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Abstract. Let K be a knot in S? and g;(K) the 1-bridge genus of K. Then P. Hoidn
showed that g;(K1#K2) > 91(K1) + g1(K2) — 1 for any small knots K7, K3, where
a knot is small if the exterior contains no closed essential surfaces. In the present

article, we show that Hoidn’s estimate is best possible, i.e., there are infinitely many
pairs of small knots K, K, sucht that g, (K #K>) = ¢:(K1) + 91(K3) — 1.

1. Introduction

Let S be the 3-dimensional sphere, and K a knot in S3. We say that (Vi, V%) is
a Heegaard splitting of S3 if S° = VU V;, Vi NV, = 8V; = 0V, and both V; and
V, are handlebodies. The genus of V; ( = the genus of V5 ) is called the genus of
the Heegaard splitting and the surface V; = 0V; is called the Heegaard surface of
the Heegaard splitting. Then for any knot K in S3 it is well known that there is a
Heegaard splitting (V1, V2) of S® such that K intersects V; in a single trivial arc in
V; for both ¢ = 1,2. Hence we define the 1-bridge genus g;(K) of K as the minimal
genus among all such Heegaard splittings (V;, V3) of S® (c.f. [Ho| and [MSY]).

For two knots Kj, K; in S3, we denote the connected sum of K; and K, by

Ki1#K,. Then by a little ovservation, we immediately see the following :
Fact 1.1  For any two knots K; and K, in S, gi(K1#K>3) < g1(K1) + 91(K3).

Let N(K) be a regular neighborhood of a knot K in S2 and E(K) = cl(S3—N(K))
the exterior of K. A surface F' ( = a connected 2-manifold ) properly embedded
in E(K) is essential if F' is incompressible and is not parallel to E(K) or to a
subsurface of dE(K), and it is meridional if 8F # @ and each component of JF is
a meridian of K. Then we say that K is small if E(K) conatins no closed essential



surfaces and that K is meridionally small if E(K) conatins no meridional essential
surfaces. We note that if a knot in S® is small then it is meridionally small by
[CGLS, Theorem 2.0.3].

On the problém to esitimate the lower bound of g;(K;#K>), P.Hoidn showed :

Theorem 1.2 ([Ho, Theorem]) Let Ki, K, be two knots in S®. If both K; and
K, are small, then g, (K1#K2) > g1(K1) + 9(K2) — 1.

In the present article, we show this esitimate is best possible :

Theorem 1.3  There are infinitely many pairs of small knots K;, K, in S® with
91 (K1#K3) = g1(K1) + g K2) — 1.

Moreover, as a generalization of Hoidn’s theorem, we show :

Theorem 1.4 Let K, K, be two knots in S®. If both K, and K, are meridionally
small, then gi(K1#K>2) > g1(K1) + gK2) — 1.

Remark 1.5 (1) By [Mol, Proposition 1.6], we see that for any integer n > 0
there are infinitely many knots K such that (i) g1(K) > n, (ii) K is meridionally
small, (iii) K is not small. This shows that Theorem 1.4 properly includes Theorem
1.2. (2) Since a small knot is meridionally small as mentioned before, the estimate

in Theorem 1.4 is best possible by Theorem 1.3.

Let ¢(K) be the tunnel number of a knot K in S3, i.e., {(K) is the minimal
number of mutually disjoint arcs 1,72, -,y properly embedded in E(K) such
that cl(E(K) — N(y1U~2U---U~)) is a handlebody. Then by a little observation

we have :
Fact 1.6 (K) < g1(K) <t(K)+1 for any knot K.

By the above inequality, we have ¢;(K) = t(K) or t(K) + 1. Let K; and K3 be
small knots in 2, and suppose g¢;(K;) = t(K;) for both ¢ = 1,2. Then by Fact 1.1,
Fact 1.6 and [MS Theorem], we have g;(K;)+ g1(K2) > g1(K1#K>) > t(Kl#Ké) >
t(Ky) + t(K,) = g1(K1) + g1(K2). Hence g1 (K 1#K3) = g1(K1) + g1(Kz2). This tells
that to show Theorem 1.3 we need to find small knots K with ¢;(K) = t(K) + 1.

Let p, ¢ be coprime integers, and r an arbitrally integer. Then we consider the
knot obtained by adding r full twists with mutually paralle 2-strands to the (p, q)-
torus knot as illustrated in Figure 1, and denote it by K(p,q;r) (cf. [MSY]).
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[ Figure 1 ]

Then to get the canditates for Theorem 1.3, we show the following proposition

and most of the present article will be devoted into the proof of this proposition.
Proposition 1.7  For any p,q,r, K(p, q;r) is small.

Throughout the present article, we work in the piecewise linear category. For a
manifold X and subcomplex Y in X, we denote a regular neighborhood of Y in X
by N(Y,X) or N(Y) simply.

2. Proof of Theorem 1.4
To show Theorem 1.4, we need the following :

Theorem 2.1 ([Mol, Corollary 1.2]) Let K; and K, be two knots in S3. If
both K; and K, are meridionally small, then t(K1#Kz) > t(K,) + t(K3).

Theorem 2.2 ([Mo2, Theorem 1.6]) Let K; and K, be two meridionally small
knots in S®. Then t(K\#K>) = t(K1) + t(K2) + 1 if and only if g, (K:) = t(K;) + 1
for both i = 1,2.

Suppose both K; and K are meridionally small. Recall that g,(K;) = t(K;) or
t(K;) + 1 for (i = 1,2) by Fact 1.6.

First suppose at least one of K; and K, say Kj, satisfies the equality g;(K;) =
t(K1). Then t(K3) > g1(K2) — 1. Since both K; and K, are meridionally small, by
the above Theorem 2.1, t(K1#K3) > t(K;) +t(K3). Hence by Fact 1.6, g; (K #K>)
2 H(K1#K3) 2 t(K1) + H(K2) > g1(K1) + g1(K3) — 1.

Next suppose g:(K;) = t(K;) +1 for both (¢ = 1,2). Then by the above Theorem
2.2, {(K1#Kz) = t(K,) + t(K2) + 1. Hence by Fact 1.6, g,(K1#K3) > t{(K \#K>) =
t(K1) +t(Kz) +1 = (1(K1) — 1) + (91(K2) — 1) + 1 = g1(K1) + g1(K2) — 1. This
completes the proof of Theorem 1.4. O

3. Proof of Theorem 1.3 under Proposition 1.7

To show Theorem 1.3, we need the following :



Lemma 3.1 ([Mo3, Proposition 1.7]) Let K be a knot in S%. If g,(K) =
t(K) + 1, then g1 (K#K') < g1(K) for any 2-bridge knot K’

For convenience to the readers, we show the above lemma here. Let (V;,V3) be
a Heegaard splitting of a 3-sphere S? which realizes the tunnel number of K, i.e.,
Vi contains K as a core of a handle of V; and g(V;) = t¢(K) + 1 = ¢1(K). Let
(B1,v1Ué;) and (Bg,y2 U é2) be a 2-bridge decomposition of K’ in another 3-sphere
S3, i.e., (B, %:U§;) is a 2-string trivial tangle (i = 1,2) and K’ = 11U Ué Uéb, C
B, UBy = S3. |

Let D be a meridian disk of V; which intersects K in a single point and N(D) a
regular neighborhood of D in V;. Put N(D) = D x[0,1] and N(D)NK =z x [0, 1],
where z is a point in IntD. Let N(6;) be a regular neighborhood of 63 in B,. Put
N(63) = D' x[0,1] and 6, = y x [0, 1], where I is a disk and y a point in IntD'.

Let K#K' be the connectd sum of K and K’. Then K #K' is a knot in the 3-
sphere S = cl(S? — N(D)) Uan(p)=an(sz) (S5 — N(62)). Put Wy = (Vi — N(D)).
Then, since N(D) N W; = ON(D) N dW; = D x {0,1} and since N(62) N B; =
AN (63) NOB; = D' x {0,1}, we can put Uy = W} Upxjo,13=p'x{0,1} B1.- Then U; is a
genus g;(K) handlebody and (K#K')NU, is a trivial arc in U; because (K#K')NW;
is a trivial arc in W; and (K#K') N B; C B is a 2-string trivial arc in B;.

On the other hand, put Wy = cl(Bs — N(62)). Then, since N(D)NV, =3N(D)N
OVy = 8D x [0,1] and since N(62) N Wa = ON(62) N W, = 8D’ x [0, 1], we can put
Uz = VaUspx(o,11=00'x[0,1]W2. Then U, is a genus g; (K) handlebody and (K#K")NU,
is a trivial arc in Uy because 85 is a trivial arc in By and (K#K') N W, is a trivial
arc in Ws.

Hence (Uy, Us) is a genus g;(K) Heegaard splitting of S® which gives a 1-bridge
decomposition of K#K’. This implies g;(K#K') < ¢1(K) and completes the proof
of Lemma 3.1. 0.

Now let’s prove Theorem 1.3 under Proposition 1.7. Let m be an integer and
consider the knot K; = K(7,17,5m — 2). Then by Proposition 1.7, K; is small,
and by [MSY, Theorem 2.1, t(K;) = 1 and ¢1(K1) = 2. Let K, be a (non-trivial)
2-bridge knot in S3. Then K3 is small and g;(K2) = 1. Then by the above Lemma
3.1, gi(K1#K3) < g1(K1) = 2. On the other hand, ¢;(K1#K2) > 2 because 1-
bridge genus one knots are prime by [No, Sc| and Fact 1.6. Thus ¢;(K1#K2) = 2
and g (K1#K32) = g1(K1) + g1(K2) — 1 for the small knots K7, K. This completes
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the proof of Theorem 1.3. O

4. Preliminaries for the proof of Propositions 1.7

Put K = K(p,q;r), N(K) a regular neighborhood of K in S® and E(K) =
cl(S® — N(K)) the exterior. If r = 0, then K is a (p, g)-torus knot and is small.
Hence hereafter we assume that r # 0. Let (W7, W;) be a genus two Heegaard
splitting of S® and (Dy, D;) C (W;, Ws) a cancelling disk pair, i.e., D; is a non-
separating disk of W; (i = 1,2) and D, N Dy = 8D, N @D, = a single point. Let
N(D,) be a regular neighborhood of D; in W), and regard N(D,) as a product
space Dy x [0,1] with D; = Dy x {1}. Put D? = D; x {0}, D} = D, x {1},
Vi =cd(W1 - N(D)) and V, = W U N(D;). Then Vi N N(D,) = D? U D}, and we
can put Dy = vy, Uy, where 0D, NV} = v, and 8Dy N N(Dy) = 7,.

Consider the knot K as a simple closed curve in W; = W, so that those r
full twists are in N(D,) as illustrated in Figure 2. Then we may assume that
D, N K =9dD; N K = two points and D, N K = v2 N K = |27| points.

[ Figure 2 ]

To show Proposition 1.7, we show that K is small and meridionally small simulta-
neously. Suppose, for a contradiction, E(K) contains a meridional essential surface
or a closed essential surface, say F. Let F be a closed surface obtained from F by
adding meridian disks of N(K) to each component of F. Note that F' = F if F’
is closed. Hereafter we consider F instead of F. Then F intersects K in several
points ( possibly FNK =0 ), F — K is incompressible in S® — K and F is not a
2-sphere which bounds a 3-ball intersecting K in a trivial arc. By general position
argument, we may assume that D; N K N F = (), and hence N(D;)NKNF = {.
Then by the incompressibility of F — K, we may assume that D; N F' consists of n
arcs for some integer n > 0 and N(D;) N F consists of n rectangles, where each arc
of D) N F separates the two points D; N K as illustrated in Figure 3. We assume
that n is minimal among all such meridional or closed essential surfaces in E(K).
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[ Figure 3 ]

Put FﬂVl = Fl,FﬂN(Dl) = F2 and FﬂWz = F3, then FﬂWl = F1UF2. By
the incompressibility of F — K in S3 — K and the irreducibility of S* — K, we may
assume that F} is incompressible in V3. Put KNV} = d(K — N(D,)) = k;Uky =

two arcs in 0V].

Lemma 4.1 (1) There is no pair of a subarc a of k; U ky and an arc 3 properly
embedded in Iy such that aNB = 0a = 06 and aU B bounds a disk in V,. (2) There
is no 2-gon in (k; U k2) U OF;, which bounds a disk in OV;.

Proof. (1) Suppose there is such a pair «, 3, and let A be the disk in V; with
OA = aU . Let N(A) be a regular neighborhood of A in S3 such that N(A) N F
is a disk which is a regular neighborhood of  in F, denote it by N(8,F). Put
¢ = ON(B, F). Then, since c is a loop in dN(A), ¢ bounds a disk in 2 — K. If cis
essential in F' — K, then F' — K is compressible in S — K, a contradiction. If c is
inessential in F' — K, then F is a 2-sphere which bounds a 3-ball intersecting K in
a trivial arc, a contradiction. Hence there is no such pair.

(2) If there is such a 2-gon in (k; Uky) UOF], then we can find a subarc o C ky Uk,
and an arc B C Fj satisfying the condition (1), a contradiction. Hence there is no

such 2-gon. O
By noting the incompressibility of F'— K in S% — K, we have the next two lemmas.
Lemma 4.2 n > 0, where n is the number of the arcs D1 N F = D; N F.

Lemma 4.3 Each component of F3N Dy is an arc connecting y; and 2, and there
are ezxactly two outermost arc components each of which cuts off a disk intersect K
in a single point and contains a point of 0y, = 07y as in Figure 5. Hence the number
of the points y1 N OF; is (2|r| — 1)n.

[ Figure 4 ]

Since Fj is incompressible in the solid torus Vi, each component of F; is a O-

parallel disk, a O-parallel annulus or a meridian disk of V;. Recall the notations
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DY, D}, k; and ko. Then by several arguments we have :

Lemma 4.4 Let G be a O-parallel disk component of Fi and G’ a disk in 9V; to
which G 1is parallel. Then one of the following folds :

(1) G’ is a small regular neighborhood of k; in 0V} (i = 1,2),

(2) G' is a small regular neighborhood of D} in 8V (i =0,1),

(8) G' is a small regular neighborhood of DY U k; U D} in 8V; (i = 1,2).

Lemma 4.5 Let G be a 0-parallel annulus component of F; and G’ an annulus in
AV to which G is parallel. Then G’ is a small regular neighborhood of DSUk,UD} Uk,
in V.

Moreover, concerning O-parallel disk components of Fj in V;, we get a stronger

result than that of Lemma 4.4 as follows :

Lemma 4.6 Let G be a 0-parallel disk component of Fy, and G’ a disk in V) to
which G is parallel. Then G’ is a small reqular neighborhood of k; or of ky in OV},

and all such disks are mutually parallel.

5. Sketch Proof of Proposition 1.7

Recall the notations in section 4, and recall that each component of F; is a 0-
parallel disk, a 0-parallel annulus or a meridian disk in V;. Then we have the two
cases. Case I : I} contains no meridian disks and Case II : F;, contains a meridian
disk.

Suppose we are in Case I. In this case, by Lemmas 4.5 and 4.6, F} consists
of mutually parallel 0-paralle disks and mutually parallel d-parallel annuli. Let
E = EyUE,U..-UE, be the disks each of which is parallel to a small regular
neighborhood of k; in 0V; and A=A UAyU---U A, the annuli each of which is
parallel to a small regular neighborhood of D U k; U D} Uk, in 8V;. Note that n is
the number of the arcs D; N F and 2¢ = (2|r| —1)n by Lemma 4.3 (see Figure 5). Let
Ds be a meridian disk of W, such that dDs is a longitude of V;. Since DNk, N D}
can be homotopic to a point in 8V;. We may assume that dD;N (D{Uk; UD}) = 0,
and hence dD3 N E = 0. A schematic picture of (8E, A, dDs, D?, D}, v, ki, k) on
0V, is illustrated in Figure 5. |
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[ Figure 5 ]

Since we may assume that there is no 2-gon in 0D3Uk; Uk UOF], the a.rrangement
of the points D3N (k;Uk2UOF;) on 0Ds is as in Figure 6, where the big points are the
points of D3N (k; Ukz) and the small poihts are the points of dD3sNOF; = 8D;NHA.
We note that there are some small poihts between any two successive big points
because of A # 0 by 2¢ = (2|r] — 1)n > 0.

[ Figure 6 ]

By the incompressibility of F' in S® — K we may assume that each component of
D3N (FNW,) = D3N F3 is an arc. Let a be an outermost arc component of D3N F3
in D3 and 3 the corresponding arc in D3 with a N B = da = 0B. Then we have
the two subcases. Case I-a : BN (k; Uky) # @ and Case I-b : BN (kg Uky) = 0.

Suppose we are in Case I-a. In this case, o meets a single component of A, say A.
Then we can take an arc, say o/ properly embedded in A;, with an of = da = dd.
Since o/ U 8 bounds a boundary compressing disk for A; in V;, together with the
outer most disk for a in D3, a U o bounds a disk, say A, which intersects K in a
single point. Perform a 2-surgery for F' along A, and let F be the surface after the
surgery. Then cl(F — N(K)) is a meridional essential surface properly embedded
in E(K), and A; is changed to the disk in conclusion (3) of Lemma 4.4. This
contradicts Lemma 4.6. Hence Case I-a does not occur.

Suppose we are in Case I-b. In this case, o connects two components of A, say
A;, Ag. Perform a boundary compression of Fj3 along the outermost disk for a. Let b
be the band in V; produced by the boundary compression. Then A; UbU A, is a disk
with two holes, and one component of 9(A; UbU A,) bounds a disk in V; because
A; and A, are mutually parallel. Then by the incompressibility of F' — K, we can
eliminate the components A;, A2, and we can decrease the number n becasuse of
2¢ = (2|r| — 1)n, a contradiction. Hence Case I-b does not occur and this completes
the proof of Case 1.

Suppose we are in Case II. In this case, by Lemmas 4.5 and 4.6, F; consists of

mutually parallel d-parallel disks and mutually parallel meridian disks. Let E =
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EyUE,U---UE, be the J-parallel disks each of which is parallel to a small regular
neighborhood of k; in dV; and M = M, UMy U ---U M, the meridian disks. In
this case > 0 and s > 0. Let D3 be a meridian disk of W5, such that 8Ds is
a longitude of V;. Since Mi, My, ---, M, are all mutually parallel, we can take an
annulus, say A, in 8V, such that A contains &M and each M; (t=12---,8)
is a central loop of A. Then we may assume that dDj; intersect A in a single
essential arc properly embedded in A and dD; intersects each dM; in a single point.
Then, since we may assume that D3 N E = 0, the arrangement of the intersection
dD5N (ky U ka U DY U D} U 8F}) on 8D; is as in Figure 7, where the big points are
the points of D3 N (k1 U k), fat arcs are the arcs of dD3 N (DY U D}) and the small
points are the points of D3 N dF, = D5 N M.

[ Figure 7 ]

Let a be an outermost arc component of D3 N F3 in D3 and 3 the corresponding
arc in D3 with a N B = da = 0. Perform a boudary compression for F3 along
the outermost disk for a, and let b be the band in V; produced by the boundary
compression. Then we may assume that b connects M; and M,, and by observing
the upper side of b, we have the five cases (i) — (v) illustrated in Figure 8.

[ Figure 8 ]

Suppose, for example, we are in case (i). In this case, we can find a pair of arcs
a,f as in Lemma 4.1, a contradiction. In the other cases, we get contradictions
similarly. Hence Case II does not occur and this completes the proof of Proposition
1.7 and Theorem 1.3. ]
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