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A REPORT ON HEEGAARD SPLITTINGS OF EXTERIORS OF
1-GENUS 1-BRIDGE KNOTS

HIROSHI GODA (& H#) AND CHUICHIRO HAYASHI (#k%E—8E)

1. INTRODUCTION

Let M be a closed orientable 3-manifold (mainly, a lens space), and K a knot in the
3-sphere S% or M in this note.

A property embedded arc ¢ in a solid torus V is called trivial if it is boundary parallel,
namely, there is a disk C embedded in V such that ¢ C &C and C NIV = cl(9C — t).
This disk C is called a cancelling disk of t.

Definition 1.1. ((1,1)-knots, (1, 1)-splittings) We call K a I-genus I-bridge knot in M
if M is a union of two solid tori V; and V; glued along their boundary tori 817 and 912
and if K intersects each solid torus V; in a trivial arc ¢; for i = 1 and 2. The splitting
(M,K) = (V1,t1) Uy, (Va.t) is called a I-genus I1-bridge splitting of (M, K), where
H, = ViNV, = §V; = d15. We call this splitting a (1.1)-splitting for short, and say that
K is a (1,1)-knot. See Figure 1.

Torus knots and 2-bridge knots are (1, 1)-knots.

Definition 1.2. ((2,0)-splitting, tunnel number one knots) We say that the pair (A, K)
admits a (2,0)-splitting if M is a union of two handlebodies of genus two W} and W,
and K is a ‘core’ in Wj. Note that cl(W; — N(K)) is a compression body homeomorphic
to a union of (a torus) x[0,1] and a 1-handle which has an attaching disk in (a torus)
x{1}. K is a tunnel number 1 knot if and only if (A, K') has a (2, 0)-splitting.

An arc 7 embedded in int}1) is called an unknotting tunnel if yN K = 0~ and W)
collapses to K U v, see Figure 2.
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The authors are partially supported by Grant-in-Aid for Scientific Research. Ministry of Education,
Science, Sports and Culture. The first author is also partially supported by Research Institute for
Mathematical Sciences at Kyoto.



Wi W,

FIGURE 2

Definition 1.3. (meridionally stabilized) A (2, 0)-splitting (M, K) = (W}, K)Ug, (12, 0)
is called meridionally stabilized if there are a meridionally compressing disk D; of H,
in (W}, K) and an essential disk D, in W3 such that 9D, and 9D, intersect each other
transversely in a single point in H,. (‘meridionally’ means D;N K = 1 pt transversely.)

Exercise 1.4. (1) Show that a (1,1)-knot admits a (2, 0)-splitting and recognize where
the unknotting tunnel is.
(2) Confirm that we can obtain a (1, 1)-splitting from a meridionally stabilized (2, 0)-
splitting.

Question. Is any (2,0)-splitting of a (1, 1)-knot meridionally stabilized ?

The answer is No. This was pointed out by K.Morimoto that every torus knot has only
one isotopy class of (1, 1)-splitting torus, which is a corollary of Theorem 3 in [12] and the
uniqueness of genus one Heegaard splitting. If all the (2, 0)-splitting were meridionally
stabilized for a torus knot, then the torus knot exterior would have at most two genus
two Heegaard splittings derived from the unique (1,1)-splitting. However, there is a
torus knot such that its exterior has three genus two Heegaard splittings [1]. (See also
Figure 3.)

Thus we need a clue to classify the unknotting tunnels for (1,1)-knots.

Every unknotting tunnel of a tunnel number one knot in S° may be slid and isotoped to
lie entirely in its minimal bridge sphere [6]. Further, we can observe that the unknotting
tunnels v of torus knots in S are classified into two types: (1) 4 determine a (2,0)-
splitting that is meridionally stabilized; (2) 4 may be slid and isotoped to lie entirely
in its (1, 1)-splitting torus, see Figure 3. Further, any (2, 0)-splitting of a satellite knot
in % is meridionally stabilized [13]. Thus we present the next question instead of the
above one.

Question. Can an unknotting tunnel of a (1, 1)-knot be slid and isotoped to lie entirely
in its (1,1)-splitting torus ?

2. MAIN THEOREM AND EXAMPLE

On the last question in the previous section, we have:
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Theorem 2.1 ([4]). Let K be a knot in the 3-sphere S°. Suppose there are two splittings
(S3, K) = (Vi,t1) Ug, (Va,t3) = (W, K) Ug, (Wa,0). Then at least one of the following
conditions holds.

(1) The (2,0)-splitting H, is meridionally stabilized.

(2) There is an arc v which forms a spine of (W), K) and is isotopic into the torus H;.
Moreover, we can take 7 so that there is a cancelling disk C; of the arc t; in (V;, ;)
with OC;Ny =8y =, fori=1 or2.

(3) There is an essential separating disk D, in W2, and an arc a in W such that aNK
is one of the endpoints da, and aNW; is the other endpoint p of a and that Dy cuts
off a solid tours U from W, with p C OU and with the torus IN(U U o) isotopic to
H, in (M, K).

(4) The (1,1)-splitting H, admits a satellite diagram of a longitudinal slope.

The definition of satellite diagrams is given below in Definition 2.2.
We have not investigated the behavior of unknotting tunnels in Cases (3) and (4),
that is, the following is still open.

Problem.

(1) Is there an example which realizes Case (3) ?
(2) How does an unknotting tunnel of a knot in Case (4) behave ?

D.H.Choi informed me that the knots in Case (4) are the same as those treated in [3].
A knot in this class is obtained from a component of a 2-bridge link L by a Dehn surgery
on the other component of L.

Definition 2.2. (asatellite diagram) We say that a (1, 1)-splitting (M, K') = (W, t;)Un,
(Va, t2) admits a satellite diagram if there is an essential simple loop ! on the torus H,
such that the arcs t; and t; have cancelling disks which are disjoint from I. We call
l the slope of the satellite diagram. We say that the slope of the satellite diagram ‘is
meridional (resp. longitudinal) if it is meridional (resp. longitudinal) on §17 or 91%.

When the slope is meridional, K is the trivial knot in A/ since it has a 1-bridge diagram
on the 2-sphere obtained from H) by compressing along a meridian disk. It is shown in
Theorem III in [7] that a knot with a 1-genus 1-bridge splitting is a satellite knot if and
only if the splitting has a satellite diagram of the non-meridional and non-longitudinal
slope.

Example 2.3. Torus knot: Any unknotting tunnel for a torus knot is one of 3 types
illustrated in Figure 3 by M. Boileau, M. Rost and H. Zieschang [1]. The conclusions (1)
and (2) in Theorem 2.1 occurs.

156



157

Torus knot K of type (5.7) 3 unknotting tunnels of K
FIGURE 3
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FIGURE 4

Example 2.4. Song [15] pointed out the example illustrated in Figure 4. This knot is
the Morimoto-Sakuma-Yokota's knot type (5,7,2) [14]. (These knots are called twisted
torus knots.) The unknotting tunnel v, can be slid and isotoped into the (1, 1)-splitting
torus which is defined by the unknotting tunnel +,.

3. KEY RESULTS TO PROVE THEOREM 2.1

Theorem 3.1 ([11]). Suppose K in M has a 2-fold branched covering with the branch
set K. Then one of the following occurs:
(1) either Hy or Hs is weakly K -reducible;
(2) we can isotope H, and Hj so that loops of Hy N Hy(# 0) are K -essential in both H,
and H,.

Note that this theorem is a version with a knot of Rubinstein-Scharlemann’s results.
If M = S3, then the assumption is satisfied.



According to this theorem, we may consider Cases (1) and (2).

Definition 3.2. (weakly K-reducible) A (1,1)-splitting (M, K) = (Vi,t1) Ug, (Va, t2) is
called weakly K-reducible if there is a t;-compressing or meridionally compressing disk
D; of H, in (V;,¢t;) for i = 1 and 2 such that 8D, N 8D, = 0.

A (2,0)-splitting (M, K) = (W}, K)Ug, (W2, 0) is called weakly K -reducible if there is a
K-compressing or meridionally compressing disk D, of H; in (W}, K') and a compressing
disk D, of H, in W, such that 8D, N 8D, = .

Proposition 3.3 ([7]). Suppose (S3,K) = (V1,t1) Ug, (Va,t2) is a weakly K -reducible
(1,1)-splitting, then one of the following occurs:

(1) K is the trivial knot:

(2) K is a 2-bridge knot.

This proposition has been proved in the case that the ambient manifold is a lens space.
Theorem 3.4 ([9]). Every (2,0)-splitting for a 2-bridge knot is meridionally stabilized.

Proposition 3.5 ([9]). (S3,K) = (W).K) Uy, (W2,0) is a weakly K-reducible (2,0)-
splitting if and only if one of the following occurs:

(1) K is the trivial knot;

(2) H, is meridionally stabilized.

We can have the similar result in the case that the ambient manifold is a lens space,
see [5].

In the case that neither H; nor H, is weakly K-reducible, a clue to argue is essential
loops Hy N Ha (Theorem 3.1 (2)). Here the next proposition is useful.

Proposition 3.6 ([10]). Suppose K in M has a 2-fold branched covering with the branch
set K. If H, is contained in the interior of W) and there is K -compressing or meridion-
ally compressing disk D of H, in (W), K) with DN Hy = @. Then either

(1) M = S3 and K is the trivial knot or

(2) Ha is weakly K -reducible.

When A = S3, the assumption is satisfied. This proposition is proved under a more
general situation in [10].

Thus there is an obstruction that M has a 2-fold branced covering with the branch
set K to obtain a result in the general case (i.e., M is a lens space).

Problem. Can we delete the assumption that A/ has a 2-fold branched covering in
Theorem 3.1 and Proposition 3.6 7

In [2], they have a result when a (1,1)-knot in a lens space has 2-fold branched covering
with the branch set K. ‘
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4. GENERAL SETTING

We have obtained some results in case that M is a lens space (other than S? x S!)
and under the assumption that satisfies Theorem 3.1 and Proposition 3.6.

Let (M, K) = (W, t1)Ug, (V2, t2) be a (1, 1)-splitting and (M, K) = (W}, K)Ug, (W2, 0)
a (2, 0)-splitting. ‘

Proposition 4.1 ([4]). Suppose H, and H, intersect each other four or more collection
of loops which are K-essential both in H; and H,. Then at least one of the following
holds.

(1) We can isotope H, and H, so that they intersect each other in non-empty collection
of smaller number of loops which are K -essential both in H, and H,.

(2) Hy or H; is weakly K -reducible.

(3) K is a torus knot.

(4) K is a non-composite satellite knot.

Proposition 4.2 ([4]). Suppose H, and H, intersect each other in precisely three loops
which are K-essential both in Hy and Hy. Then at least one of the following holds.

(1) We can isotope Hy and H, so that they intersect each other in non-empty collection
of smaller number of loops which are K -essential both in H; and H,.

(2) H, is weakly K-reducible.

(3) Hy admits a satellite diagram.

Proposition 4.3 ([4]). Suppose H, and H, intersect each other in precisely two loops
which are K-essential both in H, and Hy. Then at least one of the following holds.

(1) We can isotope Hy and H, so that they intersect each other in non-empty collection
of smaller number of loops which are K -essential both in H, and H,.

(2) Hy or H, is weakly K-reducible.

(3) K is a torus knot.

(4) K is a satellite knot.

(5) There is an essential separating disk Dy in W, and an arc o in W, such that aNK
is one of the endpoints 0o, and aNW) is the other endpoint p of a and that Dy cuts
off a solod torus U from W, with p C OU and with the torus ON (U U o) isotopic to
H, in (M, K).

Proposition 4.4 ([4]). Suppose H, and H, intersect each other in a single loop which
is K-essential both in Hy and H,. Then at least one of the following holds.

(1) H; is weakly K-reducible.
(2) K is a torus knot.
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(3) There is an arc y which forms a spine of (W), K) and is isotopic into H,. Moreover,
we can take v so that there is a cancelling disk C; of the arc t; in (V;,t;) with
CiNy=09y=0t fori=1 or2.
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