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Abstract

It is well known that for each finite group G there is associated a fusion algebra (in
conformal field theory of mathematical physics), which is a commutative and associative
finite dimensional algebra over the complex number field, and whose basis (primary fields)
consists of all pairs of representatives a of the conjugacy classes of G and the irreducible
characters of C¢/(a). Then, to this fusion algebra, the matrices S and 7' (called the modular
data) are naturally associated. The size of these matrices is the number of primary
fields. Also, S and T give a representation of the modular group SL(2, Z). The modular
invariants of G are the matrices M with nonnegative integral entries and My = 1 which
commute with S and T. ( Cf. A. Coste, T. Gannon and P. Ruelle: Finite group modular
data, Nuclear Phys. B581 (2000), 679-717. )

In this paper, we will treat the following topics, which were motivated by the above
mentioned paper of Coste, Gannon and Ruelle.

We determine the modular data S and 7', and the modular invariants M for several
finite groups G. Here are some examples of our results; there are 48 solutions of the
modular invariants for the dihedral group of order 6 (symmetric group of degree 3), there
are 65 solutions of the modular invariants for the dihedral group of order 10, there are
8719 solutions of the modular invariants for the alternating group of degree 5, etc.

We also discuss the question whether there exist two nonisomorphic groups whose
modular data are identical.

1 Introduction

This paper is a slightly extended version of a talk by the first author (Eiichi Bannai) during the
Nebres conference in February 22-24, 2001 which was held at De La Salle University, Manila,
Philippines. The first author thanks the organizers of the conference for the invitation to join
the celebration of the 60th birthday of Fr. Nebres.

The work presented in this paper is a preliminary report of the ongoing research of the
first author and his collaborators, which was motivated by the influence of Terry Gannon; first



from his talk during the “ Aigebraic Combinatorics, Vertex Operator Algebras, and Monster ”
meeting at the University of California at Santa Cruz in July 2000, and then from the papers [4],
[3], [9]- We thank Professor Gannon for providing us with many useful informations. Although
the main purpose of this paper is to present some new results which can be regarded as a kind
of supplement to the papers of Coste-Gannon-Ruelle [4] and Gannon [9], we also hope that this
paper may be used as a short introductory survey on this subject (from a combinatorial view
point), especially as a handy introduction to the survey paper of Gannon [9] for those readers
who are not familiar with this area.

It is known in mathematical physics (cf. [4], [9]) that for each conformal field theory (CFT),
there is associated a finite dimensional commutative associative algebra which is called a fusion
algebra. Here, we give a set of axioms of fusion algebra following [6], [4], [9].

Axioms of fusion algebra (See [6], [4], [9])

2A = (o, Z1,. .. Za) is a finite dimensional vector space over the complex number field C with
the basis zg, zy, . . . 4 satisfying the following conditions:

d
k
k=0

(i) Nt € N={0,1,2,...}! for Vi, j, k € ®.
(ii) There exists an involutive map " : & — & satisfying

(a) Ni’ff = N;."f;,
(b) N = &

The indices in = {0,1,2...,d} are called primary fields of the CFT, that is, the basis of the
fusion algebra 2 is indexed by the primary fields ® = {0,1,2...,d}. Note that these axioms
imply that if we put N; ;& = Nf;, then N is symmetric in i, j, k.

It should be noted that the definition of CFT as well as the definition of fusion algebra is
not fixed and varies from the viewpoints of researchers, and there is room for debate on what
are the right axioms.

Also, it is known in mathematical physics that there are associated two matrices S and T
whose rows and columns are indexed by the primary fields ®, which are called the modular
data (or fusion data) for the fusion algebra (or the CFT) and are axiomized as follows.

Axioms of modular data (or fusion data) S and T (See [6], [4], [9])

'In what follows, we always denote the set of nonnegative integers by N



(i) The matrix S is symmetric and unitary (that is, *S = S and t§ S =1I).
(ii) The matrix T is diagonal, unitary and of finite order.
(*) ¢ (iii) S and T satisfy the relation $? = (S T)* with S = C being a permutation
matrix with C? = I (namely, S and T give a representation of SL(2,Z)).
(iv) So; > 0 for any s € ® = {0,1,...,d}.
The permutation matrix C in condition (iii) is called the charge conjugation.
Note that the matrix S satisfies the following conditions:

(1) N2; = (5%)s

(%) k . SimS;mSkm
(2) N;; = mX::o B

The last condition (2) is called Verlinde’s formula.

We should emphasize that the existence of these modular data S and T are based on physical
considerations, and can not be obtained purely mathematically just from the axioms of fusion
algebra. Again, there is room for debate on what is the right axiomization of modular data,
although the one given here is pretty much standard.

Since SL(2,Z) has the presentation

SL(2,2) = (z, y | 2* = (zy)’, a* =1),
where £ = ( (1) _(1) ) and y = ( (1) i ), we have the representation p :
p : SL(2,Z) — GL(d+1,C)
with p(z) = S and p(y) = T. The following is a famous conjecture (cf. [6}, [4], (8], [9]) -
Conjecture The kernel ker(p) is a congruence subgroup of SL(2, Z).

Note that a subgroup I' of SL(2, Z) is called a congruence subgroup if I' contains the principal
congruence subgroup

P(N):{(‘Z 2) € SL(2,Z) |a=d=1, bECEO(modN)}

for some N € N. A more precise form of the cdnjecture is that if TV = 1, then T'(N) C ker(p).

Assuming the above conjecture, Eholzer [6] gave a classification of modular fusion algebras
with smaller dimensions. We believe it is interesting to attack this problem without assuming
the conjecture, and so we propose the following research problem from a purely combinatorial
view point.

Research Problem : Find the pair of matrices S and T (of small sizes) satisfying conditions
(x) and (* *) with all the Ni’fj € N.
(We expect there should exist some noncongruence normal subgroups I' in which the above




representation p of SL(2,Z) is given by a representation of the finite group SL(2,z)/T.)
Also we believe that this problem is manageable and that group theory will be useful to attack
this problem.

If we weaken the condition Nf; € N of the fusion algebra 2 to the condition N}, € R (or
N¥; > 0), fusion algebra & = (zo,21,. .., 24) is closely related to the so called character algebra
in the sense of the paper in 1942 of Kawada [11] (see also [2],§2.5 ])- (The character algebras
are, in turn, a generalization of Bose-Mesner algebras of commutative association schemes.)
This relation is fully explained in [1] (see also [9]). In fact, the work of Kawada [11] is a very
pioneering work in algebraic combinatorics.

Here, let us allow the first author to mention a very personal comment on Yukiyosi Kawada
(1916-1993).

As it is well known and as it was explained repeatedly during the Nebres conference, the ini-
tial mathematical exchange between Philippines and J apan was substantiated as the exchange
program of mathematicians under the agreement between the Japan Society for the Promotion
of Sciences (JSPS) and the Philippines’ Department of Science and Technology (DOST), which
was initiated by Professor Fr. Nebres and Professor Kawada with the support of Professor
Shokichi Iyanaga. When the first author was an undergraduate student at Tokyo University,
Professors Kawada and Iyanaga were faculty members as professors there, and he took ad-
vanced undergraduate mathematics courses from them. At that time Professor Kawada was
his advisor. When the first author got a job as an Instructor at Tokyo University, Professor
Kawada was a senior professor in that same department. The first author spent many years
at Ohio State University and returned to Japan in 1989. Shortly after that, he was asked by
Professor Kenichi Shinoda to participate in the DOST-JSPS exchange program. The first au-
thor was pleased to join the program since he was absolutely confident with the judgements of
Professors Kawada and Iyanaga and thought that the program should be right if it was initiated
by Professors Kawada and Iyanaga. It has been a great pleasure for the first author to be able
to witness the success of such program as well as the developments of Filipino mathematics
since then. The success of this exchange program is evident from the success of the present
Nebres Conference.

When the first author had the chance to meet Professor Kawada more than 10 years ago,
he told Professor Kawada that his paper [11] of 1942, which was a kind of forgotten work, had
been highly regarded by combinatorialists as a pioneering work on algebraic combinatorics. At
that time it seemed that Professor Kawada was not impressed much about it and explained to
the first author that it was not his main work. However, some years later, the first author felt
happy when he heard from someone that Professor Kawada was actually pleased to have been
told that his old work was paid attention by combinatorialists.

It is described in Gannon (9] that there are many sources to get modular data S and
T. For example, they are obtained from Euclidean lattices, affine Lie algebras, finite groups,
Rational Conformal Theory (RCFT) and Vertex Operator Algebras (VOA), subfactors, Type
I1I subfactors, number fields, etc., etc., ...... We will not go into the details, but we concentrate
ourselves on the examples obtained by finite groups.



Let us comment on the definition of (non unitary) fusion algebras and modular data. For
the algebra % = (2o, Z1,. . ., Za) satisfying condition (*) of the fusion algebra, there is always
associated a matrix S which diagonalizes the matrices N; = (Nf;);, res, (Vi € ®) at the same
time. In [1], we have normalized S = (S;;) in such a way that Sp; = S;o holds for Vi € ®.
Therefore, the matrix S is a unitary matrix only when k; = m;, Vi € ®. (We concluded in [1]
that Verlinde’s formula is valid when S is symmetric, i.e., the corresponding character algebra
is self-dual and that it is not valid in general. In particular, when S is not a unitary matrix.)
As it is remarked in [9], it is possible to choose the matrix S (which diagonalizes the matrices
N;. i € ® at the same time and satisfies Spy € R,Vi € ® ) as a unitary matrix from the
beginning using a different normalization. (Hence, the original condition Sp; = Si,Vi € ® is
not necessarily true in general if S is not symmetric.) Even so, Verlinde’s formula in the original
expression (i.e., the formula (**)) is not valid in general if S is not symmetric. Therefore, in
order to get Verlinde’s formula in the original expression, some self-duality condition (such as
tS = S or some slight weakening of it, cf. [9]) is in fact needed.

2 Modular data (fusion data) for finite groups and their
modular invariants

The concept of fusion algebras naturally associated with finite groups is due to G. Lusztig
[12], [13] and Dijkgraaf-Vafa-Verlinde-Verlinde [5] independently. Lusztig used this algebra to
obtain the exact values of irreducible characters of certain exceptional finite Chevalley groups.
In this paper, we follow the notation of [4], [8], [9] so that the notation of modular data would
correspond to the notation given in the previous section. (The axioms of modular data used in
this paper is slightly different from those of Lusztig’s.)

Let G be a finite group. Let Co = {1}, C1,..., Cq be all the conjugacy classes of G, where
1 is the identity element of G. Let R be a set of representatives of Cp, Cj, ..., Ca. Take

® = {(a,x) | a € R, x is an irreducible character of Cg(a)}.

The matrices (modular data) S and T are defined as follows.

1
e -1 ! -1
S(a,x),(6:x) |Cg(a)| 1Ca(®)] Z x(gbg~*) x'(9ag™")

g€G(a,b)

where

G(a,b) ={g9€G|a-gbg™ =gbg™" -a}
and x(*) denote the complex conjugate of x(x).

x(a)
Ta, »(b,x! :54,1,5, .
4 (a,x),(b,x’) Xx’x(l)

Then it is shown that S and T satisfy the conditions () and (**) with N,-’fj €N, Vi,j3,ked.



Remark. It seems that it is expected from the viewpoint of physics that there is associated a
RCFT or Rational VOA to this modular data (fusion data). However, it seems that it is still
a conjecture from a rigorous mathematical viewpoint.

Definition ((Physical) modular invariant). The non-negative integer matrix M = (M; ;)ics jes
satisfying the conditions

MS=SM, MT=TM, and Mg =1
is called a (physical) modular invariant (for the modular data S and T).

Proposition (See [3]). There are only finitely many modular invariants M for the modular
data S and T of a finite group G.

Remark. The proof of this proposition given in [3] is based on the condition that
So0 < Soi, Vie D,

which is certainly true for the modular data of a finite group. More explicitly, we get for
example,

Y M, < |G

a,bed

Before going into the details of our concrete determination of modular invariants for certain

finite groups, let us mention why we are interested in modular invariants M (cf. [4], [9], etc.).
It is known in mathematical physics that for each RCFT, there is associated for each a € ® a
character ch, defined on the upper half plane satisfying the conditions:

cha(=2) = 3 oy cha(r),

bedp

Cha(T + 1) = b% Ta,b Cha('l').

(Here cha(7) = ¢~ Tr, g™ in the Rational VOA theory, and the variable 7 is in the upper
half plane. It is a well known conjecture that the ch,, (a € ®) are modular functions for some
subgroups in SL(2,Z) of level N.)

Then the one-loop partition function Z(7) of RCFT is given by

Z(1) = ). M,y chy(7) chy(T).

a,bed

So, we need to know the modular invariants in order to know Z(7). However, it seems that
ch,(7) are known only for very special cases (cf. [4], [9], etc.), and it is generally not easy to
know ch,(7) explicitly.



3 Results

We first want to find the modular data S and T for some finite groups, and then want to
determine the modular invariants M for each modular data.

It is known that this question can basically be answered for finite abelian groups, although
it seems not easy in general to find the modular invariants explicitly (cf. [7], [9]). In what
follows, we restrict our study to non-abelian groups.

First, let G = D, denote the dihedral group of order 2n. Then we obtain the following
table for |®|, and we can have S and T very explicitly ([3]). For example, we have

G| 19
D4m+2 2m2 +2m+4

So, in particular we have
|®(D6)| =8, |®(Dg)| =22, |®(D1)| =16, [2(D12)| =32, [2(Du4)|=28.

Theorem 1. The numbers of solutions of modular invariants M for the groups Dg, Dyo and
D14 are given as follows:

|M| = 48 for De,
!M' = 65 for DIO;
|M| = 27 for D14,

Remark. (i) It is stated in [4] that |M| = 32 for Ds (= S3). However, the number 48 seems
correct. At the end of this paper, we will list all the 48 solutions of M.

(ii) To save the space, we will not list all the solutions for Dyo and D4 in this paper, however the
complete solutions will be available from the authors on request, (or see http: //www.math.kyushu-
u.ac.jp/AlgComb/ ). This is also true for other data presented in this paper. It seems unclear
whether the numbers of solutions |M(Dyy,)| increase with p, but it seems that the increase (if
that is the case) is not so drastic. Thus, we believe that the complete solutions M (Ds,) may be
manageable to obtain for odd prime numbers p or more generally for odd numbers p. On the
other hand, the number of solutions | M (D,y,)| is generally expected to be larger than the case
of Dagam+1), and at the present time we do not know the explicit number |M(Ds)| (possibly
larger than 10°).

Theorem 2.
®(A)| = 14, and  |M(4y)| =38
(|®(S4)| = 21, but it seems that |M(S,)| is very large, and is not explicitly determined at the

time of this writing.

Theorem 3.

|B(As)| = 22, and | M(As)| = 8719



Remark 8719 is a prime number. In [4], it is mentioned that a finite group G has generally
many modular invariants if any of |Owt(G)|, |G/G'|, |Z(G)|, or |Q (Si;(i,j = 0,...,d))/Q|
is large. Neither of these numbers is large for G = A;. It is remarkable that |M(4;s)] is
considerably larger than the numbers obtained by these standard constructions. We do not
have any accurate feelings or guess on what will the numbers |M(A,)| be for n — oco. At the
end of this paper, we will list the modular data S and T and the solution M in which M,y
takes the largest value 25 among all the 8719 solutions M (As).

We conclude this paper by answering a special case of the question of Coste-Gannon-Ruelle

[4].

Problem: Do the modular data S and T determine the group G uniquely? Namely, let S; and
T;, (i = 1,2) be the modular data for G;, (i = 1,2) and assume that there is a permutation
matrix P satisfying P~'S;P = S,, and P7!T{P = T,. Then are G, and G, isomorphic as
abstract groups ?

(It was suggested in [4] that the groups of order 16 may be a place to look for counter examples.)

We prove the following:
Proposition The above problem is answered affirmatively for groups of order 16.

Proof. There exist 14 groups of order 16. We will use MAGMA'’s numbering of the groups.
At first we classify their modular data S and T with |®|. The result is as follows.

|®| Groups

256 (abelian) (16,1), (16,2), (16,5), (16,10), (16,14)
88 (16’3)> (16,4)1 (16’6)a (16,11)’ (16,12)) (16,13)
46 (16,7), (16,8), (16,9)

The modular data S and T of abelian groups were classified already. So we will check pairs
{(16,3), (16,4), (16,6), (16,11), (16,12), (16,13)} and {(16,7), (16,8), (16,9)}. There are only
two pairs {(16,3),(16,13)}and {(16,4),(16,12)} for which the diagonal entries of T are identical
(including multiplicities) as set. However, the entries (including multiplicities) of S for (16,4)
and (16,12) are different. Therefore, {(16,3), (16,13)} is the only possibility. Actually, their
matrices S have identical (including multiplicities) entries as set, and they survived in many
further nonisomorphism tests. So, we first thought that these two groups might give the
identical matrices S and T. Now, let S3 and 75 be the modular data of (16,3), S13 and Tis
be the modular data of (16,13). Since T3 and T3 have the same set of diagonal entries, there
exist permutation matrices Q3 and @3 such that T := Q3'T3Q3 = Q1 T13Q1s = Ey(1,44) &
E2(—1,28) ® E3(64,8) ® Eq(—&4,8),where E;(),p) is a scalar matrix of A and of degree p.
We define S5 := Q3'53Qs, Si3 := Q15 S13Q13. 3P such that P~1S;P = S;3 and P-IT3P =
Ths if and only if 3P’ such that P'-'SjP' = Sj; and P"'TP’' = T where P' = P! @ P, @
P3 @ Fj such that E;P] = P/E;. Thus, we let Ny := {1,...,44}, N, := {45,...,72} N, :=
{73,...,80}, Ny := {81,...,88}, 3P such that P~'S3P = Sy3 and P~'T3P = Tj; if and only
if [SL,%]N.',N.'H = Pz’,[Si:i]N.',NwVi € {11""4} and [Sé]NinjI)]{ = Pi’[SiS]N.',Nj’Vi,j € {1;' T 74}
where [Si]n,,n; is the |N;| x |N;| matrix such that ([Si]n,n,)ey = (Sh)ey, (x € Niyy € N;).
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Remark The problem above is yet unanswered for groups of order 32. We have calculated

the modular data S and T for each group of order 32 (and 64) using GAP. There are several

possible candidates of pairs of groups G; and G2 (of order 32) which might
example. However, in all of these cases it is proved that the character tables of G1 and G,

are not equivalent. Hence, in view of the fact that Coste-Gannon-Ruelle [4] expected that the

modular data determines the character tables of the group, it may be unlikely that a counter

However, there is no permutation matrix which satisfies the above equations for ¢ := 3 and
example is obtained from the groups of order 32.

Modular data S and T of dihedral group of order 6
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MIy ="MIy, M1y =*MIgg, MIs3 = MIgg, MIs = MIso, MIs = *MIsy, MIs = *MIay,

MIy = tMI33, Ml = tM134.

MIs, MIz, MLiz, MIy3, MIy7, MIis, MLyg, MIos, MIy;, MIog, MIss

Note that M1,
My, Mly, My, My are not listed in Coste-Gannon-Ruelle [4].

Appendix 2

Modular data S and T of As, the alternatin
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-2 b b b a a a 27
b 2 b b a a 2 a
gggg b b 2 a b 2 a a -3 9 0 o0
1 b b a 2 2 b a a _ _ 1 9 -3 0 0
°o 9 - 583=%5|4 a b 2 2 a b b |°5=0bSu=x| o o g _4|
_3 —3 o 0 a a 2 b a 2 b b 0 0 -4 8
-~ T a 2 a a b b 2 b
2 a a a b b b 2

with a = ¢+ ¢4, b=¢2 4¢3 and ( is a primitive 5-th root of unity.
T:djag [1; 1: 17 17 13 1: 11 1: 1) ]-7 (v Ca C2: Cz’ Cs’ <3’ <4: <4) _17 —la w, "‘)2]’ Withwa,prim-
itive 3rd root of unity.

The maximum value of the entries of all the 8719 solutions M is 25. The solution M having
the upper left corner 60S;; and all other entries are 0, with Sy, given above, is the only one
with this maximum value.
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