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Abstract. Let $K$ be aknot in $S^{3}$ and $g_{1}(K)$ the 1-bridge genus of K. Then P. Hoidn
showed that $g_{1}(K_{1}\# K_{2})\geq g_{1}(K_{1})+g_{1}(K_{2})-1$ for any small knots $K_{1}$ , $K_{2}$ , where
aknot is small if the exterior contains no closed essential surfaces. In the present
article, we show that Hoidn’s estimate is best possible, i.e., there are infinitely many
pairs of small knots $K_{1}$ , $K_{2}$ sucht that $g_{1}(K_{1}\# K_{2})=g_{1}(K_{1})+\mathrm{g}\mathrm{i}(\mathrm{K}2)-1$ .

1. Introduction

Let $S^{3}$ be the 3-dimensional sphere, and $K$ aknot in $S^{3}$ . We say that $(V_{1}, V_{2})$ is

aHeegaard splitting of $S^{3}$ if $S^{3}=V_{1}\cup V_{2}$ , $V_{1}\cap V_{2}=\partial V_{1}=\partial V_{2}$ and both $V_{1}$ and
$V_{2}$ are handlebodies. The genus of $V_{1}$ ( $=\mathrm{t}\mathrm{h}\mathrm{e}$ genus of H)is called the genus of
the Heegaard splitting and the surface $\partial V_{1}=\partial V_{2}$ is called the Heegaard surface of
the Heegaard splitting. Then for any knot $K$ in $S^{3}$ it is well known that there is a
Heegaard splitting $(V_{1}, V_{2})$ of $S^{3}$ such that $K$ intersects $V_{\dot{1}}$ in asingle trivial arc in
$V_{\dot{1}}$ for both $i=1,2$. Hence we define the 1-bridge genus $g_{1}(K)$ of $K$ as the minimal
genus among all such Heegaard splittings $(V_{1}, V_{2})$ of $S^{3}$ ( $\mathrm{c}.\mathrm{f}$. [Ho] and [MSY]).

For two knots $K_{1}$ , $K_{2}$ in $S^{3}$ , we denote the connected sum of $K_{1}$ and $K_{2}$ by
$K_{1}\# K_{2}$ . Then by alittle ovservation, we immediately see the following:

Fact 1.1 For any two knots $K_{1}$ and $K_{2}$ in $S^{3}$ , $g_{1}(K_{1}\# K_{2})\leq g_{1}(K_{1})+\mathrm{g}\mathrm{i}$ (K2).

Let $N(K)$ be regular neighborhood of aknot $K$ in $S^{3}$ and $E(K)=d(S^{3}-N(K))$

the exterior of $K$ . Asurface $F$ ( $=\mathrm{a}$ connected 2-manifold)properly embedded
in $E(K)$ is essential if $F$ is incompressible and is not parallel to $\partial E(K)$ or to a
subsurface of $\partial E(K)$ , and it is meridional if $\partial F\neq\emptyset$ and each component of $\partial F$ is
ameridian of $K$ . Then we say that $K$ is small if $E(K)$ conatins no closed essential
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surfaces and that $K$ is meridionally small if $E(K)$ conatins no meridional essential
surfaces. We note that if aknot in $S^{3}$ is small then it is meridionally small by
[CGLS, Theorem 2.0.3].

On the problem to esitimate the lower bound of $g_{1}(K_{1}\# K_{2})$ , P.Hoidn showed:

Theorem 1.2 ([Ho, Theorem]) Let $K_{1}$ , $K_{2}$ be two knots in $S^{3}$ . If both $K_{1}$ and
$K_{2}$ are small, then $g_{1}(K_{1}\# K_{2})\geq g_{1}(K_{1})+g(K_{2})-1$ .

In the present article, we show this esitimate is best possible:

Theorem 1.3 There are infinitely many pairs of small knots $K_{1}$ , $K_{2}$ in $S^{3}$ with
$g_{1}(K_{1}\# K_{2})=g_{1}(K_{1})+g_{(}K_{2})-1$ .

Moreover, as ageneralization of Hoidn’s theorem, we show :

Theorem 1.4 Let $K_{1}$ , $K_{2}$ be two knots in $S^{3}$ . If both $K_{1}$ and $K_{2}$ are meridionally

small, then $g_{1}(K_{1}\# K_{2})\geq g_{1}(K_{1})+g(K_{2})-1$ .

Remark 1.5 (1) By [Mol, Proposition 1.6], we see that for any integer $n>0$

there are infinitely many knots $K$ such that (i) $g_{1}(K)>n$ , (ii) $K$ is meridionally
small, (iii) $K$ is not small. This shows that Theorem 1.4 properly includes Theorem

1.2. (2) Since asmall knot is meridionally small as mentioned before, the estimate
in Theorem 1.4 is best possible by Theorem 1.3.

Let $t(K)$ be the tunnel number of aknot $K$ in $S^{3}$ , i.e., $t(K)$ is the minimal
number of mutually disjoint arcs $\gamma_{1}$ , $\gamma_{2}$ , $\cdots$ , $\gamma_{t}$ properly embedded in $E(K)$ such

that $cl(E(K)-N(\gamma_{1}\cup\gamma_{2}\cup\cdots\cup\gamma_{t}))$ is ahandlebody. Then by alittle observation
we have :

Fact 1.6 $t(K)\leq g_{1}(K)\leq t(K)+1$ for any knot K.

By the above inequality, we have $g_{1}(K)=t(K)$ or $t(K)+1$ . Let $K_{1}$ and $K_{2}$ be

small knots in $S^{3}$ , and suppose $g_{1}(K_{i})=t(K_{i})$ for both $i=1,2$ . Then by Fact 1.1,

Fact 1.6 and [MS Theorem], we have $g_{1}(K_{1})+g_{1}(K_{2})\geq g_{1}(K_{1}\# K_{2})\geq t(K_{1}\# K_{2})\geq$

$\mathrm{t}(\mathrm{K})+t(K_{2})=9\mathrm{i}\{\mathrm{K}\mathrm{i}$ ) $+g_{1}(K_{2})$ . Hence $g_{1}(K_{1}\# K_{2})=g_{1}(K_{1})+g_{1}(K_{2})$ . This tells
that to show Theorem 1.3 we need to find small knots $K$ with $g_{1}(K)=t(K)+1$ .

Let $p$ , $q$ be coprime integers, and $r$ an arbitrally integer. Then we consider the

knot obtained by adding $r$ full twists with mutually paralle 2-strands to the $(p, q)-$

torus knot as illustrated in Figure 1, and denote it by $K(p, q;r)$ (cf. [MSY])
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[Figure 1]

Then to get the canditates for Theorem 1.3, we show the following proposition
and most of the present article will be devoted into the proof of this proposition.

Proposition 1.7 For any $p$ , $q$ , $r$ , $K(p, q;r)$ is small.

Throughout the present article, we work in the piecewise linear category. For a
manifold $X$ and subcomplex $\mathrm{Y}$ in $X$ , we denote aregular neighborhood of $Y$ in $X$

by $N(\mathrm{Y}, X)$ or $N(\mathrm{Y})$ simply.

2. Proof of Theorem 1.4

To show Theorem 1.4, we need the following:

Theorem 2.1 ([Mol, Corollary 1.2]) Let $K_{1}$ and $K_{2}$ be two knots in $S^{3}$ . If
both $K_{1}$ and $K_{2}$ are meridionally small, then $t(K_{1}\# K_{2})\geq t(K_{1})+\mathrm{t}\{\mathrm{K}2)$ .

Theorem 2.2 ([M02, Theorem 1.6]) Let $K_{1}$ and $K_{2}$ be two meridionally small
knots in $S^{3}$ . Then $t(K_{1}\# K_{2})=t(K_{1})+t(K_{2})+1$ if and only if 91 (K2) $=t(K\dot{.})+1$

for both i $=1,$ 2.

Suppose both $K_{1}$ and $K_{2}$ are meridionally small. Recall that $\mathrm{g}\mathrm{i}$ (Ki) $=t(K_{i})$ or
$t(K.\cdot)+1$ for $(i=1,2)$ by Fact 1.6.

First suppose at least one of $K_{1}$ and $K_{2}$ , say $K_{1}$ , satisfies the equality $g_{1}(K_{1})=$

$t(K_{1})$ . Then $t(K_{2})\geq g_{1}(K_{2})-1$ . Since both $K_{1}$ and $K_{2}$ are meridionally small, by
the above Theorem 2.1, $t(K_{1}\# K_{2})\geq t(K_{1})+t(K_{2})$ . Hence by Fact 1.6, $g_{1}(K_{1}\# K_{2})$

$\geq t(K_{1}\# K_{2})\geq t(K_{1})+t(K_{2})\geq 91(\mathrm{K}2)+91(\mathrm{K}2)-1$ .
Next suppose $g_{1}(K_{\dot{1}})=t(K_{\dot{l}})+1$ for both $(i=1,2)$ . Then by the above Theorem

2.2, $t(K_{1}\# K_{2})=t(K_{1})+t(K_{2})+1$ . Hence by Fact 1.6, $g_{1}(K_{1}\# K_{2})\geq t(K_{1}\# K_{2})=$

$t(K_{1})+t(K_{2})+1=(g_{1}(K_{1})-1)+(g_{1}(K_{2})-1)+1=g_{1}(K_{1})+g_{1}(K_{2})-1$ . This
completes the proof of Theorem 1.4. $\square$

3. Proof of Theorem 1.3 under Proposition 1.7

To show Theorem 1.3, we need the following:

118



Lemma 3.1 ([M03, Proposition 1.7]) Let K be aknot in $S^{3}$ . If $g_{1}(K)=$

$t(K)+1$ , then $g_{1}(K\# K’)\leq g_{1}(K)$ for any 2-bridge knot $K’$ .

For convenience to the readers, we show the above lemma here. Let $(V_{1}, V_{2})$ be
aHeegaard splitting of a3-sphere $S_{1}^{3}$ which realizes the tunnel number of $K$ , i.e.,
$V_{1}$ contains $K$ as acore of ahandle of $V_{1}$ and $g(V_{1})=t(K)+1=g_{1}(K)$ . Let
$(B_{1}, \gamma_{1}\cup\delta_{1})$ and $(B_{2},\gamma_{2}\cup\delta_{2})$ be a2-bridge decomposition of $K’$ in another 3-sphere
$S_{2}^{3}$ , i.e., $(B_{i},\gamma_{i}\cup\delta_{i})$ is a2-string trivial tangle $(i=1,2)$ and $K’=\gamma_{1}$ U72 $\cup\delta_{1}\cup\delta_{2}\subset$

$B_{1}\cup B_{2}=S_{2}^{3}$ .
Let $D$ be ameridian disk of $V_{1}$ which intersects $K$ in asingle point and $N(D)$ a

regular neighborhood of $D$ in $V_{1}$ . Put $N(D)=D\cross[0,1]$ and $N(D)\cap K=x\cross[0,1]$ ,

where $x$ is apoint in intD. Let $N(\delta_{2})$ be aregular neighborhood of $\delta_{2}$ in $B_{2}$ . Put
$N(\delta_{2})=D’\cross[0,1]$ and $\delta_{2}=y\cross[0,1]$ , where $D’$ is adisk and $y$ apoint in $\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{D}7$ .

Let $K\# K’$ be the connectd sum of $K$ and $K’$ . Then $K\# K’$ is aknot in the 3-
sphere $S^{3}=d(S_{1}^{3}-N(D)) \bigcup_{\partial N(D)=\partial N(\delta_{2})}d(S_{2}^{3}-N(\delta_{2}))$ . Put $W_{1}=d(V_{1}-N(D))$ .
Then, since $N(D)\cap W_{1}=\partial N(D)\cap\partial W_{1}=D\cross\{0,1\}$ and since $N(\delta_{2})\cap B_{1}=$

$\mathrm{N}(62)\cap\partial B_{1}=D’\cross\{0,1\}$ , we can put $U_{1}=W_{1} \bigcup_{D\mathrm{x}\{0,1\}=D’\mathrm{x}\{0,1\}}B_{1}$ . Then $U_{1}$ is a
genus $g_{1}(K)$ handlebody and $(K\# K’)\cap U_{1}$ is atrivial arc in $U_{1}$ because $(K\# K’)\cap W_{1}$

is atrivial arc in $W_{1}$ and $(K\# K’)\cap B_{1}\subset B_{1}$ is a2-string trivial arc in $B_{1}$ .

On the other hand, put $W_{2}=d(B_{2}-N(\delta_{2}))$ . Then, since $N(D)\cap V_{2}=\partial N(D)\cap$

$\partial V_{2}=\partial D\cross[0,1]$ and since $N(\delta_{2})\cap W_{2}=\partial N(\delta_{2})\cap\partial W_{2}=\partial D’\mathrm{x}$ $[0,1]$ , we can put
$U_{2}=V_{2} \bigcup_{\partial D\mathrm{x}[0,1]=\partial D’\mathrm{x}[0,1]}W_{2}$. Then $U_{2}$ is genus $g_{1}(K)$ handlebody and $(K\# K’)\cap U_{2}$

is atrivial arc in $U_{2}$ because $\delta_{2}$ is atrivial arc in $B_{2}$ and $(K\# K’)\cap W_{2}$ is atrivial
arc in $W_{2}$ .

Hence $(U_{1}, U_{2})$ is agenus $g_{1}(K)$ Heegaard splitting of $S^{3}$ which gives al-bridge
decomposition of $K\# K’$ . This implies $g_{1}(K\# K’)\leq g_{1}(K)$ and completes the proof

of Lemma 3.1. $\square$ .

Now let’s prove Theorem 1.3 under Proposition 1.7. Let $m$ be an integer and

consider the knot $K_{1}=K(7,17,5m-2)$ . Then by Proposition 1.7, $K_{1}$ is small,

and by [MSY, Theorem 2.1], $t(K_{1})=1$ and $g_{1}(K_{1})=2$ . Let $K_{2}$ be a(non-trivial)

2-bridge knot in $S^{3}$ . Then $K_{2}$ is small and $g_{1}(K_{2})=1$ . Then by the above Lemma
3.1, $g_{1}(K_{1}\# K_{2})\leq g_{1}(K_{1})=2$ . On the other hand, $g_{1}(K_{1}\# K_{2})\underline{>}2$ because 1-
bridge genus one knots are prime by [No, Sc] and Fact 1.6. Thus $g_{1}(K_{1}\# K_{2})=2$

and $g_{1}(K_{1}\# K_{2})=g_{1}(K_{1})+g_{1}(K_{2})-1$ for the small knots $K_{1}$ , $K_{2}$ . This completes
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the proof of Theorem 1.3. $\square$

4. Preliminaries for the proof of Propositions 1.7

Put $K=K(p, q;r)$ , $N(K)$ aregular neighborhood of $K$ in $S^{3}$ and $E(K)=$
$d(S^{3}-N(K))$ the exterior. If $r=0$ , then $K$ is a $(p, q)$-torus knot and is small.
Hence hereafter we assume that $r\neq 0$ . Let $(W_{1}, W_{2})$ be agenus two Heegaard
splitting of $S^{3}$ and $(D_{1}, D_{2})\subset(W_{1}, W_{2})$ acancelling disk pair, i.e., $D_{i}$ is anon-
separating disk of W.$\cdot$ $(i=1,2)$ and $D_{1}\cap D_{2}=\partial D_{1}\cap\partial D_{2}=\mathrm{a}$ single point. Let
$N(D_{1})$ be aregular neighborhood of $D_{1}$ in $W_{1}$ , and regard $N(D_{1})$ as aproduct
space $D_{1}\cross[0,1]$ with $D_{1}=D_{1} \cross\{\frac{1}{2}\}$ . Put $D_{1}^{0}=D_{1}\cross\{0\}$ , $D_{1}^{1}=D_{1}\cross\{1\}$ ,
$V_{1}=d(W_{1}-N(D_{1}))$ and $V_{2}=W_{2}\cup N(D_{1})$ . Then $V_{1}\cap N(D_{1})=D_{1}^{0}\cup D_{1}^{1}$ , and we
can put $\mathrm{d}\mathrm{D}2=\gamma_{1}\cup\gamma_{2}$ , where $\partial D_{2}\cap V_{1}=\gamma_{1}$ and $\partial D_{2}\cap \mathrm{N}(\mathrm{D}\mathrm{i})=\gamma_{2}$ .

Consider the knot $K$ as asimple closed curve in $\partial W_{1}=\mathrm{d}\mathrm{W}2$ so that those $r$

full twists are in $\partial N(D_{1})$ as illustrated in Figure 2. Then we may assume that
$D_{1}\cap K=\partial D_{1}\cap K=\mathrm{t}\mathrm{w}\mathrm{o}$ points and $D_{2}\cap K=\gamma_{2}\cap K=|2r|$ points.

[Figure 2]

To show Proposition 1.7, we show that $K$ is small and meridionally small simulta-
neously. Suppose, for acontradiction, $E(K)$ contains ameridional essential surface
or aclosed essential surface, say $\check{F}$ . Let $F$ be aclosed surface obtained from $\check{F}$ by
adding meridian disks of $N(K)$ to each component of $\partial\check{F}$ . Note that $F=\check{F}$ if $\check{F}$

is closed. Hereafter we consider $F$ instead of $\check{F}$ . Then $F$ intersects $K$ in several
points (possibly $F\cap K=\emptyset$ ), $F-K$ is incompressible in $S^{3}-K$ and $F$ is not a
2-sphere which bounds a3-ball intersecting $K$ in atrivial arc. By general position
argument, we may assume that $D_{1}\cap K\cap F=\emptyset$ , and hence $\mathrm{N}(\mathrm{D}\mathrm{i})\cap K\cap F=\emptyset$ .
Then by the incompressibility of $F-K$, we may assume that $D_{1}\cap F$ consists of $n$

axes for some integer $n\geq 0$ and $N(D_{1})\cap F$ consists of $n$ rectangles, where each arc
of $D_{1}\cap F$ separates the two points $D_{1}\cap K$ as illustrated in Figure 3. We assume
that $n$ is minimal among all such meridional or closed essential surfaces in $E(K)$ .
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[Figure 3]

Put $F\cap V_{1}=F_{1}$ , $F\cap N(D_{1})=F_{2}$ and $F\cap W_{2}=F_{3}$ , then $F\cap W_{1}=F_{1}\cup F_{2}$ . By
the incompressibility of $F-K$ in $S^{3}-K$ and the irreducibility of $S^{3}-K$ , we may
assume that $F_{1}$ is incompressible in $V_{1}$ . Put $K\cap V_{1}=d(K-\mathrm{N}(\mathrm{D}\mathrm{i}))=k_{1}\cup k_{2}=$

two arcs in $\partial V_{1}$ .

Lemma 4.1 (1) There is no pair of a subarc $\alpha$ of $k_{1}\cup k_{2}$ and an arc $\beta$ properly
embedded in $F_{1}$ such that $\alpha\cap\beta=\partial\alpha=\partial\beta$ and $\alpha\cup\beta$ bounds a disk in $V_{1}$ . (2) There
is no 2-gon in $(k_{1}\cup k_{2})\cup\partial F_{1}$ , which bounds a disk in $\partial V_{1}$ .

Proof. (1) Suppose there is such apair $\alpha$ , $\beta$ , and let $\triangle$ be the disk in $V_{1}$ with
$\partial\triangle=\alpha\cup\beta$. Let $N(\triangle)$ be aregular neighborhood of $\triangle$ in $S^{3}$ such that $N(\triangle)\cap F$

is adisk which is aregular neighborhood of $\beta$ in $F$ , denote it by $N(\beta, F)$ . Put
$c=\partial N(\beta, F)$ . Then, since $c$ is aloop in $\partial N(\triangle)$ , $c$ bounds adisk in $S^{3}$ - $K$ . If $c$ is
essential in $F-K$, then $F-K$ is compressible in $S^{3}-K$ , acontradiction. If $c$ is
inessential in $F-K$, then $F$ is a2-sphere which bounds a3-ball intersecting $K$ in
atrivial arc, acontradiction. Hence there is no such pair.

(2) If there is such a2-gon in $(k_{1}\cup k_{2})\cup\partial F_{1}$ , then we can find asubarc $\alpha\subset k_{1}\cup k_{2}$

and an arc $\beta\subset F_{1}$ satisfying the condition (1), acontradiction. Hence there is no
such 2-g0n. $\square$

By noting the incompressibility of $F-K$ in $S^{3}-K$ , we have the next two lemmas.

Lemma 4.2 $n>0$ , where $n$ is the number of the arcs $D_{1}\cap F=D_{1}\cap F_{2}$ .

Lemma 4.3 Each component of $F_{3}\cap D_{2}$ is an arc connecting $\gamma_{1}$ and $\gamma_{2}$ , and there
are exactly two outer most arc components each of which cuts off a disk intersect $K$

in a single point and contains a point of $\partial\gamma_{1}=\partial\gamma_{2}$ as in Figure 5. Hence the number

of the points $\gamma_{1}\cap\partial F_{1}$ is $(2|r|-1)n$ .

[Figure 4]

Since $F_{1}$ is incompressible in the solid torus $V_{1}$ , each component of $F_{1}$ is a $\partial-$

parallel disk, a $\partial$-parallel annulus or ameridian disk of $V_{1}$ . Recall the notation
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$D_{1}^{0}$ , $D_{1}^{1}$ , $k_{1}$ and $k_{2}$ . Then by several arguments we have :

Lemma 4.4 Let $G$ be $a\partial$ -parallel disk component of $F_{1}$ and $G’$ a disk in ay to
which $G$ is parallel. Then one of the folloing folds:

(1) $G’$ is a small regular neighborhood of $k_{i}$ in $\partial V_{1}(i=1,2)$ ,
(2) $G’$ is a small regular neighborhood of $D_{1}^{\dot{\iota}}$ in $\partial V_{1}(i=0,1)$ ,
(3) $G’$ is a small regular neighborhood of $D_{1}^{0}\cup k:\cup D_{1}^{1}$ in $\partial V_{1}(i=1,2)$ .

Lemma 4.5 Let $G$ be $a\partial$-parallel anntlus component of $F_{1}$ and $G’$ an annul us in
$\partial V_{1}$ to which $G$ is parallel. Then $G’$ is a small regular neighborhood of $D_{1}^{0}\cup k_{1}\cup D_{1}^{1}\cup k_{2}$

in $\partial V_{1}$ .

Moreover, concerning $\partial$-parallel disk components of $F_{1}$ in $V_{1}$ , we get astronger
result than that of Lemma 4.4 as follows :

Lemma 4.6 Let $G$ be $a\partial$-parallel disk component of $F_{1}$ and $G’$ a disk in $\partial V_{1}$ to
which $G$ is parallel. Then $G’$ is a small regular neighborhood of $k_{1}$ or of $k_{2}$ in $\partial V_{1}$ ,

and all such disks are murually parallel.

5. Sketch Proof of Proposition 1.7

Recall the notations in section 4, and recall that each component of $F_{1}$ is a $\partial-$

parallel disk, a $\partial$-parallel annulus or ameridian disk in $V_{1}$ . Then we have the two
cases. Case $\mathrm{I}:F_{1}$ contains no meridian disks and Case $\mathrm{I}\mathrm{I}:F_{2}$ contains ameridian
disk.

Suppose we are in Case I. In this case, by Lemmas 4.5 and 4.6, $F_{1}$ consists
of mutually parallel $\partial$-paralle disks and mutually parallel $\partial$-parallel annuli. Let
$\tilde{E}=E_{1}\cup E_{2}\cup\cdots\cup E_{n}$ be the disks each of which is parallel to asmall regular
neighborhood of $k_{1}$ in $\partial V_{1}$ and $\tilde{A}=A_{1}\cup A_{2}\cup\cdots\cup A_{\ell}$ the annuli each of which is
parallel to asmall regular neighborhood of $D_{1}^{0}\cup k_{1}\cup D_{1}^{1}\cup k_{2}$ in $\partial V_{1}$ . Note that $n$ is
the number of the arcs $D_{1}\cap F$ and $2\mathit{1}=(2|r|-1)n$ by Lemma 4.3 (see Figure 5). Let
$D_{3}$ be ameridian disk of $W_{2}$ such that $\partial D_{3}$ is alongitude of $V_{1}$ . Since $D_{1}^{0}\cap k_{1}\cap D_{1}^{1}$

can be homotopic to apoint in $\partial V_{1}$ . We may assume that $\partial D_{3}\cap(D_{1}^{0}\cup k_{1}\cup D_{1}^{1})=\emptyset$ ,

and hence $\partial D_{3}\cap\tilde{E}=\emptyset$ . Aschematic picture of $(\partial\tilde{E}, \partial\tilde{A}, \partial D_{3}, D_{1}^{0}, D_{1}^{1},\gamma_{1}, k_{1}, k_{2})$ on
$\partial V_{1}$ is illustrated in Figure 5.
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[Figure 5]

Since we may assume that there is no 2-gon in $\partial D_{3}\cup k_{1}\cup k_{2}\cup\partial F_{1}$ , the arrangement

of the points $\partial D_{3}\cap(k_{1}\cup k_{2}\cup\partial F_{1})$ on $\partial D_{3}$ is as in Figure 6, where the big points are the

points of $\partial D_{3}\cap(k_{1}\cup k_{2})$ and the small points are the points of $\partial D_{3}\cap\partial F_{1}=\partial D_{3}\cap\partial\tilde{A}$ .

We note that there are some small points between any two successive big points

because of $\tilde{A}\neq\emptyset$ by $2\mathit{1}=(2|r|-1)n>$. 0.

[Figure 6]

By the incompressibility of $F$ in $S^{3}-K$ we may assume that each component of
$D_{3}\cap(F\cap W_{2})=\mathrm{D}3\mathrm{D}$ F3 is an are Let $\alpha$ be an outermost arc component of $D_{3}\cap F_{3}$

in $D_{3}$ and $\beta$ the corresponding arc in $\partial D_{3}$ with $\alpha\cap\beta=\partial\alpha=\partial\beta$ . Then we have

the two subcases. Case I-a : $\beta\cap(k_{1}\cup k_{2})\neq\emptyset$ and Case I-b : $\beta\cap(k_{1}\cup k_{2})=\emptyset$.

Suppose we are in Case I-a. In this case, $\alpha$ meets asingle component of $\tilde{A}$ , say Ai.

Then we can take an arc, say $\alpha’$ properly embedded in $A_{1}$ , with $\alpha\cap\alpha’=\partial\alpha=\partial\alpha’$ .

Since $\alpha’\cup\beta$ bounds aboundary compressing disk for $A_{1}$ in $V_{1}$ , together with the

outer most disk for $\alpha$ in $D_{3}$ , a $\cup\alpha$’bounds adisk, say $\triangle$ , which intersects $K$ in a
single point. Perform a2-surgery for $F$ along $\triangle$ , and let $\tilde{F}$ be the surface after the

surgery. Then $cl(\tilde{F}-N(K))$ is ameridional essential surface properly embedded

in $E(K)$ , and $A_{1}$ is changed to the disk in conclusion (3) of Lemma 4.4. This

contradicts Lemma 4.6. Hence Case I-a does not occur.
Suppose we are in Case I-b. In this case, $\alpha$ connects two components of $\tilde{A}$ , say

$A_{1}$ , $A_{2}$ . Perform aboundary compression of $F_{3}$ along the outermost disk for $\alpha$ . Let $b$

be the band in $V_{1}$ produced by the boundary compression. Then $A_{1}\cup b\cup A_{2}$ is adisk

with two holes, and one component of $\partial(A_{1}\cup b\cup A_{2})$ bounds adisk in $\partial V_{1}$ because
$A_{1}$ and $A_{2}$ are mutually parallel. Then by the incompressibility of $F-K$, we can

eliminate the components $A_{1}$ , $A_{2}$ , and we can decrease the number $n$ becasuse of

$2\ell=(2|r|-1)n$ , acontradiction. Hence Case I-b does not occur and this completes

the proof of Case I.
Suppose we are in Case $\mathrm{I}\mathrm{I}$ . In this case, by Lemmas 4.5 and 4.6, $F_{1}$ consists of

mutually parallel $\partial$-parallel disks and mutually parallel meridian disks. Let $\tilde{E}=$
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$E_{1}\cup E_{2}$ $\cup\cdots\cup E_{r}$ be the $\partial$-parallel disks each of which is parallel to asmall regular
neighborhood of $k_{1}$ in $\partial V_{1}$ and $\tilde{M}=M_{1}\cup M_{2}\cup\cdots\cup M_{s}$ the meridian disks. In
this case $r\geq 0$ and $s>0$ . Let $D_{3}$ be ameridian disk of $W_{2}$ such that $\partial D_{3}$ is
alongitude of $V_{1}$ . Since $M_{1}$ , $M_{2}$ , $\cdots$ , $M_{s}$ are all mutually parallel, we can take an
annulus, say $A$ , in $\partial V_{1}$ such that $A$ contains $\partial\tilde{M}$ and each $\partial M_{\dot{1}}$ $(i=1,2, \cdots, s)$

is acentral loop of $A$ . Then we may assume that $\partial D_{3}$ intersect $A$ in asingle
essential arc properly embedded in $A$ and $\partial D_{3}$ intersects each $\partial M_{\dot{l}}$ in asingle point.
Then, since we may assume that $\partial D_{3}\cap\tilde{E}=\emptyset$ , the arrangement of the intersection
$\partial D_{3}\cap(k_{1}\cup k_{2}\cup D_{1}^{0}\cup D_{1}^{1}\cup\partial F_{1})$ on $\partial D_{3}$ is as in Figure 7, where the big points are
the points of $\partial D_{3}\cap(k_{1}\cup k_{2})$ , fat arcs are the arcs of $\partial D_{3}\cap(D_{1}^{0}\cup D_{1}^{1})$ and the small
points are the points of $\partial D_{3}\cap\partial F_{1}=\partial D_{3}\cap\partial\tilde{M}$ .

[Figure 7 1

Let $\alpha$ be an outermost arc component of $D_{3}\cap F_{3}$ in $D_{3}$ and $\beta$ the corresponding
arc in $\partial D_{3}$ with $\alpha\cap\beta=\partial\alpha=\partial\beta$. Perform aboudary compression for $F_{3}$ along
the outermost disk for $\alpha$ , and let $b$ be the band in $V_{1}$ produced by the boundary
compression. Then we may assume that $b$ connects $M_{1}$ and $M_{2}$ , and by observing
the upper side of 6, we have the five cases (i) $-(\mathrm{v})$ illustrated in Figure 8.

[Figure 8]

Suppose, for example, we are in case (i). In this case, we can find apair of arcs
$\alpha,\beta$ as in Lemma 4.1, acontradiction. In the other cases, we get contradictions
similarly. Hence Case II does not occur and this completes the proof of Proposition
1.7 and Theorem 1.3. $\square$
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