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1Introduction
We are going to show that the solutions to awide class of stochastic and quantum stochastic
equations can be obtained from apositive (relativistic or non-relativistic) Hamiltonian with
singular interaction as astrong limit of the input flow of quantum particles with asymptot-
ically infinite momentum but aconstant velosity. Thus the problem of stochastic approxi-
mation is reduced to asort of quasiclassical asymptotics of aquantum mechanical boundary
value problem in extra dimension.

There exists abroad literature on the stochastic limit in quantum physics in which quan-
tum stochastics is derived from anonsingular interaction (see monograph [1], and references
therein). Here we follow adifferent approach recently outlined in [3]: instead of rescaling the
interaction potentials we treat the singular interaction $\delta$-potentials rigorously as the bound-
ary conditions, and obtain the stochastic limit as an ultra-relativistic limit of aSchr\"odinger
boundary value problem in aHilbert space of infinite number of particles
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We start with ashort Section 2fixing some general notations that are used throughout
the paper.

In Section 3, we show how the solutions to linear stochastic differential equations in
Banach spaces driven by acompound Poisson process can be obtained as the interaction
picture representation for the boundary- value problem for shifts in Euclidean simplices.
This class of equations includes the Belavkin quantum filtering equations describing the
aposterior dynamics of aquantum system under continuous non-demolition measurement of
counting type [2].

Since the stochastic equations driven by aWiener process can be obtained as the limits
of equations driven by compound Poisson process, the results of Section 3allow the rep-
resentation of the solutions to linear diffusion equations in Banach spaces as the limits of
certain (deterministic) boundary value problems.

After Section 4that describes shortly the combinatorics of multiple Fock spaces, we
obtain our main results in Sections 5, where we establish aconnection between boundary
value problem and general quantum stochastic equations (and, in particular, classical diffu-
sion equations) directly, without alimiting procedure. To this end, we develop atheory of
boundary value problems for shifts in “coloured simplices” as the restrictions of the shifts
in multiple $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ pseudo Fock spaces, and then use the theory developed in [4], where it is
shown that working in multiple pseudo Fock spaces allows for arepresentation of stochastic
and quantum stochastic evolutions that preserves the number of particles (though changes
their colour), and consequently reduces astudy of general quantum stochastic flows to the
study of Poisson driven evolutions in coloured simplices. Using pseudo Fock spaces is a
characteristic feature of our method that distinguishes it from an alternative way of exploit-
ing the connection between boundary value problems and quantum stochastics initiated in
[6], (see also [7] for recent developments in this direction). Unlike [6], we systematycally
consider the evolutions in general Banach spaces (and, in particular, non-unitary boundary
conditions), which are important for applications to general stochatic equations, in particular
those decribing the models of continuous quantum measurements.

In Section 6we show how the boundary value problems for shifts can be obtained by a
sort of semiclassical limit $harrow \mathrm{O}$ (which is however quite different from the usual semiclas-
sical limit for stochastic equations [8], [10], and which generalises the ultra-relativistic limit
of [3] $)$ from evolutions described by general Schr\"odinger problems with abounded below
Hamiltonian.

2Main notations
(i) Generalities. By $H$ (respectively by $B$ ) we shall always denote aHilbert (respectively a
Banach) space with the norm $||||_{H}$ (respectively $||||_{B}$ ). In applications, $B$ will be the Banach
algebra of bounded linear operators $\mathcal{L}(H)$ in $H$ . For afunction $\phi$ on $\mathrm{R}$ we shall denote by
$\phi(z_{-})$ (respectively $\phi(z_{+})$ ) the left (respectively the right) limit of $\phi(t)$ as $tarrow z$ (when it
exists, of course). For asubset $M\subset \mathrm{R}^{n}$ we shall denote by $\chi_{M}(z)$ the indicator function of
$M$ that equals 1or 0respectively when $z$ $\in M$ or $z$ $\in \mathrm{R}^{n}\backslash M$ . We denote by $C_{B}(M)$ (resp.
$C_{B}^{\omega mp}(M))$ the space of continuous functions $M\vdasharrow B$ vanishing at infinity (respectively with
acompact support) equipped with the usual sup-norm $|| \psi||=\sup_{z}||\psi(z)||_{B}$ .
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(ii) Simplicies. We shall denote by $\Sigma_{n}$ the infinite simplex:

$\Sigma_{n}=\{z=(z_{1}, \ldots, z_{n})\in \mathbb{R}^{n} : z_{1}<z_{2}<\ldots<z_{n}\}$ ,

equipped with Lebesgue measure. Clearly this simplex can be decomposed into the union of
$n+1$ cells $\Sigma_{n}^{k}$ :

$\Sigma_{n}^{0}=\{Z \in\Sigma_{n} : z_{1}\geq 0\}$ ,
$\Sigma_{n}^{k}=\{z\in\Sigma_{n} : z_{k}\leq 0\leq z_{k+1}\}$ , $k=1$ , $\ldots$ , $n-1$ , (1)

$\Sigma_{n}^{n}=\{z\in\Sigma_{n} : z_{n}\leq 0\}$ .
In particular, $\Sigma_{1}=\mathbb{R}$ , $\Sigma_{1}^{0}=\mathbb{R}_{+}$ , $\Sigma_{1}^{1}=\mathbb{R}_{-}$ .

Vectors $z\in\Sigma_{n}$ are usually identified with the subsets $\langle$ $=\zeta(z)=\{z_{1}, \ldots, z_{n}\}\subset \mathbb{R}$ of the
real line of cardinality $|\zeta|=n$ . The representation of the points of $\Sigma_{n}$ by the subsets of $\mathbb{R}$

(respectively by $n$-dimensional vectors with ordered coordinates) is more natural for defining
stochastic processes (respectively, boundary value problems) we are dealing with.

(iii) Banach valued $L^{p}$ -spaces. For anumber $p\geq 1$ , we denote by $L_{B}^{p}(n)=L_{B}^{p}(\Sigma_{n})$ the
Banach space of functions $\psi:\Sigma_{n}arrow B$ (more precisely, equivalence classes of such functions)
with the norm

$|| \psi||=(\int_{\Sigma_{n}}||\psi(z)||_{B}^{p}dz)^{1/p}$

In particular, $L_{H}^{2}(n)$ is the Hilbert tensor product $H\otimes L^{2}(\Sigma_{n})$ . By $L_{B}^{p}(\Sigma_{n}^{k})$ we denote the
corresponding space of functions on the cells (1). We shall also consider the locally convex
topological spaces $L_{B}^{p,loc}(n)$ of measurable functions $\psi$ : $\Sigma_{n}\vdasharrow H$ with the countable set
of norms $||\psi||_{N}$ ( $N$ is anatural number) defined as above but with the integration over
$\Sigma_{n}\cap\{z : |z| \leq N\}$ . The notation $L_{B}^{p}$ (respectively $L_{B}^{p,loc}$ ) is reserved for the space $L_{B}^{p}(\mathbb{R})$

(respectively $L_{B}^{p,loc}(\mathbb{R})$ ).
(iv) Shifts and differentiation operators in $L_{B}^{p}(n)$ . By $T_{n}(t)=T_{n,p,B}(t)$ we shall denote

the shift in $L_{B}^{p}(n)$ which takes afunction $\varphi\in L_{B}^{p}(n)$ to the function $(T_{n}(t)\varphi)(z_{1}, \ldots, z_{n})=$

$\varphi(z_{1}+t, \ldots, z_{n}+t)$ . This is acontinuous group, whose generator (that acts on smooth functions
as differentiation along the vector (1, 1, $\ldots$ , 1) $)$ we shall denote by $\partial_{z}=\partial_{z_{1}}+\ldots+\partial_{z_{n}}$ . In
particular, the operator $i\partial$ is self-adjoint in $L_{H}^{2}(n)$ . We shall write shortly $T(t)$ for $T_{1}(t)$ .

(v) Dressing and jumps. Let $-iE$ be agenerator of acontinuous group $\exp\{-itE\}$ in
$B$ , and let $A$ be an operator in $L_{B}^{p}(n)$ . For areal-valued continuous function $f(z)$ on $\Sigma_{n}$ we
define an operator in $L_{B}^{p}(n)$ by the formula

$A_{Ef(z)}\varphi(z)=e^{iEf(z)}Ae^{-iEf(z)}\varphi(z)$ . (2)

Clearly, if $E$ is aself-adjoint operator in $H$ , and if $A$ is self-adjoint in $L_{H}^{2}(n)$ , then $A_{Ef(z)}$ is
also self-adjoint in $L_{H}^{2}(n)$ .

For afunction $A:\Sigma_{n}\vdasharrow \mathcal{L}(B)$ and aBorel subset $s\subset\Sigma_{n}$ we define abounded operator
$A^{s}$ in $L_{B}^{p}(n)$ by the formula

$(A^{s}\varphi)(z)=\chi_{s}(z)A(z)\varphi(z)+(1-\chi_{s}(z))\varphi(z)$ (3)

(more correct, but more heavy notation for $A^{s}$ would be of course $A^{\chi_{s}}$ ). Clearly, the operator
$A^{s}$ remains the same if $s$ is changed on aset of Lebesgue measure zero. Clearly $T(t)A^{s}=$

$A^{s-t}T(t)$ and $(A^{s})_{Ef(z)}=(A_{Ef(z)})^{s}$ , which implies, in particular, that the notation $A_{Ef(z)}^{s}$ is
not ambiguous

85



3 Stochastic equations driven by aPoisson noise as
boundary value problems

Let $\sigma=\{\sigma_{1}, \ldots, \sigma_{n}\}$ be an arbitrary (ordered) family of operators from $\mathcal{L}(B)$ and let $-iE$

be agenerator of acontinuous group of linear operators in $B$ . For agiven $z\in\Sigma_{n}^{0}$ , let us
consider the linear multiple kick equation

$d \eta+iErjdt=\sum_{j=1}^{n}(\sigma_{j}-1)\eta d\chi_{(z_{j},\infty)}$ , $\eta\in B$ , $t\geq 0$ . (4)

As in the case of stochastic equations, this equation should be understood rigorously as the
corresponding integral equation, where for any function $f(t)$ having everywhere right and
left limits the integral with respect to $d\chi(z,\infty)(t)$ is defined by the formula

$\int_{0}^{t}f(\tau)d\chi_{(z,\infty)(\mathcal{T})=}\{$
0, $t\leq z$ ,

(5)
$f(z_{-})$ , $t>z$ .

If $z\in\Sigma_{n}^{0}$ is arandom variable on aprobability space $\Omega$ , one can rewrite equation (4) as the
stochastic equation

$d\eta+iE\eta dt=(\sigma_{n_{t}}-1)\eta dn_{t}$ , $\eta\in B$ , $t\geq 0$ , (6)

driven by the counting process $n_{t}(\zeta)=n_{t}(\zeta(z))=|\zeta\cap[0, t)|$ .
Clearly $\eta(t)$ satisfying (4) evolves according to the free equation $\Delta\partial\partial t=-iE\eta$ between the

jump-times $z_{k}$ , and at the times $t=z_{k}$ the wave function experiences the jump $\eta-*\sigma(z_{k})\eta$ .
This proves the following

Proposition 1For any $z$ $\in\Sigma_{n}^{0}$ , the operator $V(t, z)$ , which gives the solution $V(t, z)\eta_{0}$ to
the Cauchy problem for equation (4) with the initial function $\eta_{0}$ , belongs to $\mathcal{L}(B)$ and has
the following explicit form: for $z_{k}\leq t<z_{k+1}$

$V(t, z)=\exp\{-iE(t-z_{k})\}\sigma_{k}\exp\{-iE(z_{k}-z_{k-1})\}\sigma_{k-1}\ldots\sigma_{1}\exp\{-iEz_{1}\}$ . (7)

If $B$ is a Hilbert space $H$ and if all $\sigma_{j}$ are unitary, then $V(t, z)$ is also a unitary operator.

We are going to give arepresentation for this operator in terms of the boundary value
problem for shifts in $L_{B}^{p}(n)$ , more precisely, in terms of the solutions to the equation

$i\partial_{t}\varphi=(i\partial_{z}+E)\varphi=(i(\partial_{z_{1}}+\partial_{z_{2}}+\ldots+\partial_{z_{n}})+E)\varphi$, $\varphi\in L_{B}^{p}(n)$ , (8)

combined with the boundary conditions

$\varphi(z_{1}, \ldots, z_{k-1},0_{-}, z_{k+1}, \ldots, z_{n})=\sigma_{k}\varphi(z_{1}, \ldots, z_{k-1},0_{+}, z_{k+1}, \ldots, z_{n})$, $k=1$ , $\ldots$ , $n$ . (9)

Let $D_{\sigma}=D_{\sigma_{1},\ldots,\sigma_{n}}(p, B)$ denote the dense subspace of functions $\varphi\in L_{B}^{p}(n)$ with the
properties:

(i) for each $k=0$ , $\ldots$ , $n$ the restriction $\varphi|_{\Sigma_{n}^{k}}$ has acontinuous version such that on all lines
parallel to the vector (1, $\ldots$ , 1) this restiction is absolutely continuous and $\partial_{z}\varphi|_{\Sigma_{n}^{k}}\in L_{B}^{p}(n)$ .

(ii) the boundary conditions (9) are satisfied.
The differentiation operator $\partial_{z}^{\sigma}=\partial_{z_{1}}^{\sigma_{1}}+\ldots+\partial_{z_{n}}^{\sigma_{n}}$ acts on $D_{\sigma}$.in the obvious way. The

following result is obtained by inspection
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Proposition 2For an arbitrary p $\geq 1$ , the operators $T^{\sigma}(t)$ defined by the formulas
$T^{\sigma}(t)=\sigma_{n}^{\{z_{n}\in[-t,0]\}}\ldots\sigma_{1}^{\{z_{1}\in[-t,0]\}}T_{n}(t)=T_{n}(t)\sigma_{n}^{\{z_{n}\in[0,t]\}}\ldots\sigma_{1}^{\{z_{1}\in[0,t]\}}$ (10)

form a continuous semigroup of operators in $L_{B}^{p}(n)$ , whose generator is the closure of the
operator $\partial_{z}^{\sigma}=\partial_{z_{1}}^{\sigma_{1}}+\ldots+\partial_{z_{n}}^{\sigma_{n}}$ defined initially on $D_{\sigma}$ . The space $D_{\sigma}$ is invariant under the
action of the semigroup.

The semigroup $T^{\sigma}$ gives the solution to the Cauchy problem of equation (8), (9) for
vanishing $E$ . To include anon-trivial $E$ , let us introduce the domain

$D_{\sigma}^{E}=D_{\sigma}\cap\{\varphi : E\varphi\in L_{B}^{p}(n)\}$ ,

which is clearly dense in $L_{B}^{p}(n)$ for any $p$ . The operator

$\partial_{z}^{\sigma}-iE=\partial_{z_{1}}^{\sigma_{1}}+\ldots+\partial_{z_{n}}^{\sigma_{n}}-iE$ (11)

acts on $D_{\sigma}^{E}$ in the obvious way. By usual abuse of notations, we shall denote by the same
symbol $\partial_{z}^{\sigma}-iE$ the closure of this operator. The following statement is again proved by
inspection.

Proposition 3(i) The operator (11) generates a continuous semigroup

$U_{E}^{\sigma}(t)=(\sigma_{n}^{\{z_{n}\in[-t,0]\}})_{Ez_{n}}\ldots(\sigma_{1}^{\{z_{1}\in[-t,0]\}})_{Ez_{1}}\exp\{-iEt\}T_{n}(t)$ , (12)

(where we used notations (2), (3)) which solves the Cauchy problem for equations (8), (9).
Moreover,

$(T_{n}(t))^{-1}U_{E}^{\sigma}(t)=e^{-iEt}(\sigma_{n}^{\{z_{n}\in[0,t]\}})_{Ez_{n}}\ldots(\sigma_{1}^{\{z_{1}\in[0,t]\}})_{Ez_{1}}$ . (13)

(ii) The operators (12) are invertible for all $t\geq 0$ if and only if all $\sigma_{k}$ , $k=1$ , $\ldots$ , $n$ ,
are invertible. Operators (11) with invertible $\sigma_{k}$ are similar. More precisely, if $\sigma_{k}$ has $a$

continuous inverse $\sigma_{k}^{-1}$ , $k=1$ , $\ldots$ , $n$ , then

$U_{E}^{\sigma}(t)=(\sigma_{n}^{\{z_{n}<0\}})_{Ez_{n}}\ldots(\sigma_{1}^{\{z_{1}<0\}})_{Ez_{1}}$

$x$
$\exp\{-iEt\}T_{n}(t)((\sigma_{1}^{\{z_{1}<0\}})_{Ez_{1}})^{-1}\ldots((\sigma_{n}^{\{z_{n}<0\}})_{Ez_{n}})^{-1}$ (14)

(Hi) If $B$ is a Hilbert space $H$ and all $\sigma_{k}$ are unitary, the operator $i\partial_{z}^{\sigma}+E$ is self-adjoint
in $L_{H}^{2}(n)$ .

(iv) All statements of the Proposition remain valid in the spaces $L_{B}^{p,loc}(n)$ .

Comparing formulas (7) and (13) yields the following result.

Theorem 1Solution (7) to the Cauchy problem of equation (4) can be written in the form
$V(t, z)\eta_{0}=((T_{n}(t)^{-1}U_{E}^{\sigma}(t)\varphi)(z),$ (15)

uthere $\varphi(z)=\eta_{0}$ for $z\in\Sigma_{n}^{0}$ and vanishes otherw $ise$ .
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Remark. The function $\varphi(z)$ which equals to aconstant vector 770 for all positive $z$ does
not belong to $L_{B}^{p}$ , but only to $L_{B}^{p,loc}$ , which was the main reason for introducing these spaces.

In physical language, one interpretes formula (15) by saying that the stochastic evolution
$V(t, z)$ gives the solutions of equation (8), (9) in the interaction representation with respect to
the “free” shift $T_{n}(t)$ . Notice that stochastic linear equations driven by acompound Poisson
noise, in particular the quantum filtering equations describing the aposterior dynamics of
quantum states under continuous observations of counting tyPe, can be reduced to equation
of type (4) or (6) pathwise, because aPoisson process has almost surely afinite number of
jumps on each bounded time interval. Therefore, the solutions to these stochastic equations
can be obtained as the interaction representation of the solutions of problem (8), (9) with
respect to the “free” shift $T_{n}$ . Theorem 4at the end of the paper shows that the model
(8), (9) in its turn can be obtained as asemiclassical limit of Schrodinger evolutions with a
bounded below Hamiltonian.

4Combinatorics of the multiple Fock space
This is an auxiliary section describing the combinatorics of secondly quantised operators in
multiple Fock spaces in away that is convenient for our purposes.

By acoloured simplex of $n$ particle having $m$ colours we understand the set

$CS_{n,m}= \bigcup_{n_{\grave{1}}+\ldots+n_{m}=n^{\Sigma}n_{1}}\cross\ldots\cross\Sigma_{n_{m}}$,

where the (disjoint) union is taken over all partitions of the integer number $n$ in the sum of
$m$ non-negative numbers (the order is relevant), and where it is assumed that the product is
over all non-vanishing $n_{j}$ . The points of $CS_{n,m}$ can be parametrised either by ordered chains
of labeled variables

$z$
$=\{z^{\alpha}\}=\{z_{1}^{\alpha(1)}<\ldots<z_{n}^{\alpha(n)}\}$ , (16)

with $\alpha$ being functions $\alpha:\{1, \ldots, n\}\vdasharrow\{1, \ldots, m\}$ (that label the variables in astandard
simplex $\Sigma_{n}$ ), or by the families of $m$ vector variables

$\zeta=\{\zeta^{1}=(z_{1}^{1}, \ldots, z_{n_{1}}^{1}), \ldots, \zeta^{m}=(z_{1}^{m}, \ldots, z_{n_{m}}^{m})\}$ , (17)

where the entries of each $\zeta^{j}$ ar$\mathrm{e}$ ordered: $z_{1}^{j}<\ldots<z_{n_{j}}^{j}$ (each $\zeta^{j}$ can be thus considered either
as avector in $\Sigma_{n_{j}}$ or as asubset of $\mathbb{R}$ of cardinality $|\zeta^{j}|=n_{j}$ ), and where the subsets (;’ are
disjoint.

There is anatural projection from $CS_{n,m}$ to the standard (uncoloured) simplex $\Sigma_{n}$ , which
simply “forgets” the colour. We shall denote by $pr(z)$ (or $pr(\zeta)$ ) the image of the point (16)
(or (17)) under this projection.

Let $l^{m}=C_{\mathbb{C}^{m}}^{comp}(\mathbb{R})$ . Choosing abasis $\{e_{j}\}$ , $j=1$ , $\ldots$ , $m$ , in $\mathbb{C}^{m}$ allows one to present any
function $f\in l^{m}$ as the sum $f= \sum f_{j}e_{j}$ with all $f_{j}\in l^{1}$ . As usual, the tensor product $(\mathbb{C}^{m})^{\otimes n}$

is defined as a $mn$-dimensional vector space with the basis $e_{\alpha(1)}$ O... $\otimes e_{\alpha(n)}$ parametrised by
functions $\alpha:\{1, \ldots, n\}\vdasharrow\{1, \ldots, m\}$ . The (algebraic) symmetric tensor product $l_{n}^{m}=(l^{m})_{sym}^{\otimes n}$

can be defined as the space of functions $\Sigma_{n}\vdash\Rightarrow(\mathbb{C}^{m})^{\otimes n}$ generated by the monomials

$f_{1}(z_{1})\ldots f_{n}(z_{n})e_{\alpha(1)}\otimes\ldots\otimes e_{\alpha(n)}$, $f_{j}\in l^{1}$ . (18)
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It is convenient to get rid of tensors by transfering the index from the basis to the variables
and to encode the element (18) by the function $f_{1}(z_{1}^{\alpha(1)})\ldots f_{n}(z_{n}^{\alpha(n)})$ of $n$ ordered labelled
variables. Thus the symmetric tensor product $l_{n}^{m}=(l^{m})_{sym}^{\otimes n}$ is represented as aspace of
functions of variables (16), or, in other words, as aspace of functions on the coloured
simplex $CS_{n,m}$ . We shall call this representation the functional representation for the tensor
product $l_{n}^{m}$ . Similarly, the space $H$ C& $l_{n}^{m}$ can be identified with aspace of $H$-valued functions
on $CS_{n,m}$ . Let

$S=\{S(k)\}=\{(S_{\mu,\nu})(k) : k\in\{1, \ldots, n\}, \mu, \nu\in\{1, \ldots, m\}\}$ , (19)

be afamily of $m\cross m$-matrices with entries from $\mathcal{L}(\mathcal{H})$ . Clearly, each matrix $S(k)$ defines an
operator in $H\otimes l^{m}$ that takes the function $f(z)= \sum f_{j}(z)e_{j}$ to the function

$(S(k)f)(z)= \sum_{\mu,\nu}S_{\mu,\nu}(k)f_{\nu}(z)e_{\mu}$
.

The tensor product $S(n)$ (&... 6 $S(1)$ is defined as the operator in $H\otimes l_{n}^{m}$ that takes the
element (18) to

$\sum_{\mu_{1},\ldots,\mu_{n}}S_{\mu_{n},\alpha(n)}(n)\ldots S_{\mu_{1},\alpha(1)}(1)f_{1}(z_{1})\ldots f_{n}(z_{n})e_{\mu 1}\otimes\ldots\otimes e_{\mu_{n}}$
. (20)

Clearly, each monomial in the sum (20) has the form

$S_{\mu_{n},\alpha(n)}(n)\ldots S_{\mu_{1},\alpha(1)}(1)f_{1}(z_{1}^{\mu_{1}})\ldots f_{n}(z_{n}^{\mu_{n}})$ ,

in the functional representation. Since the monomials (18) form the basis for the space $l_{n}^{m}$ ,
we obtain the following functional representation for the operator $S(n)\otimes\ldots\otimes S(1)$ :

Proposition 4

$(S(n) \otimes\ldots\otimes S(1)f)(z_{1}^{\alpha(1)}, \ldots, z_{n}^{\alpha(n)})=\sum_{\beta}\prod_{k}S_{\alpha(k)\beta(k)}(k)f(z_{1}^{\beta(1)}, \ldots, z_{n}^{\beta(n)})$
, (21)

where the sum is taken over all functions $\beta:\{1, \ldots, n\}-$, $\{$ 1, $\ldots$ , $m\}$ , and $\prod$ is the ordered
product, where the index $k$ decreases from the left to the right.

The infinite (algebraic) direct sum $\oplus_{n=0}^{\infty}l_{n}^{m}$ is called the (algebraic) symmetric Fock space
over $l^{m}$ , the space $l_{n}^{m}$ being the $n$-particle subspace. In particular, if $S(j)=S$ does not
depend on $j$ , then $S^{\otimes n}$ is the restriction on the $n$-particle subspace of the second quantization
of the operator $S$ .

5General stochastic evolutions as boundary value
problems.

In this section, we shall study the boundary value problem in coloured simplices, whenjumps

may not only change the value of afunction in apoint, but also acolour of this point. Using

the combinatorics of multiple Fock spaces from the previous section yields the key conclusio $\mathrm{n}$
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that the interaction representation for the evolutions given by the boundary value problems
for shifts in coloured simplices is given by the solutions to the purejump stochastic equations
in multiple pseudo Fock spaces. This will be the key ingredient needed for the representation
of general quantum stochastic evolutions as boundary value problems for shifts in pseudo
Fock spaces.

First we describe cetain topologies on algebraic Fock spaces from the previous section
that are parametrised by $m$-tuples $p=\{p_{1}\leq\ldots\leq p_{m}\}$ of positive numbers, where $p_{1}\geq 1$

and $p_{m}$ is allowed to be +00. To be concrete, we suppose that $p_{1}\leq\ldots\leq p_{m-1}<p_{m}=\infty$

(see [5] for the case $p_{m}\neq\infty$ ). Let us define anorm on the space $H\otimes l_{n}^{m}$ considered in the
functional representation (see previous section), i.e. as aspace of functions $\varphi:CS_{n,m}\vdash\Rightarrow H$ :

$|| \varphi||_{p}=\sum(\int_{\Sigma_{n_{1}}}($ ... $( \max_{\Sigma_{n_{m}}}|\varphi(\zeta^{1}, \ldots, \zeta^{m})|)^{p_{m-1}}\ldots)^{p1/p_{2}}d\zeta^{1})^{1/p_{1}}$ , (22)

where $\sum$ is taken over all partition $n=n_{1}+\ldots+n_{m}$ of $n$ . We shall denote by $L_{H}^{p}(CS_{n,m})$

the completion of the space $H\otimes l_{n}^{m}$ with respect to the norm (22). By $L_{l\mathrm{f}}^{p,loc}(CS_{n,m})$ we
shall denote the corresponding locally convex space defined by the countable set of norms
parametrised by the positive integers $N$ and defined by (22) with all integrations performed
not over the whole infinite simplices but over their intersections with the balls of radius $N$

We shall use the same notation $T_{n}(t)=T_{n,p,H}(t)$ as before for the shift in $L_{H}^{p}(CS_{n,m})$ or
$L_{H}^{p,loc}(CS_{n,m})$ that shifts all variables independently of their colours. The spaces $L_{H}^{p}(CS_{n,m})$

can be considered as $n$-particle subspaces in the (multiple) Fock space

$\mathcal{F}_{H}^{\varphi}=H\oplus L_{H}^{p}(CS_{1,m})\oplus L_{H}^{p}(CS_{2,m})\oplus\ldots$ , (23)

which is aBanach version of the algebraic Fock space $H\otimes(\Sigma_{n=0}^{\infty}l_{n}^{m})$ considered in the
previous section. In particular, the shifts $T^{\sigma_{1,\ldots:}\sigma_{n}}(t)$ can be considered as the restrictions
(to the $n$-particle subspaces) of the corresponding shifts in the Fock space $\mathcal{F}_{H}^{p}$ .

Consider now the family of operators (19) under additional assumption that all $S(k)$ are
block upper triangular (i.e. $S_{\mu,\nu}$ is allowed not to vanish only if either (i) $\mu\leq\nu$ or (ii) $\mu>\nu$

but $p_{\mu}=p_{\nu}$ ). Then these operators define afamily $\sigma$ of linear operators $\sigma_{k}$ in the space
$H\otimes l_{n}^{m}$ that act by the formula

$(\sigma_{k}\varphi)(z_{1}^{\alpha(1)}, \ldots, z_{n}^{\alpha(n)})$

$= \sum_{\nu=\alpha(k)}^{m}S_{\alpha(k),\nu}(k)\varphi(z_{1}^{\alpha(1)}, \ldots, z_{k-1}^{\alpha(k-1)}, z_{k}^{\nu}, z_{k+1}^{\alpha(k+1)}, \ldots, z_{n}^{\alpha(n)})$. (24)

These operators may not be continuous in the spaces $L_{H}^{p}(CS_{n,m})$ . However, since the
matrices $S(k)$ are triangular and since for any $p_{1}\leq p_{2}$ , the standard $L^{p1}$ norm of any function
on acompact set can be estimated by its $L^{p2}$ norm, the following statement holds.

Proposition 5The operators $\sigma_{k}$ are continuous in $L_{f\acute{f}}^{ploc}(CS_{n,m})$ for all $p$ .

Generalising the boundary value problem (8), (9), we are going to consider the equation
(8) in $L_{H}^{p}(CS_{n,m})$ combined with the boundary conditions

$\varphi(z_{1}^{\alpha(1)}, \ldots, z_{k-1}^{\alpha(k-1)}, 0_{-}^{\alpha(k)}, z_{k+1}^{\alpha(k+1)}, \ldots, z_{n}^{\alpha(n)})$
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$=(\sigma_{k}\varphi)(z_{1}^{\alpha(1)}, \ldots, z_{k-1}^{\alpha(k-1)}, 0_{+}^{\alpha(k)}, z_{k+1}^{\alpha(k+1)}, \ldots, z_{n}^{\alpha(n)})$ , $k=1$ , $\ldots$ , $n$ . (25)

To deal with this problem in the same way as with the problem (8), (9), let us decompose
the coloured simplex $CS_{n,m}$ into the union of $n+1$ cells $CS_{n,m}^{k}$ using the decomposition (1)
of the underlying uncoloured simplex $\Sigma_{n}$ :

$CS_{n,m}^{k}=\{z\in CS_{n,m} : pr(z)\in\Sigma_{n}^{k}\}$ , $k=0$ , $\ldots$ , $n$ ,

and then define the subspaces $D_{S}=D_{S}(p, H)$ (respectively $D_{S}^{loc}$ ) of functions $\varphi(z)$ from
$L_{H}^{p}(CS_{n,m})$ (respectively from $L_{H}^{p,loc}(CS_{n,m})$ ) with the properties:

(i) for each $k=0$ , $\ldots$ , $n$ and each particion $n=n_{1}+\ldots+n_{m}$ the restriction of $\varphi$ on

$CS_{n,m}^{k}\cap\Sigma_{n_{1}}\cross\ldots\cross\Sigma_{n_{m}}$

has acontinuous version such that it is absolutely continuous on all lines parallel to the
vector (1, 1, $\ldots$ , 1) and such that $(\partial_{z}\varphi)(z)=((\partial_{z_{1}}+\ldots+\partial_{z_{n}})\varphi)(z)$ belongs to $L_{H}^{p}(CS_{n,m})$

(respectively $L_{H}^{p,loc}(CS_{n,m})$ ),
(iii) the boundary conditions (25) are satisfied.
Let us use the same notation $\partial_{z}^{S}$ for the closures of the operator $\partial_{z}$ defined on the domains

$D_{S}$ or $D_{S}^{loc}$ . We introduced the notations for coloured simplices in such away that the main
formulas of the previous section still make sense in this new framework. It remains only
to assume that the use of the operator-valued functions of the variables $z$ without acolour
means that the colour is preserved. For example, the action of the operator $\exp\{-iEz_{j}\}$ ,
say, is given by the formula

$(\exp\{-iEz_{j}\}\varphi)(\{z_{1}^{\alpha(1)}<\ldots<z_{n}^{\alpha(n)}\})=\exp\{-iEz_{j}^{\alpha(j)}\}\varphi(\{z_{1}^{\alpha(1)}<\ldots<z_{n}^{\alpha(n)}\})$ .

At last, we can define the operator $i\partial_{z}^{S}+E$ quite similarly to the case without colours.
Moreover, due to Proposition 5we get the following

Proposition 6Propositions 2and 3remain valid for spaces $L_{H}^{p,loc}(CS_{n,m})$ for all $p$ under
an additional assumption that all elements $S_{mm}(j)$ are identical operators in $\mathcal{L}(H)$ .

Remark. The last assumption was necessary, because jumps destroy the continuity of
afunction (and one can not use $L^{\infty}$ spaces, because shifts are not continuous there). The
assumption $S_{mm}(j)=1$ ensures that there will be no discontinuity in the variables $\zeta^{m}$ .

Comparing formula (21) with the formula for the boundary value problem for shifts
described in Proposition 6(see, in particular, (10) with $\sigma_{k}$ defined in (24)) and by straight-
forward generalisation of Proposition 1one obtains the following result, which connects shifts
in coloured simplices with pure jump stochastic equations and with secondly quantised op-
erators in multiple (Banach) Fock spaces.

Theorem 2Let us introduce a time dependent version of the operator (21) which acts only
“till the time $t”$ , $i.e$ . the operator

$(S_{t}^{\otimes}\varphi)(z_{1}^{\alpha(1)}, \ldots, z_{n}^{\alpha(n)})=(S(k(t))\otimes\ldots\otimes S(1)\varphi)(z_{1}^{\alpha(1)}, \ldots, z_{n}^{\alpha(n)})$ , (26)
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where $k(t)$ is the largest $k$ such that $pr(z)_{k}\leq t$ . Then

$((T_{n}(t))^{-1}T^{\sigma_{1},\ldots,\sigma_{n}}(t)\varphi)(z_{1}^{\alpha(1)}, \ldots, z_{n}^{\alpha(n)})=(S_{t}^{\otimes}\varphi)(z_{1}^{\alpha(1)}, \ldots, z_{n}^{\alpha(n)})$ . (27)

Moreover, the $r.h.s$ . of (27) gives the solution to the Cauchy problem for $a$ “coloured” version
of the multiple-kick equation (4) with $E=0$ , $i.e$ . to the equation

$d \varphi+iE\varphi dt=\sum_{j=1}^{n}(\sigma_{j}-1)\varphi d\chi_{(pr(z)_{j},\infty)}$ , $\varphi\in L_{B}^{p,loc}(CS_{n,m})$ . (28)

with vanishing $E$ .

As in the previous section, equation (28) can be written as astochastic equation, if the
times $pr(\zeta)$ of jumps are random variables. In fact, in terms of the counting process $n_{t}=$

$|pr(\zeta)\cap[0, t)|$ equation (28) takes the form

$d\varphi+iEipdt=(\sigma_{n_{t}}-1)\varphi dn_{t}$ , $\varphi\in L_{B}^{p,loc}(CS_{n,m})$ . (29)

In particular, since the number of jumps of aPoisson process is almost surely finite on each
finite interval of time, one can consider the process $n_{t}$ in (29) to be astandard Poisson
process.

Theorem 2expresses the solutions to pure jump stochastic equations in multiple Fock
spaces in terms of the boundary value problems for shifts. As was proven in [4], the general
stochastic and even quantum stochastic linear equations can be obtained as the epimorphic
projection of such pure jump stochastic equations. Let us recall now how this projection is
constructed. To this end, one uses the Fock space (23) with $p_{1}=1$ , $p_{2}=\ldots=p_{m-1}=2$ ,
$p_{m}=\infty$ constructed over the one-particle Banach space

$L_{H}^{p}(CS_{1,m})=L_{H}^{1}(\mathbb{R})$ $\oplus L_{H}^{2}(\mathbb{R})\oplus\ldots\oplus L^{2}(\mathbb{R})\oplus C_{H}(\mathbb{R})$ . (30)

To work in this space, it is convenient to index the variables $\langle$ as $\zeta^{-}$ , $\zeta^{0}$ , $\zeta^{+}$ which are
connected with our general notations $\zeta^{j}$ by the formulas: $\zeta^{-}=\zeta^{1}$ , $\zeta^{0}=(\zeta^{0,1}, \ldots, \zeta^{0,m-1})$

with $\zeta^{0,j}=\zeta^{j+1}$ , and $\zeta^{+}=\zeta^{m}$ . The formula

$((f^{-}, f^{0}, f^{+})|(g^{-}, g^{0}, g^{+}))= \int((f^{-}, g^{+})_{H}(z)+\sum_{j=1}^{m-1}(f_{j}^{0}, g_{j}^{0})_{H}(z)+(f^{+}, g^{-})_{H}(z))dz$,

defines apseudo scalar product in space (30), which is then naturally lifted to the whole Fock
space $\mathcal{F}_{H}^{p}$ . Then one defines the linear (pseudo) isometry operator $J$ : $H\otimes \mathcal{F}^{2}\mapsto\not\simeq H\otimes \mathcal{F}^{1,2,\infty}$

and its (psedo) adjoint by the formulas

$(J(\psi))(\zeta^{-}, \zeta^{0}, \zeta^{+})=\delta_{\emptyset}(\zeta^{-})\psi(\zeta^{0})1(\zeta^{+})$ , $J^{\star} \psi(\zeta)=\int\psi(\zeta^{-}, \zeta, \emptyset)d\zeta^{-}$ , (31)

where $\delta_{\emptyset}(\zeta^{-})$ is the indicator function of the vacuum (i.e. it equals one if $\langle$ is empty and
vanishes otherwise), and 1 $(\zeta^{+})$ is the constant function which equals one for all $\zeta^{+}$ . The
integral over (means the sum of the integrals over all finite dimensional simplices $\Sigma_{n}$ .
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Consider now the family of matrices (19) (which, for simplicit $1\mathrm{y}$, will be supposed not to
depend explicitly on $k$ ) with the structure

$S(k)=(_{0}^{1}0$ $S_{0}^{-}S_{0}^{0}0$
$S_{+}^{-}S_{+}^{0}1)$ . (32)

It turns out (see [4]) that the operator $J^{\star}S_{t}^{\otimes}J$ solves the linear quantum stochastic equation

$d\eta+S_{+}^{-}\eta dt=S_{0}^{-}\eta dA^{+}(t)+S_{+}^{0}\eta dA^{-}+S_{0}^{0}\eta d\Lambda$ , (33)

where $A^{\pm}=A_{j}^{pm}$ with $j=1$ , $\ldots$ , $m-1$ are the creation and annigilation quantum martingales
respectively and $\Lambda$ is the gauge process.

Therefore, the following result holds.

Theorem 3The solution operator for equation (33) is given by the formula $J^{\star}S_{t}^{\otimes}J$ with J,
$J^{\star}$ defined in (31) and $S_{t}$ defined by (32), (26),(27).

Thus the solution to ageneral quantum stochastic equation is expressed in terms of the
boundary value problem in acoloured (pseudo) Fock space. Due to awell known result from
[9], any L\’evy process can be represented in aFock space and thus any stochastic equation
driven by such aprocess can be written in the form of aquantum stochastic equation given
above.

6Stochastic dynamics as semi-classical limit
The aim of this section is to show that the evolutions defined by the boundary value prob-
lems for shifts can be obtained as asort of semiclassical limit of the evolutions defined by
aboundary value problem for rather general Schr\"odinger equations. This completes the
description of stochastic evolutions as certain limits of boundary value problems for the
standard (deterministic) quantum mechanical equations with physical (real and bounded
below) Hamiltonians.

We first recall some notations related to pseud0-differential operators (&DO) with operator-
valued symbols.

Recall first that if $\gamma$ is ameasurable function on $\mathbb{R}$ with values in linear operators in $H$ ,
the pseud0-differential operator $(\Psi DO)$ $\gamma(-i\partial_{z})$ in $L_{H}^{2}$ acts as

$( \gamma(-i\partial_{z})\varphi)(z)=\int_{-\infty}^{+\infty}e^{ikz}\gamma(k)f(k)dk$ (34)

on the functions $\varphi$ given by their Fourier transforms as

$\varphi(z)=\int_{-\infty}^{+\infty}e^{ikz}f(k)dk$ , $f\in L_{H}^{2}$ . (35)

The domain of the operator $\gamma(-i\partial)$ consists of the functions $\varphi$ of form (35) with $f$ from
the domain of the operator of multiplication by $\gamma(k)$ . The function $\gamma=\gamma(p)$ is called the
symbol of the $\Psi$DO $\gamma(-i\partial_{z})$ . Choosing apositive parameter $h$ , we denot $\mathrm{e}$

$\hat{\gamma}=\hat{\gamma}(h)=h^{-1}\gamma(-ih\partial_{z})$ .
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Let $\ovalbox{\tt\small REJECT}(p)$ be an even function on R with values in aset of commuting non-negative self-
adjoint operators in H defined on the same dense domain DCH. Suppose also that $\ovalbox{\tt\small REJECT}’(p)$

exist as selfadjoint operators on D for all p-j 0, and for arbitary $4>0$ and vC $D$

$||[\epsilon(\xi+p)-\epsilon(\xi)-p\epsilon’(\xi)]v||=O(|p|^{2})$ (36)

uniformly for $p$ from an arbitrary compact interval. Next, let us fix aunitary operator ain
$H$ . The operators $\hat{\epsilon}$ and $\sigma$ describe respectively the free continuous evolution and the jumps
of aquantum system.

For an arbitrary selfadjoint operator $E$ in $H$ , which is defined on $D$ and commutes with
all $\epsilon(p)$ , and an arbitrary positive number 4, we define the operators $\omega_{E,\xi}^{\mp}=\omega_{E,\xi}^{\mp}(h)$ in $L_{H}^{2}$

by the formula
$\omega_{E,\xi}^{\mp}(h)=\frac{1}{h}e^{\pm i(E+\xi/h)z}(\epsilon(-hi\partial_{z})-\epsilon(\xi))e^{\mp i(E+\xi/h)z}$ . (37)

The operators $\omega_{E,\xi}^{\mp}(h)$ are $\Psi$DO with symbols $(\epsilon(h(p\mp E)\mp\xi)-\epsilon(\xi))/h$ . Moreover, $\omega_{E,\xi}^{\mp}(h)$

are selfadjoint and generate the unitary evolutions

$( \exp\{-it\omega_{E,\xi}^{\mp}(h)\}\varphi)(z)=\int_{-\infty}^{+\infty}e^{ikz}\exp\{-it[\epsilon(h(p\mp E)\mp\xi)-\epsilon(\xi)]/h\}f(k)dk$ (38)

for $\varphi$ given by (35).

Theorem 4[5] For any $\xi>0$ , and T $>0$ the evolutions (38) converge strongly to the
evolutions $\exp\{-it\epsilon’(\xi)(E\pm i\partial_{z})\}$ as h $arrow \mathrm{O}$ unifomly for t $\in[0,$T].

Thus the Dirac type evolution with the unbounded generator $\partial_{z}$ is obtained as alimit
as $harrow \mathrm{O}$ of arather general Schr\"odinger evolution with bounded below Hamiltonians. As
an example of $\epsilon(p)$ satisfying the assumptions of the theorem one can take the symbols
$.\sqrt{p^{l}+m^{l}}$.or $p^{2}/2m$ of the standard relativistic or non-relativistic Schr\"odinger operators.
We deduced this limit only for the case of asingle-kick equation. The generalisations to a
multi-dimensional case are straightforward.

Concluding remark. The paper is based on alecture delivered on aconference in RIMS
Kyoto, November 2000. An extended version of this paper will be published elsewhere (see
[5] $)$ .
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