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\S 1 The group-quark matrix ?

The main purpose of this article is to propose aproblem. Let us
consider the following $3\cross 3$ matrix whose entries are finite groups.

$A$ $=\{$ $2E_{6}(2).2U_{6}(2).2U_{4}(2).2$ $Conway_{2}Fischer_{4}S_{6}(2)$ $Conway_{3}MonsterO_{8}^{+}(2)]$

The orders of relevant simple groups are :

$|U_{4}(2)|=25920$ $=2^{6}3^{4}5$

$|S_{6}(2)|=1451520$ $=2^{9}3^{4}5.7$

$|O_{8}^{+}(2)|=174182400$ $=2^{12}3^{5}5^{2}7$

$|U_{6}(2)|=2^{15}3^{6}5.7.11$

$|Conway_{2}|=2^{18}3^{6}5^{3}7.11.23$

$|Conway_{3}|=2^{21}3^{9}5^{4}7^{2}11.13.23$

$|^{2}E_{6}(2)|=2^{36}3^{9}5^{2}7^{2}11.13.17.19$

$|Fischer_{4}|=2^{41}3^{13}5^{6}7^{2}11.13.17.19.23.31.47$

$|Monster|$ $=2^{46}3^{20}5^{9}7^{6}11^{2}13^{3}17.19.23.29.31.41.47.59.71$

Note that Conway groups are numbered according to their orders.
In particular, $|Conway_{1}|=2^{10}3^{7}5^{3}7.11.23$ . $U_{4}(2).2$ is the extension
of $U_{4}(2)$ by an outer automorphism of order 2, and $U_{6}(2).2$ and
$2E_{6}(2).2$ are analogously defined.

The columns of the matrix $A$ are indexed by the Dynkin diagrams
of type $E_{6}$ , $E_{7}$ and $E_{8}$ . Appearing in the first row of $A$ are the simple
components of the Weyl groups of type $E_{6}$ , E7 and $E_{8}$ . The correct
indexing of the rows of the matrix $A$ is left for the future research.
We can, perhaps, index the rows of $A$ by three generations of quarks
$ud$, $cs$, $tb$ (up-down,charm-strange,top-bottom)
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Let us next give the ‘transpose-inverse$=\mathrm{t}\mathrm{r}\mathrm{a}- \mathrm{i}\mathrm{n}\mathrm{v}$’of the matrix $A$ .

${}^{t}A^{-1}=[2^{1+4}.(S_{3}\cross S_{3})2^{1+20}.U_{6}(2).22^{1+8}.U_{4}(2).2$
$21+6^{\mathrm{r}_{2^{1+8}.S_{6}(2)}}.(S_{3}\cross S_{3})2^{1+22}Conway_{2}$ $2^{1+8}.(S_{3}\cross S_{3}\cross S_{3})2^{1+24}Conway_{3}2^{1+8}O_{8}^{+}(2)]$

If $A_{ij}$ is the $(i,j)$ entry of the matrix $A$ , then the correspond-
ing entry of ${}^{t}A^{-1}$ is the centralizer of an involution in the center
of aSylow 2-subgroup of the group $A_{ij}$ . Here $2^{1+2\mathrm{n}}$ denotes the
extral-special group of order $2^{1+2n}$ . An exception is $2^{1+6^{*}}$ , which
is almost extra-special but not exactly so. The main problem pr0-
posed here is: Investigate the group-quark matrix $A$ algebr0-
geometrically.

\S 2 $\Gamma_{27}$ and $\Gamma_{28}$

Let $S$ be the cubic surface defined in the projective space $P^{4}(\mathbb{C})$

by the equations:

$\{$

$x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=0$

$x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0$.

The (projective) line defined by

$\{$

$x_{0}=0$

$x_{1}+x_{2}=0$

$x_{3}+x_{4}=0$

lies completley on the surface $S$ . Applying the permutations on the
index set {0, 1, 2, 3, 4}, 15 lines on $S$ can be obtained.

Next, let $\alpha(=1\pm\sqrt{5}\overline{\overline{2}})$ be azero of the quadratic equation :

$X^{2}-X-1=0$ ,

then the line defined by:

$\{\begin{array}{l}x_{0}+\alpha x_{3}+x_{4}=0x_{1}+x_{3}+\alpha x_{4}=0x_{2}-\alpha(x_{3}+x_{4})=0\end{array}$

is also completely on the surface $S$ . Applying the permutations on
{0, 1, 2, 3, 4} again, 12 lines can be obtained. Therefore there are
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altogether 27 lines on S. That this is the exact number of lines on $S$

comes from the theory of algebraic geomerty, although our special
case itself was known already in the middle of the 19th century.

Theorem. Ageneral (complex) cubic surface contains exactly
27 lines.

Let $\Gamma_{27}$ be the graph of 27 lines with their configuration on a
general cubic surface. Then $\Gamma_{27}$ satisfies the following properties :

(1). Any line $A$ of $\Gamma_{27}$ meets exactly ten other lines of F27.
Those ten lines split into five pairs $(B_{1}, C_{1})$ , $\ldots$ , $(B_{5}, C_{5})$ , and if
$i=1,2,3,4,5$, then $B_{i}$ and $C_{i}$ meet and the triangle $AB_{i}C_{i}$ is
formed. There are 5 $\cdot$ $27/3=45$ triangles so formed. (Note. If $i\neq j$ ,
then $B_{i}$ and $C_{j}$ do not meet. In particular, there are no three lines
that meet at apoint. This applies to ageneral cubic surface. A
specialization of it may contain three lines that meet at apoint.)

(2). Let $ABC$, $A’B’C’$ be any two triangles having no side in com-
mon. Then they determine uniquely athird triangle $A’B’C’$ such
that each of three triples of lines $\{A, A’, A’\}$ , $\{B, B’, B’\}$ , $\{C, C’, C’\}$

intersect and form three new triangles $AA’A’$ , $BB’B’$ , $CC’C^{u}$ .

Those two properties (1), (2) uniquely determines the configura-
tion of 45 triangles formed by the elements of $\Gamma_{27}$ .

Theorem(C.Jordan). Aut $(\Gamma_{27})\cong U_{4}(2).2\cong \mathrm{A}\mathrm{u}\mathrm{t}(U_{4}(2))$

This is the $(1, 1)$ entry of the matrix $A$ . The isomorphisms of
simple groups

$U_{4}(2)\cong S_{4}(3)\cong O_{5}(3)\cong O_{6}^{-}(2)$

is significant in the history of group theory.
Let us next discuss the $(1, 2)$ entry of the matrix $A$ . The graph

of the quartic curve

$x^{4}+y^{4}+x^{2}y^{2}-8(x^{2}+y^{2})+16.25=0$
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is drawn at the end of this article.
It is easy to see that $28=4+(12$ . 4/2 $)$ double tangents to the

curve can be drawn. If the constant 16.25 is replaced by anumber
smaller than about 15.5 then four regions merge into asingle region
and if it is replaced by anumber larger than about 17.5, then we
get four convex regions and only 24 double tangents can actually be
visible.

In general, it is known :

Theorem. Anonsingular (complex) plane curve of degree 4pos-
sesses exactly 28 double tangents.

The number of double tangents to anonsingular plane curve of
degree $m$ is given by the formula of Pliicker :

Number of double tangents $= \frac{1}{2}m(m-2)(m^{2}-9)$ .

Let $\Gamma_{28}$ be the set of 28 double tangents. The configuration satis-
fied by the 28 double tangents was investigated by Steiner, Aronhold
and many others.

(1). (Steiner) Let $x_{1},y_{1}$ be two distinct elements of F28. Then
there exist five pairs $(x_{2}, y_{2})$ , $(x_{3},y_{3})$ , $\ldots$ , $(x_{6}, y_{6})$ of elements in $\Gamma_{28}$

and if we put
$6=\{(x:, y_{i})|i=1,2,3, \cdots, 6\}$

then, the eight tangent points of any pair of double tangents $(x_{i}, y_{i})$ ,
$(x_{j}, y_{j})\in 6$ lie on asame conic (an irreducible plane curve of degree
2). 6is called aSteiner complex. $\Gamma_{28}$ possesses 63 Steiner complexes
in total.

Let $P_{1}$ , $\cdots$ , P7 be seven points given in the complex plane. The
cubic curves passing through these seven points form avector space
T. Every pair of curves $\{C_{1}, C_{2}\}$ of $\mathfrak{T}$ intersect two more points by
Bezout’s theorem. If these two points coinside then the pair $\{C_{1}, C_{2}\}$

possesses acommon tangent. The totality of common tangents so
obtained forms aplane curve $D’$ of class 4, or equivalently the dual
curve of aplane curve of degree 4.
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The dual of the statement above will read as follows.

(2) (Aronhold). Let $L_{1}$ , $\cdots$ , $L_{7}$ be seven lines on the plane. The
totality of all curves of class 3containing these seven lines forms a
vector space $\mathfrak{T}’$ . Every pair of curves $\{C_{1}’, C_{2}’\}$ in $\mathfrak{T}’$ contains two
more lines $\{L_{8}, L_{9}\}$ in common. If $L_{8}=L_{9}$ , then the pair $\{C_{1}’, C_{2}’\}$

possesses atangent point $z$ and $z$ is on acurve $D$ of degree 4uniquely
determined by $L_{1}$ , $\cdots$ , $L_{7}$ . Moreover, Li, $\cdots$ , $L_{7}$ are double tangents
of this curve $D$ .

Let $D$ be the curve of degree 4uniquely determined by the seven
lines $\{L_{1}, \cdots, L_{7}\}$ . Then $D$ possesses 28 double tangents $\Gamma_{28}=$

$\{L_{1}, L_{2}, \ldots, L_{28}\}$ . Moreover, the following properties hold.
(i). $L_{1}$ , $\cdots$ , $L_{7}$ is amaximal asyzygetic set (defined below) of F28.
(ii). The remaining 21 double tangents are rationally constructible
by $L_{1}$ , $\cdots$ , $L_{7}$ (their coefficients are rational functions of the coeffi-
cients of $L_{1}$ , $\cdots$ , $L_{7}$ ).
(iii). Every curve of degree 4without double points can be obtaind
by this construction.
(iv). Every asyzygetic set of seven double tangents of $\Gamma_{28}$ defines $D$ .

Let $L_{1}$ , $L_{2}$ , $L_{3}$ be three distinct lines in $\Gamma_{28}$ . Those three lines
determine six tangent points. If those six tangent points are on a
same conic, then the triple $\{L_{1}, L_{2}, L_{3}\}$ is called syzygetic. In the
contrary case, the triple is called asyzygetic. Asubset $S$ of F28 is
called asyzygetic if every triple of $S$ is asyzygetic.

Let us call amaximal asyzygetic seven-line set mentioned in (i)
an Aronhold set Therefore, an Aronhold set is amaximal asyzygetic
subset of $\Gamma_{28}$ consisiting of seven elements. It is known that $\Gamma_{28}$ can
tains exactly 288 Aronhold sets.

Theorem(Jordan). $Aut(\Gamma_{28})\cong S_{6}(2)$ .

Note that $|S_{6}(2)|=288\cross 7!$ . In fact, $S_{6}(2)$ transitively permutes
all Aronhold sets and the fixing subgroup of an Aronhold set $A$ acts
as the symmetric group of degree 7on $A$ .

$\mathrm{I}_{28}^{\backslash }$ can not be determind only by vertices and edges since Aut(F2s)
acts doubly transitively on the 28 points. Therefore, $\Gamma_{28}$ is not a
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graph in an usual sense.
Let $L_{1}$ , $L_{2}$ be apair of elements in $\Gamma_{28}$ , then there are 10 elements

$X$ in $\Gamma_{28}$ such that $\{L_{1}, L_{2}, X\}$ is asyzygetic triple. In fact, all
such $X$ are in the Steiner complex determined by the pair $\{L_{1}, L_{2}\}$ .
Therefore, $\Gamma_{28}$ possesses 28.27.10/6 $=.1260$ syzygetic triples. If
all syzygetic triples are given in $\Gamma_{28}$ , then the configuration of $\Gamma_{28}$

is completely determined. The author is not aware if any combi-
natorial characterization of $\Gamma_{28}$ is known. (Note. Acombinatorial
characterization of $\Gamma_{27}$ is known as mentioned in this article before.)

Let $L$ be an element of $\Gamma_{28}$ . Consider $\Gamma_{27}’=\Gamma_{28}\backslash \{L\}$ . For apair
of elements $X$ , $\mathrm{Y}$ in $\Gamma_{27}’$ , if $L$ , $X$ , $\mathrm{Y}$ is syzygetic, connect $X$ and $\mathrm{Y}$

by an edge. Then agraph of 27 vertices and 135 edges is obtained.
The $\Gamma_{27}’$ is isomorphic with $\Gamma_{27}$ discussed before (Geiger, 1869).

We have thus obatined the $(1,2)$ entry of the matrix $A$ .

Problem. Define the (1,3) entry of the group-quark matrix $A$

algebr0-geometrically.

Since
$[O_{8}^{+}(2) : S_{6}(2)]=120$ ,

the algebr0-geometric model on which $O_{8}^{+}(2)$ acts should contain
120 elements in it. Let us denote the object by Fi20. The fixing
subgroup of apoint $\alpha$ of $\Gamma_{120}$ should be $S_{6}(2)$ .

Therefore, $\Gamma_{120}$ is, as an $O_{8}^{+}(2)$-set, equivalent to the quotient
space $O_{8}^{+}(2)/S_{6}(2)$ . The action of $O_{8}^{+}(2)$ on $O_{8}^{+}(2)/S_{6}(2)$ is well
known and it induces arank 3-permutation representation. Equiv-
alently one point stabilizer $S_{6}(2)$ has exactly two orbits on the re-
maining 119 points $\Gamma_{120}\backslash \{\alpha\}$ . The suborbit lengths are 56 and 63,
and the stabilizer of apoint in $S_{6}(2)$ is $U_{4}(2)$ or $E_{32}.S_{5}$ respectively.
Let us write

$\Gamma_{120}=\{\alpha\}+\Delta+\Omega$

where, $|\Delta|=56$ , $|\Omega|=63$ .
We are assuming that the configuration graph of $\Gamma_{120}$ contains

$\Gamma_{28}$ as asubgraph. Therefore, we should be able to identify $\triangle$ and
$\Omega$ in terms of $\Gamma_{28}$ . $\Omega$ is of length 63 and so it is natural to assume
that $\Omega$ is the totality of all Steiner complexes
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There are 28 double tangents and so obviously there are 56 tan-
gent points. Therefore, it is natural again to choose $\Delta$ to be the set
of all (double) tangent points of the plane curve of degree 4that we
initially began with.

In Heinrich Weber’s Lehrbuch der Algebra, $\mathrm{V}\mathrm{o}\mathrm{l}11(1899)$ , there
is a50 page chapter entirely devoted to the structure of F28. In
it, it is proved also that $S_{6}(2)$ is the automorphism group of the
configuration.

There are other 120 mathematical objects.
(1). Anonsingular plane curve of degree 5posseses 120 double
tangents (easy by Pliicker’s formula).
(2). There is acurve (called del Pizzo surface) of degree 6and of
genus 4possessing 120 tritangents planes.
(3). The root system of type $E_{8}$ possesses 240 roots. If the sign of
each root is ignored then aset $\Gamma$ of 120 objects and its graph are
obtained.

It must be an interesting problem to investigate the configuration
$\Gamma_{120}$ purely group theoretically also.

Q3 The second and third rows of $A$ .

The second and third rows of the group-quark matrix are up
in the air at this moment. McKay [Finite Groups, Proceedings
of Symposia in Pure Mathematics, Vol. 37, Amer. Math. Soc.
1980] observed that if $s$ and $t$ are involutions of the Monster both of
which are conjugate to the involutions of $2A$ type, then its product
$st$ belongs to the conjugacy classes of the Monster of type

1A, $2A$ , $3A$ , $4A$ , $5A$ , $6A$ , $3C$, $4B$ , $2B$ .
Recall that $\mathrm{i}\mathrm{f}-\alpha_{0}$ is the highest root of the Lie algebra of type $E_{8}$ ,
then

1 $\alpha_{0}+2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+5\alpha_{4}+6\alpha_{5}+3\alpha_{6}+4\alpha_{7}+2\alpha_{8}=0$ .

The numbers {1, 2, 3, 4, 5, 6, 3, 4, 2} are called the weights of $E_{8}$ .
McKay lists $Fischer_{3}$ and $Fischer_{4}$ as groups having similar prop-
erty with respect to $E_{6}$ and E7, respectively. $Fischer_{3}$ is replaced
by $2E_{6}(2)$ in this article, since it fits better if we consider the $(2,1)$

entry of the $\mathrm{t}\mathrm{r}\mathrm{a}$-inv ${}^{t}A^{-1}$ of the group-quark matrix
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Similar coincidences between weights of Dynkin diagrams and
orders of groups elements have been observed by Glauberman and
Norton [to appear in the Proceedings of Monster Workshop at Mon-
treal, 1999]. At Kyoto symposium, the $(2,1)$ and $(3,1)$ entries of
the matrix $A$ were the sporadic simple groups Suzuki and Fischers
respectively. The new entries $U_{6}(2)$ and $2E_{6}(2)$ , however, appear to
fit its $\mathrm{t}\mathrm{r}\mathrm{a}$-inv matrix ${}^{t}A^{-1}$ better, although leaving the main realm
of the 3-transposition groups may be aproblem.

Ithank M.Kitazume, J.Matsuzawa, T.Asai, and J.McKay for
valuable discussions.

$\mathrm{x}^{4}+\mathrm{y}^{4}+\mathrm{x}^{2}\mathrm{y}^{2}- 8(\mathrm{x}^{2}+\mathrm{y}^{2})+1$ $6.25<0$
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