to see that the crossings appeared in the patterns of
the cards arrangements are nothing else but the arc crossings for the partitions
determined by the connected lines.

We remind, now, how to give the weights to the cards, then it follows that

$\prod_{k\in A(y)\cup N(y)}[L(k)]_{q}=\sum_{\pi\in\Psi_{\hslash}(y)}q^{c_{a}(\pi)}$
,

which ends the proof. $\square$

Example 3.8. We consider the monomial

$(\sqrt{\lambda}a)(\sqrt{\lambda}a)N(\sqrt{\lambda}a^{*})(\lambda\cdot 1)(\sqrt{\lambda}a^{*})=f_{6}f_{5}f_{4}f_{3}f_{2}f_{1}$ ,
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which has non-zero expectation with the sequence of the levels $\{L(k)\}_{k=1}^{6}=$

$\{0,1,1,2,2,1\}$ . This monomial yields the four ways of the cards arrangement

(Co, $K_{1},$ $C_{1},$ $N_{2}^{(\alpha)},$ $A_{2}^{(\beta)},$ $A_{1}^{(1)}$ ), where $\alpha=1,2$ and $\beta=1,2$ .

We shall list all the admissible ways of the cards arrangements with the cor-
responding partitions and the products of the weights.

(i)

$\pi=\{\{1,6\}, \{2\}, \{3,4,5\}\}$ , Product of weights $=\lambda^{3}$

(i)

$\pi$ $=\{\{1,5\}, \{2\}, \{3,4,6\}\}$ , Product of weights $=q\lambda^{3}$

(i)

$\pi$ $=\{\{1,4,5\}, \{2\}, \{3,6\}\}$ , Product of weights $=q\lambda^{3}$
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(iv)

$.\pi=\{\{1,4,6\}, \{2\}, \{3,5\}\}$ , Product of weights $=q^{2}\lambda^{3}$

The vacuum expectation of this monomial is $[2]_{q}[2]_{q}[1]_{q}\lambda^{3}=(1+2q+q^{2})\lambda^{3}$ ,
which is given by the sum of the products of the weights listed above.

Remark 3.9. The numbers $S_{q}(n,k)$ has been already investigated in [Bi] as a
certain $q$-deformation of the Stirling number of the second kind. He introduced
them as the coefficients of the generating function for the continued fraction,
which corresponds to the orthogonal polynomials for our $q$-deformed Poisson
distribution. Hence our card arrangement method is nothing else but the
certain graphical interpretation for his $q$-deformation, which is intermediated
by the $q$-cration and $q$-annihilation operators.

4A $q$-deformed moments-cumulants relation
Having the result of the previous section in mind, we should like to propose
the following $q$-deformed moment-cumulant relation:

$\mu_{n}=$ $\sum_{\pi\in \mathcal{P}(\{1,\ldots,n\})}q^{c_{\Phi}(\pi)}\prod_{i_{-}^{-}1}^{k}\alpha_{|B_{i}|}$ , $n\geq 1$ ,

$\pi=\{B_{1\prime}B_{2\prime\cdots\prime}B_{k}\}$

where $c_{a}(\pi)$ is the number of arc crossings of the partition $\pi$ , which interpolates
the relations for usual and for free exactly.

Theorem 4.1. The $nth$ moments of our $q$ -deformed Poisson random variable
of parameter Acan be given as the above relation by putting $\alpha_{i}=\lambda(i\geq 1)$ .

This result is compatible with the characterization for the usual Poisson
random variable that the Poisson distribution has the constant cumulant in
all orders. Furthermore, the above moments-cumulants relation characterizes
the $q$-Gaussian law by putting $\alpha_{i}=0$ for $i\geq 3$ , which interpolates the usual
Gaussian law and the semi-circle one
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