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ABSTRACT. This paper contains the motivation for the study of critical surfaces in $[2\rfloor$ .

In that paper, the only justification given for the definition of this new class of surfaces

is the strength of the results. However, when viewed as the topological analogue to index

2minimal surfaces, critical surfaces become quite natural.

1. INTRODUCTION.

It is astandard exercise in 3-manifold topology to show that every man-

ifold admits Heegaard splittings of arbitrarily high genus. Hence, a“$1^{\cdot}\mathrm{a}\mathrm{n}-$

$\mathrm{d}\mathrm{o}\mathrm{m}$”Heegaard splitting does not say much about the topology of the

manifold in which it sits. To use Heegaard splittings to prove interest-

ing theorems, one needs to make some kind of non-triviality assumption.

The most obvious such assumption is that the splitting is minimal genus.

However, this assumption alone is apparently very difficult to use.

In [4], Casson and Gordon define anew notion of triviality for aHeegaard

splitting, called weak reducibility. AHeegaard splitting which is not weakly

reducible, then, is said to be strongly irreducible. The assumption that a

Heegaard splitting is strongly irreducible has proved to be much more useful
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than the assumption that it is minimal genus. In fact, in [4], Casson and

Gordon show that in anon-Haken 3-manifold, minimal genus Heegaard

splittings are strongly irreducible.

The moral here seems to be this: since the assumption of minimal genus

is difficult to make use of, one should pass to alarger class of Heegaard

splittings, which is still restrictive enough that one can prove non-trivial

theorems.

Now we switch gears alittle. It is aTheorem of Riedemeister and Singer

(see [1]) that given two Heegaard splittings, one can always stabilize the

higher genus one some number of times to obtain astabilization of the

lower genus one. However, this immediately implies that any two Heegaard

splittings have acommon stabilization of arbitrarily high genus. Hence,

the assumption that one has a“randonr common stabilization cannot

be terribly useful. What is of interest, of course, is the minimal genus

common stabilization. As before though, the assumption of minimal genus

has turned out to be very difficult to use.

In this paper we will review the results of [2], in which anew class of

Heegaard splittings, called critical, was defined. The main result of that

paper is that at least in the non-Haken case, this class includes the minimal

genus common stabilizations.

The term critical is defined via a1-complex associated with any embed-

ded, separating surface in a3-manifold, which is reminiscent of the curv
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complex. The origin of the definition lies in the analogy between the study

of the topology of embedded surfaces in 3-manifolds, and the study of min-

imal surfaces. This point of view was pioneered by mathematicians such as

Hyam Rubinstein, Martin Scharlemann, and Abigail Thompson. We will

make these analogies explicit here, and show how from this point of view,

the study of critical surfaces is completely natural.

For the sake of brevity, we will assume that the reader is familiar with

the standard terminology of 3-manifold topology, that can be found in any

introductory text.

2. MINIMAL SURFACES

Let $M$ be a3-manifold, equipped with some Riemannian metric. Let $\Omega$

denote the space of all embedded surfaces in $\mathrm{A}/$ , together with all surfaces

that have been “pinched” at finitely many points (at apoint where asurface

is “pinched”, there is acoordinate chart in which the surface looks locally

like the graph of $z^{2}=x^{2}+\prime y^{2}$), and finite collections of points. Hence, a

path through the space $\Omega$ can be thought of as acontinuous deformation

of some surface, during which one might see some compressions (and “de-

$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}^{4}’.)$ happen.

Let $A$ : $\Omegaarrow \mathrm{R}$ denote the area function. What we are interested in

is the critical points of $A$ . Let $p$ be such acritical point, and let $IJ_{\mathit{1})}\nabla A$

denote the derivative of the gradient of $A$ at $p$ . Let $\lambda_{1}$ . $\ldots$ . $\lambda_{\mathit{7}’ l}$ denote the
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eigenvalues of $D_{p}\nabla A$ which are less than zero (we will only be interested in

critical points in which the number of such eigenvalues is finite). Finally, let

$7\iota$ $– \sum_{i=1}^{m}dim(V_{i})$ , where $V_{i}$ is the eigenspace corresponding to the eigenvector

$\lambda_{i}$ . If $S$ is the surface in $\Lambda I$ which corresponds to the point $p$ of $\Omega$ , then

we say that $S$ is an index $n$ minimal surface.
We now take acloser look at index 0, 1, and 2minimal surfaces.

2.1. Index 0Minimal Surfaces. If S is an index 0minimal surface, and

$p$ is the point of $\Omega$ corresponding to $S$ , then it must be that $D_{p}\nabla A$ has only

eigenvalues which are greater than or equal to zero. Amuch simpler way

of saying this is that any perturbation of $S$ will increase its area, or keep

it constant. In other words, $S$ is alocal minimum for the area function, $A$ .

Hence, to locate an index 0minimal surface, one simply needs to start with

any surface, and “flow downhill” That is, perturb it continuously in such

away so that its area decreases monotonically. Now, it may happen that

what you end up with by doing this is apoint, or acollection of points.

Later we will encounter atopological restriction on the surfaces you can

start with to avoid running into this problem.

2.2. Index 1Minimal Surfaces. To gain some intuition, it helps to

visualize $\Omega$ as a2-dimensional Euclidean space. In this case the graph of $A$

looks like amountain range, and the index 1critical points are the saddle

points, i.e., the local maxima of the valleys. At such apoint, one can trave
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through the valley forward or backwards, and “go downhill”, or one can

leave the valley, and start to climb up the nearest mountain.

Now, let’s suppose we are faced with the task of finding an index 1critical

point. If we start with arandom point and go downhill, then we will miss

the index 1points with probability 1. Instead, we can start with two index

0points, and examine the paths which connect them. If we always keep

the height of such apath as low as possible, then it is guaranteed to go

through an index 1point.

The analogy is that you are atraveller in amountain range. You want

to get to your house, which is located in apit, and you are starting out

in some other pit. The catch is, you have some medical condition which

makes you feel progressively more sick as your altitude increases. You

would then choose to travel through the valleys, rather than climb over a

mountain, even though that might be the shortest path. At some point in

your journey, you will reach the highest point of some valley, and you will

be at an index 1critical point.

One interesting note is that you may encounter several index 1points

along your way. If you always keep your altitude as low as possible, then

in general your path will take you through aseries of critical points which

alternate between being index 0and index 1. In general then, amanifold

may contain awhole sequence of minimal surfaces, whose index alternates

between 0and 1.
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2.3. Index 2Minimal Surfaces. To find an index 1minimal surface,

we needed to start with two index 0minimal surfaces and connect them

with an “efficient” path. To find an index 2minimal surface, we will

now need to start with two efficient paths, and connect them with some

kind of “efficient” 1-parameter family of paths. Once again, by the term

$‘ \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}’\dot,$ we mean that at all times we keep our area (i.e. our altitude in

the mountain range) as small as possible.

Let’s look at our mountain range again for some intuition. It may be

that you had two different choices of valleys to travel through when you

were trying to get home in the previous subsection. Viewed from above,

this would just look like two paths from one point to another. If we fill in

the region between these two paths, then we are guaranteed to cover the

peak of some mountain, an index 2critical point.

3. THE TOPOLOGICAL ANALOGUE OF A MINIMAL SURFACE

In this section, we look at analogues of index 0, 1, and 2minimal surfaces,

in the topological category. The main idea is to keep our space, $\Omega$ , the

same, but to change our area function to reflect only changes in topology.

First, let $\Omega^{-}$ denote subspace of $\Omega$ which consists of only the embedded

surfaces of $M$ . Now, let $A_{T}$ : $\Omega^{-}arrow \mathrm{Z}$ denote the (continuous!) function

defined by $A_{T}(S)= \sum_{i=1}^{n}(2-\chi(,5_{i}’))^{2}$ , where $\{,\mathrm{S}_{1}, \ldots, S_{n}\}$ are the components

of $S$ . Note that if $S$ is homeomorphic to $S^{2}$ , then $A_{T}(,\mathrm{S})=0$ , reflecting the
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fact that in an irreducible 3-manifold (the kind we usually assume we are

working in), every 2-sphere can be shrunk to apoint. Also, if $S’$ is asurface

obtained from the surface, $S$ , by acompression, then $A_{T}(,5’)<A_{T}(,5’)$ .

3.1. Incompressible Surfaces. Recall that to find an index 0minimal

surface, you can try to start with some random embedded surface, and

deform it through apath in $\Omega$ which monotonically decreases area. If you

ever get “stuck” at asurface with non-zero area, then you have found an

index 0minimal surface.

To find an incompressible surface in a3-manifold, $M$ , one can start with

some random surface, and try to compress it as much as possible. Each

such compression decreases $A_{T}$ , and so in some sense we are doing the exact

analogue of what we did in subsection 2.1. If the process ever terminates

in anything other than aunion of 2-spheres(i.e. in anything for which the

function, $A_{T}$ , is non-zero), then one has found an incompressible surface.

Hence, for many purposes it is useful to think of incompressible surfaces

as the topological analogue of index 0minimal surfaces.

3.2. Strongly Irreducible Surfaces. To look for some kind of toplogical

surface that is the appropriate analogue of an index 1minimal surface, we

follow the strategy of subsection 2.2. That is, we start with two incom-

pressible surfaces (the analogues of index 0minimal surfaces), and look at

the paths ffom one to the other in $\Omega$ for which the function, $A_{T}$ , is alway

136



DAVID BACHMAN

as small as possible. This is precisely the strategy of Scharlemann and

Thompson from [8], in which they show that every irreducible 3-manif0ld

contains astrongly irreducible Heegaard splitting for some submanifold

cobounded by (possibly empty) incompressible surfaces (in the case of

empty incompressible surfaces, their techniques just produce astrongly

irreducible Heegaard splitting for the entire manifold). Hence, we will

view strongly irreducible Heegaard splittings as the appropriate analogues

of index 1minimal surfaces.

The analogy is really quite good. In subsection 2.2, we saw that an

efficient path connecting two index 0minimal surfaces may contain not

just one index 1minimal surface, but awhole sequence of minimal sur-

faces whose index alternates between 0and 1. In the topological category,

the aforementioned work of Scharlemann and Thompson shows that every

irreducible 3-manifold admits an alternating sequence of incompressible

surfaces, and strongly irreducible Heegaard splittings.

3.3. Critical surfaces. We now come to the main point of this paper,

which was to motivate the study of anew class of topological surfaces.

These new surfaces arise naturally as the appropriate analogues of index

2minimal surfaces. Since index $n$ minimal surfaces correspond to critical

points, we have chosen the name critical for our new class. The precis $\mathrm{e}$

137



CRITICAL HEEGAARD SURFACES AND INDEX 2MINIMAL SURFACES

definition of acritical surface will be given in the next section. First, we

say in what sense they are analogous to index 2minimal surfaces.

Recal from subsection 2.3 that index 2minimal surfaces arise when

perturbing one “efficient” path through $\Omega$ to another. Along the way, we

will see asequence of paths that can be described like this: odd elements

of the sequence go through an alternating sequence of index 0and index 1

minimal surfaces. Even elements are similar, except that in place of exactly

one index 1minimal surface we see an index 2minimal surface.

In the topological category, the strategy is exactly the same. We look

at two different sequences of surfaces which alternate between being in-

compressible and strongly irreducible. We then try to “connect” these

sequences with intermediate sequences in such away so that the function,

$A_{T}$ , is as smal as possible at all times. This is precisely the strategy of

[2]. In that paper, we show that the sequences alternate as follows: odd

sequences contain an alternating sequence of incompressible and strongly

irreducible surfaces. Even sequences are similar, except that in place of

exactly one strongly irreducible surface there is acritical surface.

4. THE DEFINITION OF ACRITICAL SURFACES

To facilitate the definition of acritical surface, we first define al-complex

for each embedded, orientable, closed, separating surface in a3-manif0ld,

$M$ . Suppose $F$ is such asurface. If $D$ and $D’$ are compressing disks for $F$ ,
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then we say $D$ is equivalent to $D’$ if there is an isotopy of $M$ taking $F$ to

$F$ , and $D$ to $D’$ (we do allow $D$ and $D’$ to be on opposite sides of $F$ ).

We now define a1-complex, $\Gamma(F)$ . For each equivalence class of com-

pressing disk for $F$ , there is avertex of $\Gamma(F)$ . Two (not necessarily distinct)

vertices are connected by an edge if there are representatives of the cor-

responding equivalence classes on opposite sides of $F$ , which intersect in

at most apoint. Avertex of $\Gamma(F)$ is said to be isolated if it is not the

endpoint of any edge.

For example, if $F$ is the genus 1Heegaard splitting of $S^{3}$ , then there

is an isotopy of $S^{3}$ which takes $F$ back to itself, but switches the sides

of $F$ . Such an isotopy takes acompressing disk on one side of $F$ to a

compressing disk on the other. Hence, $\Gamma(F)$ has asingle vertex. However,

there are representatives of the equivalence class that corresponds to this

vertex which are on opposite sides of $F$ , and intersect in apoint. Hence,

there is an edge of $\Gamma(F)$ which connects the vertex to itself.

Definition 4.1. If we remove the isolated vertices from $\Gamma(F)$ and are left

with adisconnected 1-complex, then we say $F$ is critical.

Equivalently, $F$ is critical if there exist two edges of $\Gamma(F)$ that can not

be connected by al-chain
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5. RESULTS ABOUT CRITICAL SURFACES

We now state some of the main results about critical Heegaard surfaces

from [2]. The first few Lemmas of that paper build up to the following

Theorem:

Theorem 4.6. Suppose $\mathrm{A}I$ is an $i$ reducible 3-manifold with no closed

incompressible surfaces. and at most one Heegaard splitting (up to isotopy)

of each genus. Then $\Lambda l$ does not contain a critical Heegaard surface.

The remainder of [2] is concerned with the converse of this Theorem.

That is, we answer precisely when a(non-Haken) 3-manifold does contain

acritical Heegaard surface.

The main technical theorem which starts us off in this direction is:

Theorem 5.1. Let $M$ be a 3-manifold with critical surface, $F$ , and incom-

pressible surface, S. Then there is an incompressible surface, ,5”, homeO-

morphic to S. such that ever$ry$ loop of $F\cap S’$ is essential on both surfaces.
fihrthemore, if $M$ is $i$ reducible, then there is such an $S’$ which is isotopic

to $S$ .

Note that this Theorem was already known to be true if one were to

replace the word “critical” with either “incompressible” or “strongly irre-

ducible” This is just more evidence for the naturalty of critical surfaces.

As immediate corollaries to this, we obtain
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Corollary 5.7. A reducible 3-manifold does not admit a critical Heegaard

splitting.

Corollary 5.8. Suppose $M$ is a 3-manifold which admits a critical Hee-

gaard splitting, such that $\partial M\neq\emptyset$ . Then $\partial\Lambda I$ is essential in $\Lambda I$ .

It is this last corollary which we combine with aconsiderable amount

of new machinery (all motivated by the analogy with index 2minimal

surfaces) to yield:

Theorem 6.1. Suppose $F$ and $F’$ are distinct strongly irreducible Heegaard

splittings of some closed 3-manifold, $\Lambda I$ . If the minimal genus common

stabilization of $F$ and $F’$ is not critical, then $\Lambda I$ contains an incompressible

surface.

We actually prove aslightly stronger version of this Theorem, that holds

for manifolds with non-empty boundary.

Compare Theorem 6.1. to that of Casson and Gordon [4]: If the minimal

genus Heegaard splitting of a3-manifold, $M$ , is not strongly irreducible,

then $M$ contains an incompressible surface. Once again, the paiallels be-

tween these two Theorems is yet more evidence for the naturality of critical

surfaces.
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6. ACONJECTURE

The relationships between index 0and 1minimal surfaces and incom-

pressible and strongly irreducible Heegaard splittings seem to be much

deeper than mere analogy. For instance, in [6], Freedman, Hass and Scott

show that any incompressible surface can be isotoped to be aleast area

surface. Such surfaces are index 0minimal surfaces. In [7], Pits and Ru-

binstein show that strongly irreducible surfaces can always be isotoped to

index 1minimal surfaces. This motivates us to make the following conjec-

ture:

Conjecture 6.1. Any critical surface can be isotoped to be an index 2

minimal surface.

In [3], we prove aPiecewise-Linear analogue of this.

7. AMETRIC ON THE SPACE OF STRONGLY IRREDUCIBLE HEEGAARD

SPLITTINGS

We now show how our results- lead to anatural metric on the space of

strongly irreducible Heegaard splittings of anon-Haken 3-manifold. The

author believes that it would be of interest to understand this space better.

First, given acritical surface, $F$ , we can define alarger 1-complex, $\Lambda(F)$ ,

that contains $\Gamma(F)$ as follows: the vertices of $\Lambda(F)$ are equivalence classes

of loops on $F$ , where two loops are considered equivalent if there is an
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isotopy of $M$ taking $F$ to $F$ , and one loop to the other. There is an edge

connecting two vertices if there are representatives of the corresponding

equivalence classes which intersect in at most apoint. Recall that avertex

of $\mathrm{I}^{\neg}(F)$ corresponds to an equivalence class of compressing disks for $F$ .

Thus, we can identify each vertex of $\Gamma(F)$ with the vertex of $\Lambda(F)$ which

corresponds to the boundary of any representative disk.

Now, suppose $e_{1}$ and $e_{2}$ are two edges in $\Gamma(F)$ . Define $d(e_{1}, e_{2})$ to be

the minimal length of any chain connecting $e_{1}$ to $e_{2}$ in $\Lambda(F)$ . Now, given

two components, $C_{1}$ and $C_{2}$ , of $\Gamma(F)$ , we can define $d(c_{/1}.C_{2})$ , the distance

between $C_{1}$ and $C_{2}$ , as $\min\{d(e_{1}.e_{2})|e_{1}$ is an edge in Ci, and $e_{2}$ is an edge

of $C_{2}$ }.

Finally, suppose $H_{1}$ and $H_{2}$ are strongly irreducible Heegaard splittings

of a3-manifold, $M$ , and $F$ is their minimal genus common stabilization.

As $F$ is astabilization of $H_{i}$ , it can be isotoped so that between $F$ and $H_{?}$.

there is acompression body, $W_{i}$ , and so that there are compressing disks

for $F$ , $D_{i}\subset W_{i}$ , and $E_{i}\subset d(M-W_{i})$ , such that $|D_{i}\cap E_{i}|=1$ . Each pair,

(D2, $E_{i}$ ) corresponds to some edge of $\Gamma(F)$ . In [2], we show that the edge

corresponding to $(D_{1}.E_{1})$ is in acomponent, $C_{1}$ , of $\Gamma(F)$ which is different

than the component, $C_{2}$ , containing the edge corresponding to ( $D_{2}$ , C2),

and that $C_{1}$ and $C_{2}$ were independent of our exact choices of $D_{i}$ and $E_{i}$ .

We can therefore define the distance between $H$ and $H’$ as $d(C, {}_{/1}C_{2})$ .
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Question 7.1. Can the distance between strongly irreducible Heegaard split

tings be arbitrarily high? If not, is there a bound in terms of the genera of
the splittings. or perhaps a universal bound?

Question 7.2. Is there an algorithm to compute the distance between trvo

given strongly irreducible Heegaard $splittings^{Q}$

Question 7.3. Is there a relationship between the distance berween two

strongly irreducible Heegaard splittings, and the number of times one needs

to stabilize the higher genus one to obtain a stabilization of the lower genus

0ne2

Question 7.4. Is there a relationship between the distance between two

strongly irreducible Heegaard splittings, and the distances of each individual

splitting, in the sense of Hempel [5] ?

REFERENCES

[1| S. Akbulut and J. McCarthyl. Casson’s Invariant for Oriented Homology 3-spheres. In Mathematical

Notes, volume 36. Princeton University Press, 1990.
[2] D. Bachman. Critical Heegard Surfaces, submitted, February 2001.
[3| D. Bachman. Anormal form for minimal genus common stabilizations, in preparation.

|4| A. J. Casson and C. McA. Gordon. Reducing Heegaard splittings. Topology and its.Applicatiorvs.

27:275-283, 1987.

[5) J. Hempel. &-manifolds as viewed from the curve complex. Topology, to appear.
[6] J. Hass M. Freedman and P. Scott. Least area incompressible surfaces in 3-manifolds. Invent. Math..

71:609-642, 1987.

144



DAVID BACHMAN

[7] J. Pitts and J. H. Rubinstein. Applications of minimax to minimal surfaces and the topology $0$

3manifolds. In Miniconference on geometry and partial differential equations, 2(Canberra 1986)

Proc. Centre Math. Anal. Austral. Nat. Univ., 12, Austral. Nat. Univ., Canberra, 1987.
|8\rfloor M. Scharlemann alld A. Thompson. Thin position for 3-manifolds. A.M.S. Contemporary Math.

164:231-238, 1994.

MATHEMATICS DEPARTMENT, $\iota \mathfrak{s}_{\mathrm{N}\mathrm{I}\mathrm{V}\mathrm{E}\mathrm{R}\mathrm{S}\mathrm{I}\mathrm{T}\mathrm{Y}}$ OF ILLINOIS AT $\subseteq l_{\mathrm{H}1\mathrm{C}\mathrm{A}\mathrm{G}\mathrm{O}}$

$E$-rnail address: $\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{h}\mathrm{m}\mathrm{n}\emptyset \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}$ . uic.edu

145


