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1. JNTRODUCTION

From 1985 to 1995, there was adevelopment on the exsitence of a
crepant resolution for quotient singularities which were given by finite
subgroups of $SL(3, \mathbb{C})$ . This problem was based on the conjecture by
Hirzebruch and H\"ofer ([7]) which came from the result in the super-
string theory and some people called it Vafa’s formula, ([4]).

The author proved the conjecture for nonabelian monomial groups
around 1994 ([8], [9]) and recently there are some physical papers on D-
branes which were related with these singularities ([6], [14]). The top0-
logical property can be explained by McKay correspondece in math-
ematics and also by $\mathrm{T}$-duality in physics. They look different but it
seems that they are deeply related.

In this section, we will introduce the McKay correspondence in di-
mension three and the relation with T-duality.

The McKay correspondence is originally acorrespondence between
the topology of the minimal resolution of the 2-dimensional rational
double points (ADE singularities), which are quotient singularities by
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finite subgroups $G$ of $SL(2, \mathbb{C})$ , and the represenation theory (irre-
ducible representations or conjugacy classes) of the group $G$ . We can
see the correspondence with Dynkin diagrams:

Let $G$ be afinite subgroup of $SL(2, \mathbb{C})$ , then the quotient space
$X:=\mathbb{C}^{2}/G$ has arational double point at origin. As there exists
the minimal resolution $\overline{X}$ of the singularity, we have the exceptional
divisors $E_{i}$ . The dual graph of the configuration of the exceptional
divisors is just the Dynkin diagram of type $A_{n}$ , $D_{n}$ , $E_{6}$ , E7 or $E_{8}$ .

On the other hand, we have the set of the non-trivial irreducible rep-
resentations $\rho_{i}$ of the group $G$ up to isomorphism and let $\rho$ be aregular
representation in $SL(2, \mathbb{C})$ . The tensor product of these representations

$\rho_{i}\otimes\rho=\Sigma a_{ij}\rho_{j}$

gives the set of integers $a_{ij}$ and it determines the Cartan matrix which
defines the Dynkin diagram.

Then there is aone-t0-0ne numerical correspondence between $\{\rho_{i}\}$

and $\{E_{i}\}$ , that is, the intersention matrix of the exceptional divisors
can be written as (-l) $\cross$ Cartan matrix.

In dimension three, we have several ”McKay correspondences” but
they are just bijection between two sets: Let $X$ be the quotient sin-
gularity $\mathbb{C}^{3}/G$ where $G$ is afinite subgroup of $SL(3, \mathbb{C})$ . The $X$ has
aGorenstein canonical singularity of index 1but not aterminal sin-
gularity. It is known that there exist crepant resolutions $\overline{X}$ of this
singularity. The crepant resolution is aminimal resolution and pre-
serve the triviality of the canonical bundle in this case.

As the McKay correspondence, following bijections are known:

(1) (ItO-Reid [10]) cohomology group $H^{2i}(\overline{X}, \mathbb{C})rightarrow\{\mathrm{t}\mathrm{h}\mathrm{e}$ conjugacy
classes of “age” $i$ in $G$ }.

(2) (ItO-Nakajima [ll])Grothendieck group $K(\overline{X})rightarrow\{\mathrm{t}\mathrm{h}\mathrm{e}$ irrducible
representations of $G$}, where $G$ is afinite abelian group.

(3) (Bridgeland-King-Reid [2]) Derived category $D(\overline{X})rightarrow\{\mathrm{t}\mathrm{h}\mathrm{e}$ irre-
ducible representations of $G$} for any finite subgroups.

Remark 1.1. In (1), the age of $g\in G$ is defined as follows: After
diagonalization, if $g^{r}=1$ , we obtain $g’=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\epsilon^{a}, \epsilon^{b}, \epsilon^{c})$ where $\epsilon$ is a
primitive $r$-th root of unity. Then age(g) $:=(a+b+c)/r$ . For identity
element $id$, we define age(id) $=0$ and all of ages are integer.

The correspondence (2) can be included in (3), but we can explain
the 2-dimensional numerical McKay correspondence very clearly as a
corollary of the result in [11]
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In the first McKay correspondence (1), we have precise correspon-
dence for each $i$-th cohomology with conjugacy classes, but in (2) we
don’ $\mathrm{t}$ have such difference among representations like age. Then we
would like to introduce $\mathrm{T}$-duality which gives some difference between
irreducible representations using resolution graphs.

$\mathrm{T}$-duality for 3-dimensional quotient singularities can be explained
as acorrespondence between brane configuration of the $\mathrm{D}$ brane of the
quotient space and the dual graph of the exceptional locus of certain
crepant resolution. The brane cofigurations are given by the quiver
and they are obtained with the irreducible representations of the acting
groups. This kind of explanation was of course given by phyicists in
the theory of superstring and related with recent mathematical results,
so called higher dimensional McKay correspondences. We will see this
physical explanation and the relationship with crepant resolutions in
the following chapters.

The author would like to thank T. Muto for valuable discussions.

2. $\mathrm{T}$-DUALITY AND BRANE CONFIGURATION

Let us see the $\mathrm{T}$-duality and brane configuration. In this paper, we
don’t give precise definition of branes, and we just regard -brane as a
real $(p+1)$-dimensional object.

Here we consider real 10-dimensional superstring theory of type IIA
and IIB. They may have fundamental strings, $\mathrm{N}\mathrm{S}5$ brane and Dp-
branes. For IIA (resp. IIB) string theory, $p$ is even (resp. odd).

Later, we will consider real 11-dimensional theory, so called M-
theory, for generalized $\mathrm{T}$-duality which is related with complex 3-
dimensional crepant resolutions.

compactification is not same as that in mathematics. For example,
$S^{1}$ -compactification means replacing $\mathbb{R}$ by $S^{1}$ .
$2(\mathrm{i})$ . $\mathrm{T}$-duality. Let us consider IIA and IIB string theories and both
of them have real 10 dimensional space-time $(\mathbb{R}^{1,9})$ and we fix the cood-
inate $x_{0}$ , $x_{1}$ , $\cdots$ , $x_{9}$ .

There are 3types of T-duality:
(1) Flat case: $S^{1}$-compactification of IIA and IIB string theories.

IIA theory over
$\mathbb{R}^{1,8}(x_{0}, \cdots,x_{8})\cross S^{1}(x_{9})\downarrow \mathrm{T}- \mathrm{d}\mathrm{u}\mathrm{a}1\mathrm{i}\mathrm{t}\mathrm{y}(*)$

(radius $R_{9}$ )

IIB theory over $\mathbb{R}^{1,8}(x_{0}, \cdots, x_{8})\cross S^{1}(x_{9}’)$ (radius $R_{9}’$ )
where $R_{9}’=1/R_{9}$ and this relations is called abasic T-duality.
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’2) With $\mathrm{D}$-brane:There are two types of T-duality,
Type I

IIA over D6-brane $(x_{0}, \cdots, x_{6})\cross \mathbb{R}^{3}(x_{7}, \cdots, x_{9})$

$\downarrow \mathrm{T}$-duality(**)

IIB over D5-brane $(x_{0}, \cdots, x_{5})\cross \mathbb{R}^{4}(x_{6}’, x_{7}, \cdots, x_{9})$

This $\mathrm{T}$-duality occars at the coodinates $x_{6}$ and $x_{6}’$ .
Type II This case was construdted by Ooguri and Vafa ([17])

and they called this $\mathrm{T}$-duality as CFT equivalence.
IIA over $\mathbb{R}^{1,5}(x_{0}, \cdots, x_{5})\cross \mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}$ Taub NUT space $(x_{6}, \cdots, x_{9})$

$\downarrow \mathrm{T}- \mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}(***)$

IIB over $k$ $\mathrm{N}\mathrm{S}5$-brane $(x_{0}, \cdots, x_{5})\cross \mathbb{R}^{4}(x_{6}, \cdots, x_{8}, x_{9}’)$

Let $(a_{i}^{6}, a_{i}^{7}, a_{i}^{8}, a_{i}^{9})$ be acoordinate of $i$-th $\mathrm{N}\mathrm{S}5$-brane. The com-
pactification with the coodinate $x_{9}$ is $\mathrm{T}$-duality of the compact-
ification with coodinate $x_{9}’$ . And multi Taub NUT space has
$S^{1}$-fibration with acoordinate (x9) over $\mathbb{R}^{3}(x_{6}, x_{7}, x_{8})$ and sigu-
larities at $(a_{i}^{6}, a_{i}^{7}, a_{i}^{8})$ . That is, the space is the same as the
minimal resolution of $A_{k}$-singularities(see figure 2.1).

FIGURE 2.1. Multi Taub NUT space

Let us consider the $\mathrm{T}$-duality with $\mathrm{D}$-branes over aquotient space
$/\mathbb{Z}_{k}$ using these $\mathrm{T}$-dualities. For acompactification of type IIA
$\mathrm{i}\mathrm{n}\mathrm{g}$ , we consider the space D4-brane $\cross \mathbb{R}\cross \mathbb{C}^{2}/\mathbb{Z}_{k}$ . Then replace
1, quotient space by the mult Taub NUT space, i.e., the minimal
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resolution. Finally, we obtain $k$ $\mathrm{N}\mathrm{S}5$-brane and $k$ D5-b
the brane configuration of these 5-branes, if you draw
$\mathrm{N}\mathrm{S}5$-brane and an edge for D5-brane, then the diagram
extended Dynkin diagram of type $\tilde{A}_{k-1}$ .

$2(\mathrm{i}\mathrm{i})$ . Generalized $\mathrm{T}$-duality. Now we condiser agee
$\mathrm{T}$-duality via $\mathrm{M}$-theory. This is due to the result by J. H.
This $\mathrm{T}$-duality is in general acorrespondence between $T^{2}-($

of the $\mathrm{M}$-theory and $S^{1}$ -compactification of type IIB stri
In usual $\mathrm{T}$-duality, we consider the exchanging the ra

and this generalized case also has same way. Note tha
ways for it because there are 2 $S^{1}\mathrm{s}$ in $T^{2}$ . This is the di
the previous T-dualities.

(1) Flat case: It is ageneralization of $\mathrm{T}$-duality $(*)$ .
$\mathrm{M}$ theory over $\mathbb{R}^{1,8}(x_{0},\cdots, x_{8})\cross T^{2}(x_{9},$

$x_{10_{J}^{\backslash }}\downarrow \mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{u}\mathrm{s}R_{10}arrow 0$

IIA theory over
$\mathbb{R}^{1,8}(x_{0}, \cdots,x_{8})\cross S^{1}(x_{9})\downarrow \mathrm{T}- \mathrm{d}\mathrm{u}\mathrm{a}1\mathrm{i}\mathrm{t}\mathrm{y}(*)$

(radiui

IIB theory over $\mathbb{R}^{1,8}(x_{0}, \cdots, x_{8})\cross S^{1}(x_{9}’)(\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{u}_{\mathrm{k}}\mathrm{G}$

(2) With $\mathrm{D}$-brane:There are 2ways because there a
the space of multi Taub NUT space $\cross S^{1}$ .

Type I
$\mathrm{M}$ theory over $\mathbb{R}^{1,5}(x_{0}, \cdots, x_{5})\cross \mathrm{m}\mathrm{u}1\mathrm{t}\mathrm{i}$ Taub NUT space

$\downarrow \mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{u}\mathrm{s}R_{9}arrow 0$

IIA over D6-brane $(x_{0}, \cdots, x_{6})\cross \mathbb{R}^{3}(x_{7}$ , :
$\downarrow \mathrm{T}- \mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}(**)$

IIB over D5-brane $(x_{0}$ . $\cdots$ , $x_{5})\cross \mathbb{R}^{4}(x_{6}’,$ $x_{7}$

Type II
$\mathrm{M}$ theory over $\mathbb{R}^{1,5}\cross \mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}$ Taub NUT space $(x_{6}\cdots x_{9}$

$\downarrow \mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{u}\mathrm{s}R_{10}arrow 0$

IIA over $\mathbb{R}^{1,5}(x_{0}, \cdots, x_{5})\cross \mathrm{m}\mathrm{u}1\mathrm{t}\mathrm{i}$ Taub NUT space $(x$

$\downarrow \mathrm{T}- \mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}(***)$

IIB over $k\mathrm{N}\mathrm{S}5$ brane $(x_{0}, \cdots, x_{5})\cross \mathbb{R}^{4}(x_{6}’,$ $\cdots$
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More generally, we can obtain both of D5-brane and NS5-branes.
The D5-brane will appear if a $(0, 1)$ cycle of the torus $T^{2}$ shrinks. On
the other hand, if a $(1, 0)$ cycle of $T^{2}$ shrinks, then we have NS5-brane.
In general, if $(p, q)$ cycle shrink, then we have $p\mathrm{N}\mathrm{S}5$ brane and $q$ D5-
brane. Let us call this $(p, q)5$-brane. The brane configuration can show
how the $(p, q)$ cycles shrink. And Leung and Vafa ([12]) explained
the brane configuration for the $\mathrm{T}$-duality of $\mathrm{M}$-theory over aquotient
space $\mathbb{R}^{3}/G$ , where $G$ is afinite abelian subgroup of $SL(3, \mathbb{C})$ , in terms
of toric geometry. By their result, we can see the $\mathrm{T}$-duality as follows:

M theory over $\mathbb{R}^{1,4}(x_{0},$\cdots ,$x_{4})\cross \mathbb{C}^{3}/G(x_{5},$\cdots ,$x_{10})$

$\downarrow \mathrm{T}$-duality

IIB over $p\mathrm{N}\mathrm{S}5$ brane $(x_{0}, \cdots, x_{5})$ and $q$ D5-brane

The brane configuration of $(p, q)5$ brane can be draw as atoric diagram
which is obtained from toric resolution (cf. Fugure 3.1). And the slope
of the lines in the dual graph of the diagram correspond to the shrinking
$(p, q)$ cycles.

For nonabelian case in dimension three, Muto ([15]) showed that the
brane configuration can be explained by the quiver and we will see
this result and relation with crepant resolution with an example in the
following section. You may feel the $\mathrm{T}$-duality looks like the McKay
correspondence.

3. EXAMPLE: TRIHEADRAL CASE

Trihedral singularity is aquotient singularity by trihedral group de-
fined as follows: It is anonabelian group generated by abelian subgroup
of $SL(3, \mathbb{C})$ and anon-diagonal matrix

$T=(\begin{array}{lll}0 1 00 0 \mathrm{l}1 0 0\end{array})$

The name trihedral is an analogy of dihedral and named by the au-
thor. Moreover trihedral singularities can be resolved similarly as $D_{n}$

singularities (cf. [8]).
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$3(\mathrm{i})$ . Crepant resolution of trihedral singularity. [8]
Let $H$ be the normal abelian subgroup of $G$ then we have the fol-

lowing diagram:
$\tilde{X}$

$\downarrow\tau$

$\tilde{\mathrm{Y}}$ $arrow\mu’$
$\overline{\mathrm{Y}}/\mathfrak{U}_{3}$

$\downarrow\pi$ $\downarrow\pi’$

$\mathbb{C}^{3}arrow \mathbb{C}^{3}/H=\mathrm{Y}arrow\mu \mathbb{C}^{3}/G=X$

where $\pi$ is aresolution of the singularity of $\mathrm{Y}$ , and $\pi’$ is the induced
morphism, $\tau$ is aresolution of the singularity by $\mathfrak{U}_{3}$ , and $\tau\circ\pi’$ is a
crepant resolution of the singularity of $X$ .

Sketch of the proofAs aresolution $\pi$ of $\mathrm{Y}$ , we take atoric resolution,
which is also crepant. Then we lift the $\mathfrak{U}_{3}$-action on $\mathrm{Y}$ to its crepant
resolution $\tilde{\mathrm{Y}}$ and form the quotient $\tilde{\mathrm{Y}}/\mathfrak{U}_{3}$ . This quotient gives in a
natural way apartial resolution of the singularities of $X$ . The crepant
resolution $\tilde{X}$ of the singularities of $\tilde{\mathrm{Y}}/\mathfrak{U}_{3}$ induces acomplete resolution
of $X$ .

Under the action of $\mathfrak{U}_{3}$ , the singularities of $\tilde{\mathrm{Y}}/\underline{\mathfrak{U}}_{3}$ lie in the union of
the image of the exceptional divisor of $\overline{\mathrm{Y}}$ under $\mathrm{Y}arrow\tilde{\mathrm{Y}}/\mathfrak{U}_{3}$ and the
image of the locus $C:(x=y=z)$ .

In the resolution $\tilde{\mathrm{Y}}$ of $\mathrm{Y}$ , the group 13 permutes exceptional divisors.
So the fixed points on the exceptional divisors consist of one point or
three points. $[]$

To get $\overline{\mathrm{Y}}$ , we consider the special toric resolution. For the abelian
quotient singularity $\mathbb{C}^{3}/H$ , we have the following toric resolution:

$\mathrm{Y}=\mathbb{C}^{3}/H$ is atoric variety. Then we can use toric geometry for
the resolution, and there is the useful fact that the toric resolution is a
crepant resolution. This was proved by Markushevich in 1987 [13], and
by Roan in 1989 [19] independently. Both of them used toric geometry
for the construction.

Let $\mathbb{R}^{3}$ be the 3-dimensional real vector space, $\{e^{:}|i=1,2,3\}$ its
standard base, $L$ the lattice generated by $e^{1}$ , $e^{2}$ and $e^{3}$ , $N:=L+ \sum \mathbb{Z}v$ ,
where the summation runs over all the elements $v=1/r(a, b, c)\in H$ ,
and

$\sigma:=\{\dot{.}\sum_{=1}^{3}x_{i}e^{:}\in \mathbb{R}^{3}$ , $x:\geq 0,\forall i$ , $1\leq i\leq 3\}$
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the naturally defined rational convex polyhedral cone in $N_{\mathrm{R}}--N\otimes_{\mathrm{Z}}\mathbb{R}$ .
The corresponding affine torus embedding $\mathrm{Y}_{\sigma}$ is defined as $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{C}[\check{\sigma}\cap$

$M])$ , where $M$ is the dual lattice of $N$ and $\check{\sigma}$ is the dual cone of $\sigma$ in
$M_{\mathrm{R}}$ defined as $\check{\sigma}$ $:=\{\xi\in M_{\mathrm{R}}|\xi(x)\geq 0,\forall x\in\sigma\}$ .

We $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}:\Delta$ $:=\mathrm{t}\mathrm{h}\mathrm{e}$ simplex in $N_{\mathrm{R}}$

$= \{\sum_{i=1}^{3}x_{i}e^{i}$ ; $x_{i}\geq 0$ , $\sum_{i=1}^{3}x:=1\}$ ,

$t$ : $N_{\mathrm{R}}arrow \mathbb{R}$ $\sum_{i=1}^{3}x_{i}e^{i}\mapsto\sum_{i=1}^{3}x_{i}$

and
$\Phi$ $:= \{\frac{1}{r}(a, b, c)\in H|a+b+c=r\}$ .

Then $X=\mathbb{C}^{3}/H$ corresponds to the toric variety which is induced
by the cone awithin the lattice $N=L+ \sum_{v\in\Phi}\mathbb{Z}v$ .

Fact 1we can construct asimplicial decomposition $S$ of the triangle
determined by $e^{1}$ , $e^{2}$ , $e^{3}$ with $\Phi$ $\cup\bigcup_{i=1}^{3}\{e^{i}\}$ as the set of its vertices.

Fact 2If $\overline{\mathrm{Y}}:=\mathrm{Y}_{S}$ is the corresponding torus embedding, then $\mathrm{Y}_{S}$

is non-singular. Then we obtain acrepant resolution $\pi$ $=\pi s$ : $\overline{\mathrm{Y}}=$

$\mathrm{Y}_{S}arrow \mathbb{C}^{3}/G=\mathrm{Y}$ , because $\mathrm{Y}_{S}$ is non-singular and Gorenstein. More-
over, each lattice point in above triangle corresponds to one exceptional
divisor.

Let us see aconcrete example of atrihedral singularity and compare
the crepant resolution and the $\mathrm{T}$-duality. We will see the case the
group $G\cong \mathbb{Z}/4\mathbb{Z}\oplus \mathbb{Z}/4\mathbb{Z}\mathrm{x}$ $\mathbb{Z}/3\mathbb{Z}$ and let $H$ be the abelian subgroup
$\mathbb{Z}/4\mathbb{Z}\oplus \mathbb{Z}/4\mathbb{Z}$ . The dual graph of the exceptional locus in $\overline{\mathrm{Y}}$ become
as Figure 3.1.

(1.0.0)

$=\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}$

(0, 1,0) 10.0.11

FIGURE 3.1. Toric resolution and the exceptional locus
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After the action of $\mathfrak{U}_{3}$ , we can identify some of the exceptional divi-
sors and there exists asingularity of type $\frac{1}{3}(0,1,2)$ (see figure 3.2).

FIGURE 3.2. Singularity

Finally, we obtain 3exceptional divisors which came from previous
toric resolution and new 3exceptional divisors.
$3(\mathrm{i}\mathrm{i})$ . Brane configuration. [14], [15]

Let us see the brane configuration for this case. Brane configuration
is described as adual graph of the quiver (it is called quiver diagram
in [15] $)$ and the quiver is determined by the irreducible representations
of the group $G$ .

Let $\rho$:be airreducible representation of $G$ and $\rho$ be aregular repre-
sentation in $SL(3, \mathbb{C})$ . Then one can take the tensor product

$\rho:\otimes\rho=a_{j}\dot{.}\rho_{j}$ .
If $a_{\dot{l}j}=k$ , then you must draw $k$ arrows from avertex $i$ to avertex
$j$ , and you can obtain the quiver. In our example, we have 16 1-

dimensional irreducible representations in the group $H$ . Let us denote
them as $R_{1}^{(l_{1},l_{2})}$ where $(l_{1}, l_{2})\in \mathbb{Z}_{4}\cross \mathbb{Z}_{4}$ . As aregular representation
$\rho$ , if we take $R_{3}=R_{1}^{(1,1)}\oplus R_{1}^{(-1,0)}$ I $R_{1}^{(0,-1)}$ , then we obtain the tensor
product

$R_{1}^{(l_{1},L_{2})}\otimes R_{3}=R_{1}^{(l_{1}+1,l_{2}+1)}\oplus R_{1}^{(l_{1}-1,l_{2})}\oplus R_{1}^{(l_{1},l_{2}-1)}$ .
Therefore, we can draw the following diagram as the quiver for $H$ and
also see the brane configuration as the dual graph (see Figure 3.3)

If we consider the $\mathfrak{U}_{3}$ in $G$ , we have the following quiver and finally
we will see the brane configuration (cf. Figure 3.4).

Now we have acrepant resolution and brane configuration for one
case. Note that we take unique toric resolution for $\mathbb{C}^{3}/H$ which is
the $H$-Hilb $\mathrm{H}\mathrm{i}1\mathrm{b}^{|H|}(\mathbb{C}^{3})$ It is almost same as Hinfixed part of the
Hilbert scheme of $|H|$-points on $\mathbb{C}^{3}$ . You can find the construction and
properties in papers [16], [18] or [11]
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$(0,0)$ $(4,0)$

oriented open string

FIGURE 3.3. Quiver and brane configuration for $H$

FIGURE 3.4. Quotient of quiver and brane configuration
for $G$
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Let us compare the pictures for the crepant resolution and brane con-
figurations for the group $H$ . They looks very similar but the daigrams
in Figure 3.1 is just half of those of Figure 3.3. We can imagine the
difference between them comes from the difference among irreducible
representaions like age for conjugacy classes in [10]. And we have sim-
ilar question for nonabelian cases.

Moreover, as adifference of diagrams for exceptional locus and brane
configuration we can find the compactness of the diagrams. It is easy
to see the non-compactness of exceptional locus obtained from anon-
compact quotient space. On the other hand, we may say the physical
situaion for the $\mathrm{D}$-brane of the quotient singularities are compact.

Anyway, these phenomenon may give us some ideas for cohomological
McKay correspondence with representations like [10].

4. MCKAY CORRESPONDENCE

After the symposium at RIMS, the author participated asummer
school on toric geometry at Fourier Institute, Grenoble in France and
Craw gave atalk there on acohomological McKay correspondence and
they discussed on these problems. So we would like to recall the known
3-dimensional McKay correspondence and announce the very recent
result by Craw [3].

We denote $X:=\mathbb{C}^{3}/G$ where $G\in SL(3, \mathbb{C})$ through this section.
Type I. ItO-Reid’s comohological McKay correspondence, (1996) [10]

Theorem 4.1. For any crepant resolution $\tilde{X}$ of $X_{f}$ there exists the
following bijection:

{conjugacy class in G of age i} $rightarrow h^{2:}(\tilde{X}, \mathbb{Q})$

This bijection holds for any crepant resolution of canonical Goren-
stein singularities by the result by Batyrev [1] today, but we restrict
our situation only in dimension three here.

Then we have conjugacy classes of age 0, 1and 2. Obviously the age
0element is the identity element. The age 1elements are expressed as
the lattice points in atriangle like Figure 3.1 and they correspond to
the exceptional divisors. The age 2elements themselves don’t appear
in the crepant resolution but the inverse elements of them are elements
of age 1and the corresponding lattice points are inner points of the
triangle, that is, they are corresponding to the exceptional divisors in
the fiber $f^{-1}(0)$ which form the basis of $H_{\mathrm{c}}^{2}$ . Therefore we have the
bijection between $H^{4}$ and the age 2element as Poincare duality
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By this correspondence, we can see the difference among conjugacy
classes by age grading.

Type $\mathrm{I}\mathrm{I}$ . ItO-Nakajima’s McKay correspondence, (1998) [11] This
is aMcKay correspondence for aunique crepant resolution, so called
G-Hilb.

Theorem 4.2. If $G$ is a finite abelian subgroup of $SL(3, \mathbb{C})$ , there ex-
ists a bijection between the set of irreducible representations $rho_{i}$ of $G$

and $K(\mathrm{Y})$ , Grothendieck group of algebraic vector bundles over G-Hilb
Y.

We can see this with tautological vector bundles $\mathcal{R}_{i}$ which corre-
sponds to each irreducible representation $\rho_{i}$ . And as acorollary of this
theorem we have the following:

Corollary 4.3. If you consider Chern character homomorphism

$ch$ : $K(\mathrm{Y})arrow H^{*}(\mathrm{Y}, \mathbb{Q})$ ,

then $\{ch(’\mathcal{R}_{i})\}_{i=0}^{r}\}$ form a basis of $H^{*}(\mathrm{Y}, \mathbb{Q})$ .

Type III. Craw’s McKay correspondence, (2000) [3] Now we have
the following result for $G$-Hilb $\mathrm{Y}$ where $G$ is afinite abelian subgroup
of $SL(3, \mathbb{C})$ :

Theorem 4.4. There are three types of tautological vector bundles:
(0) tirivial bundle $\mathcal{O}_{Y}=R_{0}$ which forms a basis of $H^{0}$ .
(1) line bundles whose first Chern classes $c_{1}(\mathcal{R}_{i})$ intersect with ex-

ceptional rational curves transversally.
(2) line bundles which determine naturally a dual basis of $H^{4}$ .

Interesting point of these result is the following: Of course, it coinside
with the McKay correspondece [11] and moreover the line bundles of
type (2) gives adual basis of $H^{4}$ clearly. On the other hand, in the
corresponds nce in [10] gives the basis of $H^{2}$ more naturally.

Anyway by the result of Craw, we can find some difference among ir-
reducible representations but the cohomological McKay correspondece
for any finite subgroup of $SL(3, \mathbb{C})$ is still open and mysterious.
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