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1. INTRODUCTION

My goal in these notes is to explain amethod for constructing an-

annular complexes in -manifolds that behave somewhat like Heegaard

surfaces. In attempt to keep this document short and as accessible as

possible, applications of this machinery will not be discussd; for an

application see “Invariant Heegaard surfaces for Manifolds with $\mathrm{I}\mathrm{n}\mathrm{v}\mathrm{e}\succ$

lutions” (joint with Hyam Rubinstein) currently in preparation.

Rubinstein and Scharlemann developed a $\mathrm{C}\mathrm{e}\mathrm{r}\mathrm{f}- \mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}$ techniques

for getting the intersection of any two strongly irreducible Heegaard

surfaces (for definition see Section 3) to aparticularly nice configura-

tion. After describing the properties of this intersection we show how to

use this configuration to create acomplex (at first simply the union of

the two) and modify it, preserving all the important qualities achieved

by Rubinstein and Scharlemann, and adding one more: the pieces from

which this complex is built are of negative Euler characteristic. It is
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easy to explain why this is desirable: it makes Euler characteristic

count possible.
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2. HANDLEBODIES, DISKS AND SPINES

We work in the smooth and orientable category. A 3-manifold is a

2nd countable Hausdorff space, locally homeomorphic to $\mathbb{R}^{3}$ or $\mathbb{R}_{+}^{3}=$

$\{(x, y, z)\in \mathbb{R}^{3}|z\geq 0\}$ (in which case the points that are sent to $\{z=0\}$

are the boundary of the manifold). All manifolds discussed are assumed

to be compact, and if in addition the boundary is empty the manifold

is called closed. We assume all manifolds to be smooth (which we may

do since every 3-manifold carries aunique smooth structure). When

discussing any object embedded in amanifold, it is always considered

up to isotopy. which for surfaces must be proper ( $i.e$ . the boundary of

the surface must remain on the boundary of the manifold at all times).

Ahandlebody is aneighborhood of aconnected embedded graph

in some 3-manifold M. (The connectivity requirement is not always im-

posed, but it will be convenient for us.) It is an easy exercise to see that

the the diffeomorphism type of ahandlebody is completely determine
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by the Euler characteristic of the graph, which equals the Euler charac-

teristic of the handlebody and also half that of its boundary. However

it is more common to consider the genus of ahandlebody which is de-

fined to be the genus of the boundary of the handlebody. Note that by

definition the boundary of ahandlebody is connected. Given ahan-

dlebody of genus other than one, an embedded graph without vertices

of valence one or two whose neighborhood is the given handlebody is

called aspine. (For genus zero the spine is apoint and for genus one

acircle with one vertex of valence two.) It is important to note that,

except for genus zero and one handlebodies, the spine of ahandlebody

is not at all unique (see Figure 1). Achoice of spine corresponds to a

choice of compressing disks for the handlebody: given aspine, one can

canonically pick disks, each corresponding to apoint on an edge of the

spine; this is demonstrated in Figure 2. We leave the other direction

as an exercise: given non-parallel compressing disks for ahandlebody

that cut the handlebody up into balls, construct aspine for that han-

dlebody.

Aconclusion of the discussion in the previous paragraph is another

well known fact: a3-manifold is ahandlebody if and only if it has

disjointly embedded disks that cut it up into balls. These disks form

avery useful tools for studying handlebodies. Aworthy exercise for
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FIGURE 1. Distinct spines for agenus two handlebody

FIGURE $\underline{9}$ . The correspondence between disks and

spines in ahandlebody.

which this tool is sufficient is proving that any essential surface (ei-

ther closed or with boundary; for definition see, for example, [2] $)$ in

ahandlebody is adisk. In their work Rubinstein and Scharlemann

used amore refined tool, sweepout. Although we will not describe

their proofs we mention what asweepout is. Since ahandlebody is a

neighborhood of agraph in an orientable 3-manifold it is in fact the
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product of the given graph with adisk. The disk is foliated by concen-

tric circles with asingle singular leaf in the center (that leaf is apoint).

This foliation induces afoliation of the handlebody by smooth surfaces

diffeomorphic to the boundary, with one singular leaf corresponding to

the center of the disk. This foliation looks like the boundary collapsing

onto the spine, and the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of this collapse is the sweepout of the

handlebody by surfaces.

3. HEEGAARD SURFACES AND STRONG IRREDUCIBILITY

AHeegaard surface for aclosed -manifold M is atwo sided,

closed surface embedded in $M$ whose exterior consists of two handle-

bodies. Aspine of a3-manifold is aunion of two spines for the

handlebodies. Since each handlebody is foliated by surfaces diffeomor-

phic to the Heegaard surface (and one exceptional leaf) the manifold

is too foliated by surfaces diffeomorphic to the Heegaard surface with

two exceptional leaves, the aspine of the manifold. Formally, aspine

is an embedded graph (necessarily disconnected) whose complement is

diffeomorphic to the product of asurface with R.

Given aHeegaard surface, one can obtain aHeegaard surface of

higher genus by adding atrivial handle; atrivial handle addition is

replacing adisk by atrivial once punctured torus as in Figure 3. (A

once punctured torus in aball is called trivial if it is unknotted, whic
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FIGURE 3. Trivial handle addition and destabilization

can be seen in that figure.) Atrivial handle addition is called asta-

bilization. After adding such handle, we see two disks, on opposite

sides of the Heegaard surface, intersecting transversely in asingle point.

Such disks are called areducing pair. By observing that aneighbor-

hood of areducing pair is aball, and the Heegaard surface intersects

that ball in atrivial once punctured torus, we conclude that any Hee-

gaard surface that has areducing pair is astabilization of alower genus

Heegaard surface. The converse of astabilization, removal of atrivial

handle, is called adestabilization. If destabilization exists, the surface

is said to be stabilized, else to be non-stabilized. It is not too hard to

see that stabilization is unique. Destabilization is not unique, but that

is quite hard to show.

Amore subtle notion of reduction is due to Casson and Gordon, [1],

In their seminal work Casson and Gordon defined aweak reduction

to be apair of disks on opposite sides of aHeegaard surface whos$\mathrm{e}$
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boundaries are essential in the Heegaard surface and disjoint. It is

an exercise to show that, except the genus one Heegaard surface in

$S^{3}$ , every other Heegaard surface that destabilizes also weakly reduces

(hint: this only requires Figure 3). AHeegaard surface that supports

no weak reductions is called strongly irreducible. The following

result of Casson and Gordon ([1]) is very useful:

Theorem 3.1 (Casson-Gordon). Let $M$ be an irreducible non-Haken

closed manifold.

Then any Heegaard surface for $M$ that does not destabilize is strongly

irreducible.

From this point on, we will need all our Heegaard surfaces to be

strongly irreducible.

4. HEEGAARD COMPLEXES

The main outcome of the Cerf theoretic work of [3] is placing any

two strongly irreducible Heegaard surfaces in avery nice configuration

which is described below. We first define:

Definitions 4.1. 1. Two surfaces embedded in a3-manifold M and

intersecting transversaJly are said to intersect essentially if every

curve of intersection is essential in both surfaces
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2. Agraph embedded in asurface contains aspine of the surface if

no piece of the surface cut open along the graph contains acurve

that is non-trivial in the surface. (These pieces are not required

to be simply connected.)

3. The intersection of aHeegaard surface $\Sigma$ with asurface $F$ is called

spinal if there exists aset of compressing disks $\Delta$ for both sides

of $\Sigma$ so that $F\cap$ (I $\cup\Delta$) contains aspine of $F$ .

Theorem 4.2 (Rubinstein-Scharlemann. Let $\Sigma_{1}$ and $\Sigma_{2}$ be strongly

irreducible Heegaard surfaces in a manifold $M$ other than $S^{3}$ . Then $\Sigma_{1}$

and $\Sigma_{2}$ can be isotoped to intersect essentially and spinally.

Let $M$ be anon-Haken, irreducible manifold, and let $\Sigma_{1}$ and $\Sigma_{2}$

be non-stabilized Heegaard surfaces for $M$ . By Casson-Gordon $\Sigma_{1}$

and $\Sigma_{\underline{9}}$ are strongly irreducible. We may therefore apply Rubinstein-

Scharlemann. We define $\mathrm{C}$ to be $\Sigma_{1}\cup\Sigma_{2}$ . For the rest of this section

we study the properties of this complex, and in the next section we

modify it. We start with atheorem that studies the components of $M$

cut open along the $\Sigma_{1}\cup\Sigma_{2}$ , for the surfaces given to us by Rubinstein

and Scharlemann. This theorem gives aconvenient way of using spinal

intersection
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Theorem 4.3. Let $\Sigma_{1}$ and I2 be a Heegaani surface intersecting spinall

and essentially. Then the components of $M$ cut open along $\Sigma_{1}\cup\Sigma_{2}$ are

handlebodies.

Proof. Since the intersection is spinal there exists acomplete set of

compressing disks $\Delta$ for one of the surfaces (say $\Sigma_{2}$ ) so that $\Sigma_{1}\cap(\Sigma_{2}\cup\Delta)$

contains aspine of $\Sigma_{1}$ . This implies that $\Sigma_{1}$ is incompressible in the

complement of $\Sigma_{2}\cup$ A (although components of $\Sigma_{1}$ cut open along

$\Sigma_{2}\cup\Delta$ may compress, these compressions are trivial in $\Sigma_{1}$ ).

We may assume that $\Sigma_{1}\cap\Delta$ consists of arcs only: let $\gamma$ be asimple

closed curve in $\Sigma_{1}\cap\Delta$ . Since the intersection is spinal, $\gamma$ bounds a

disk in $\Sigma_{1}$ . Passing to an innermost such, we see adisk whose interior

intersects neither Anor I2 (by essentiality). We now use this disk to

isotope Aand remove 7from $\Delta\cap\Sigma_{1}$ .

Let $B$ be some component of $M$ cut open along $\Sigma_{2}\cup\Delta$ , say above

$\Sigma_{2}$ (we picture $\Sigma_{2}$ as horizontal), and $c$ some component of $\Sigma_{1}\cap B$ . We

show that $c$ is adisk: suppose $c$ were not adisk. Since the intersection

is spinal $c$ is apunctured disk, and each puncture bounds adisk in

$\Sigma_{1}$ . Let 7be one of the punctures, and $D\subset\Sigma_{1}$ the disk it bounds.

By assumption $\gamma\subset\partial B$ , and near its boundary $D\cap B=\gamma$ . Since

the intersection of $\Sigma_{1}$ and $\Sigma_{2}$ is essential and $\Delta\cap\Sigma_{1}$ consists of arcs,

$\gamma$ must have parts on $\Sigma_{1}$ and parts on $\Delta$ above $\Sigma_{1}$ . Anon-empt
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subset of $D$ is below $\Sigma_{1}$ . But the boundary of this part of $D$ is anon-

empty collection of simple closed curves in $\Sigma_{1}\cap\Sigma_{2}$ , all trivial in $\Sigma_{1}$ ,

contradicting essentiality.

Since the pieces of $\Sigma_{1}$ in each ball of $M$ cut open along $\Sigma_{2}\cup\Delta$ are

disks, they further chop these balls up into balls, so $M$ cup open along

$\Sigma_{1}\cup\Sigma_{2}\cup\Delta$ consists of balls. Now the disks of $\Delta$ are chopped up into

disks by $\Sigma_{1}$ . Attaching the balls described above to each other via

these disks we get handlebodies. $\square$

5. PRODUCING AN-ANNULAR COMPLEXES: THE SET UP

For the remainder of this paper we fix amanifold $M$ fulfilling the

following assumptions:

1. $M$ is non-Haken.

2. $M$ is irreducible.

3. $M$ is not aSeifert Fibered Space.

4. $M$ is closed.

Thus in the previous section we saw that these assumptions allow

us, using Casson and Gordon, to apply the work of Rubinstein and

Scharlemann. We remark that assumption (1) can be weakened: $M$ is

a-toroidal suffices. However, in that case Casson and Gordon cannot

be applied
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As remarked in the introduction, occasionally we need to use Euler

characteristic. For that we want to bound the number of curves in

$\Sigma_{1}\cap\Sigma_{2}$ , which at this point is impossible since there may be any number

of annuli in $\Sigma_{:}\backslash (\Sigma_{1}\cap\Sigma_{2})$ . We now describe the procedure to remove

such annuli. We consider acomplex $\mathrm{C}$ , at first $\mathrm{C}=\Sigma_{1}\cup\Sigma_{2}$ . More

precisely $\mathrm{C}$ is afinite collection of simple closed curves denoted sing(C)

(the singular curves of $\mathrm{C}$ , currently $\Sigma_{1}\cap\Sigma_{2}$ ) and afinite collection

of surfaces with boundary whose boundaries are mapped to sing(C).

Each of these surfaces is embedded and they do not intersect in their

interiors. We call the closure of acomponent of $\mathrm{C}\backslash \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(\mathrm{C})$ sheets.

Let $g$ be the genus of aminimal genus Heegaard surface for $M$ . Our

goal is getting acomplex $\mathrm{C}$ that fulfills the following conditions:

Properties 5.1.

$\mathrm{A}:\chi(\mathrm{C})\geq 4-4g$ .

$\mathrm{B}$:All components of $M$ cut open along $\mathrm{C}$ are handlebodies.

$\mathrm{C}$:Every curve of sing(C) is the boundary of three sheets, one of

negative Euler characteristic and two annuli, and these annuli

close up, together ith other such annuli, to form tori bounding

solid tori. These solid tori do not intersect $C$ in their interior
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Note that conditions $\mathrm{A}$ , $\mathrm{B}$ have been achieved by Rubinstein and

Scharlemann (recall Theorems 4.2 and 4.3). These conditions are to be

our first invariant, that is to say they must be preserved as we modify

C. We therefore mark them as an invariant:

Invariant 5.2. Properties $\mathrm{A}$ , $\mathrm{B}$ are invariant

As we modify the complex there will more and more invariant $\mathrm{p}\mathrm{r}\mathrm{o}\triangleright$

erties culminating to property C. We now explain this property.

Property $\mathrm{C}$ , at this point, does not hold. In fact, each curve of

sing(C) bounds four sheets. If we were to replace $\mathrm{C}$ by the complex

$\mathrm{L}|\mathrm{C}\mathrm{r}\backslash N(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(\mathrm{C}))]\cup$ ( $\partial N$ (sing(C))) (see Figure 4, crossed with $S^{1}$ ) we

would get apicture very similar to that required by Property $\mathrm{C}$ , where

annuli are connected to each other, forming tori bounding solid tori

(the solid tori are $N$ (sing(C)) and $\mathrm{C}$ does not intersect these solid tori.

One thing is missing: while sheets connected to such solid tori are

of non-positive Euler characteristic by Rubinstein and Scharlemann,

they may be annuli. Making sure they are not in the content of the

algorithm below.

We remark that the complex $\mathrm{C}$ we are after is not the complex $[\mathrm{C}\backslash$

$N$ sing(C ) $]$ $\cup$ ( $\partial N$ (sing(C))) described above. The process described

below is significantly different. It seems illustrative to consider the

solid torus shown in figure 5(also crossed with $S^{1}$ ). In that figure

77



$\mathrm{A}\mathrm{h}’$-ANNULAR $\mathrm{C}\mathrm{O}\backslash \downarrow \mathrm{I}\mathrm{P}\mathrm{L}\mathrm{E}\mathrm{X}\mathrm{E}\mathrm{S}$ IN 3-MANIFOLDS

FIGURE 4. $\mathrm{C}$ and $[\mathrm{C}\backslash N(\mathrm{s}\dot{\mathrm{i}}\mathrm{n}\mathrm{g}(\mathrm{C}))]\cup(\partial N(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(\mathrm{C})))$

FIGURE 5. Asolid torus with many annuli.

vertical arcs represent annuli from one of the Heegaard surfaces under

consideration, and the horizontal from the other. We will refer to this

figure again as we modify C.

6. PRODUCING AN-ANNULAR $\mathrm{C}\mathrm{O}.\backslash \cdot \mathrm{I}\mathrm{P}\mathrm{L}\mathrm{E}\mathrm{X}\mathrm{E}\mathrm{S}$:THE PROCESS

We finally describe the steps for modifying C. Note that this is an

algori $\mathrm{t}\mathrm{h}\mathrm{m}$ .

Step One: tori not bounding solid tori. Let $T\subset \mathrm{C}$ be a

torus not bounding asolid torus. Then $T$ bounds apiece (denote
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$X)$ that is aknot exterior in $S^{3}$ . To see that, we first note that since

$M$ is a-toroidal $T$ compresses to asphere, and since $M$ is irreducible

this sphere bounds aball. To retrieve $T$ we tube the sphere. If this

tubing is done outside the ball the result is atorus that bounds asolid

torus. else the result is aball with atube drilled out, hence aknot

exterior in $S^{3}$ , which we denote $X$ . Our assumption that $T$ does not

bound asolid torus implies that this knot exterior is non-trivial. The

compressing disk for $T$ is in $d(M\backslash X)$ , denoted by $D_{X}$ . We get rid of

such tori in the following way: first, we remove all pieces of $\mathrm{C}$ inside of

$X$ from C. By property $\mathrm{B}$ this strictly reduces the number of sheets

in C. (Property $\mathrm{B}$ is temporarily lost.) Next, we modify the complex

by cutting it along Dx, unknotting the tube, and gluing it back. (See

Figure 6for the cut-and-paste part of this step.) This does not change

the homeomorphism type of $M\backslash int(X)$ , so we may assume the complex

had not been modified there. Property $\mathrm{B}$ had been retrieved (without

adding sheets). We continue this process (which obviously terminates)

as long as we can. We have obtained anew invariant:

Invariant 6.1. Every torus $T\subset C$ bounds a solid to us,

Remark. Prior to step one, $T$ gives adecomposition of $M$ as follows:

$M=X\cup\tau(M\backslash X)$ , where $M\backslash X$ is asolid torus connect sum $M$ . The

union is taken by attaching the meridian disk of the solid torus $(i.e$ .

79



AN-ANNULAR COMPLEXES IN 3-MANIFOLDS

FIGURE 6. Cutting aknot exterior to produce asolid torus

$D_{X})$ to $X$ to give the trivial filling of $X$ , resulting in $S^{3}\# M$ . We can

change this decomposition by modifying $X$ , replacing it by any knot

exterior we want, but to get property $\mathrm{B}$ we choose the exterior of the

trivial knot.

Step Two: cleaning maximal solid tori. We start by defining:

Definition 6.2. Asolid torus $V\subset M$ is called amaximal solid

torus if $\partial V\subset \mathrm{C}$ and $V$ is maximal with respect to inclusion among all

such solid tori.

Denote the set of all maximal solid tori by $\{V_{i}\}_{\dot{l}=1}^{n}$ , which is finite

since $\mathrm{C}$ is. We classify slopes on the boundary of asolid torus as merid-

ional (bounding adisk in the solid torus) longitudinal (intersecting a

meridian once) or cabled (all other slopes)
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FIGURE 7. Maximal solid tori intersecting in more than

acurve.

Lemma 6.3. Any trno maximal solid tori are either disjoint or inter-

sect in a single simple closed curve.

Proof. Given two maximal solid tori–say $V_{1}$ and $V_{2}$–that intersect in

more than asingle simple closed curve, either their intersection contains

more than one component or that component is not acurve ( $e.g$. an

annulus), see Figure 7. In that case, the boundary of $W=V_{1}\cup V_{2}$

consists of embedded tori. By Invariant 6.1 each of these tori bounds

asolid torus, and by the maximality of $V_{1}$ and $V_{2}$ this solid cannot

contain $W$ . Thus $M$ is the union of $W$ with solid tori. It is now easy

to see that either $M$ is aSeifert Fibered Space, or it reduces. $\square$

Let $V_{1}$ and $V_{2}$ be maximal solid tori so that $V_{1}\cap V_{2}\neq\emptyset$ . If the slope

of the intersection is longitudinal in one of the two, we amalgamate the

solid tori into asingle torus as in Figure 8. If, on both maximal solid
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$\Rightarrow$

FIGURE 8. Amalgamating maximal solid tori

tori, the slope is not longitudinal, it cannot be meridional on either solid

torus: both slopes meridional implies $M$ is reducible, one meridional

and the other cabled implies that $M$ contains apunctured lens space.

We amalgamate the solid tori anyway, thus creating (in violation of

property B) acomplementary piece that is aSeifert Fibered Space

over $S^{2}$ with two exceptional fibers. As we saw in the beginning of step

one, either its boundary bounds asolid torus (impossible: $M$ itself

would be aSeifert Fibered Space, or reducible) or the new piece is

compressible to the outside and contained in aball, in which case we

unknot it the way we did in step one.

We repeat this process (which reduces the number of singular curves

and hence terminates) until we arrive at acomplex where every two

maximal solid tori are disjoint. Next we remove from $\mathrm{C}$ every sheet in

the interior of maximal solid torus, and perturb $\mathrm{C}$ near the boundary

of such solid torus so that each curve of sing(C) has valence three. We
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get the following invariant, which is stronger than Invariant 6.1 and so

replaces it:

Invariant 6.4. Any torus embedded in $C$ bounds a solid torus, and any

two tori embedded in $C$ are disjoint and bound disjoint solid tori. The

valence of singular curves on the boundary of a solid torus is three. The

intersection of $C$ with the interior of a maximal solid torus is empty.

Remark. If we consider Figure 5, we see that at this point all the annuli

in the interior of that solid torus have been removed. This illustrates

the effectiveness of maximal solid tori and shows that after cleaning

them (step two) the complex we are left with is quite substantially

different than that we started with, and cannot be thought of as the

intersection of two surfaces any longer.

Step Three: other singular curves. Any curve of sing(C) not on

the boundary of amaximal solid torus is drilled out and the complex

is modified in the following way: for any such curve $\gamma\in \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(\mathrm{C})$ we

replace $\mathrm{C}$ by $[\mathrm{C}\backslash N(\gamma)]\cup\partial(N(\gamma))$ . After this all curve of sing(C) have

valence three. Invariant 6.4 is easily seen to hold after this step, and

we now verify Invariant 6.4.

Let $T\in \mathrm{C}$ be any torus after step three. Consider $\hat{T}$ prior to step

three. If $\hat{T}$ is it is the boundary of amaximal solid torus and hence it
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was not modified in step three. So we may assume that $\hat{T}$ is not the

boundary of amaximal solid torus. Thus some curve of sing(C) not on

the boundary of any maximal solid torus, say $\gamma$ , is on $\hat{T}$ . Collapsing

the solid tori we created in step three, we see that (unless $T$ collapses

to acurve) prior to that step $T$ is almost embedded: it may have

double curves on some curve of sing(C). But now an easy cut-and-

paste argument gives us atorus embedded in $\mathrm{C}$ (still prior to step

three) that is adjacent to $\gamma$ . The ending is easy: this torus bounds a

solid torus, which is included in amaximal solid torus, and so $\gamma$ is on

the boundary of amaximal solid torus, contradiction. To emphasize,

we obtained that any torus in $\mathrm{C}$ (after step three) is either atorus

bounding amaximal solid torus that existed prior to step three, or of

the form $N(\gamma)$ from some $\gamma\in \mathrm{C}$ that was not on the boundary of a

solid torus before step three. After renaming the collection of maximal

solid tori we get:

Invariant 6.5. Any curve of sing(C) is the boundary of three sheets,

two annuli on the boundary of maximal solid torus, and one other.

Note that since any curve of sing(C) is on the boundary of amaximal

solid torus, any annular sheet is either an annulus on the boundary of

amaximal solid torus or connects two maximal solid tori, which (by
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FIGURE 9. Amalgamating maximal solid tori along annuli

Invariant 6.4) are distinct. Finally, we need to get sheets connecting

maximal solid tori to have negative Euler characteristic, which is now

easy:

Step Four: Annuli- If asheet connecting maximal solid tori is

an annulus, amalgamate the maximal solid tori together, as shown in

Figure 9. If the resulting piece is not asolid torus, it is aSeifert Fibered

Space over $D^{2}$ with two exceptional fibers and we unknot it the way

we did at the end of steps one and two.

Checking that all invariant are preserved is similar to the final para-

graph of step three and will be omitted. The complex $\mathrm{C}$ now fulfills all

the required properties.
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