
THREE LECTURES ON NEWTON POLYHEDRA

A. KHOVANSKII

LECTURE 1. INTRODUCTION TO THE THEORY

1. The Newton polyhedra.
The Newton polyhedron of apolynomial which depends on several variables is

the convex hull of the powers of the monomials appearing in the polynomial with
nonzero coefficients. The Newton polyhedron generalizes the notion of degree and
plays an analogous role. It is well known that the number of complex roots of a
system of $n$ equations of identical degree $m$ in $\mathrm{n}$ unknowns is the same for nearly
all values of the coefficients, and is equal to $m^{n}$ (Bezout’s theorem). Similarly, the
number of complex roots of asystem of $n$ equations in $n$ unknowns with the same
Newton polyhedron is the same for nearly all values of the coefficients and is equal
to the volume of the Newton polyhedron, multiplied by $n!$ (Kushnirenko’s theorem,
see 3.1.1).

The level line of apolynomial in two complex variables is aRiemann surface. For
nearly all polynomials of fixed degree $n$ , the topology of this surface (the number
of handles $g$ ) is expressed in terms of its degree, and does not depend on the values

of the coefficients of the polynomial: $g= \frac{(n-l)(n-2)}{2}$ . In the more general
case, where instead of polynomials of fixed degree we consider polynomials with
fixed Newton polyhedra, all the discrete characteristics of the manifold of zeros of
the polynomial (or several polynomials) are expressed in terms of the geometry
of the Newton polyhedra. Among these discrete characteristics are the number of
solutions of asystem of $n$ equations in $n$ unknowns, the Euler characteristic, the
arithmetic and geometric genus of complete inter- sections, and the Hodge number
of amixed Hodge structure on the cohomologies of complete intersections.

The Newton polyhedron is defined not only for polynomials but also for germs of
analytic functions. For germs of analytic functions in general position, with given
Newton polyhedra, one can calculate the multiplicity of the zero solution of asys-
tem of analytic equations, the Milnor number and 4function of the monodromy
operator, the asymptotics of oscillatory integrals, the Hodge number of the mixed
Hodge structure in vanishing cohomologies, and in the tw0-dimensional and multi-
dimensional quasihomogeneous cases, one can calculate the modality of the germ
of the function.

In the answers one meets quantities characterizing both the sizes of the polyhedra
(volume, number of integer points lying inside the polyhedron) as well as their
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combinatorics (the number of faces of various dimensions, numerical characteristics
of their contacts).

In terms of the Newton polyhedron one can construct explicitly the compactifi-
cation of complete intersections, and the resolution of singularities by means of a
suitable toric manifold.

Thus, the Newton polyhedra connect algebraic geometry and the theory of sin-
gularities to the geometry of convex polyhedra. This connection is useful in both
directions. On the one hand, explicit answers are given to problems of algebra and
the theory of singularities in terms of the geometry of polyhedra. We note in this
connection that even the volume of the convex hull of asystem of points is avery
complicated function of their coordinates. Therefore, the formulation of answers in
numerical terms is so opaque that without knowing their geometric interpretation
no progress is possible. On the other hand, algebraic theorems of general character
(the Hodge theorem on the index of an algebraic surface, the Riemann-Roch the0-
rem) give significant information about the geometry of polyhedra. In this way one
obtains, for example, asimple proof of the Aleksandrov-Fenchel inequalities in the
geometry of convex bodies.

The Newton polyhedra are also met in the theory of numbers in real analysis, in
the geometry of exponential sums, in the theory of differential equations. In this
lecture we present formulations of some theorems about Newton polyhedra.

2. The number of roofs of asystem of equations with agiven Newton
polyhedron.

According to Bezout’s theorem, the number of nonzero roots of the equation
$f(z)=0$ is equal to the difference between the highest and the lowest powers of
the monomials appearing in the polynomial $f$ . This difference is the volume of
the Newton polyhedron (in the present case, the length of asegment). In the
following two paragraphs we present the generalizations of this theorem to the case
of arbitrary Newton polyhedra.

Let us start with definitions. Amonomial in $n$ complex variables is aproduct
of the coordinates to integer (possibly negative) powers. Each monomial is ass0-

ciated with its degree, an integer vector, lying in $n$-dimensional real space, whose
components are equal to the powers with which the coordinate functions enter in
the monomial. ALaurent polynomial is alinear combination of monomials. The
support of the Laurent polynomial is the set of powers of monomials entering in the
Laurent polynomial with nonzero coefficients. (The Laurent polynomial is an ordi-
nary polynomial if its support lies in the positive octant.) The Newton polyhedron
of the Laurent polynomial is the convex hull of its support. It is much more conve-
nient to consider the Laurent polynomials not in $\mathbb{C}^{n}$ but in the $(\mathbb{C}\backslash 0)^{n}$-dimensional
complex space, from which all the coordinate planes have been eliminated. With
each face $\Gamma$ of the Newton polyhedron of the Laurent polynomial $f$ we associate
anew Laurent polynomial, which is called the restriction of the polynomial to the
face, denoted by $f^{\Gamma}$ and defined as follows: only those monomials appear in $f^{\Gamma}$ that
have powers lying in the face $\Gamma$ , with the same coefficients that they have in $f$ .

Now let us consider asystem of $n$ Laurent equations $f_{1}=\cdots=f_{n}=0$ in $(\mathbb{C}\backslash 0)^{n}$

with acommon Newton polyhedron. The restricted system, $f_{1}^{\Gamma}=\cdots=f_{n}^{\Gamma}=0$

corresponding to each face $\Gamma$ of the polyhedron. The restricted system actually
depends on asmaller number of variables, and in the case of general position is
incompatible in $(\mathbb{C}\backslash 0)^{n}$ . We say that asystem of $n$ equations in $n$ unknowns with
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acommon Newton polyhedron is regular if all the restrictions of this system are
incompatible in $(\mathbb{C}\backslash 0)^{n}$ . The following theorem of Kushnirenko holds: The number
of solutions in $(\mathbb{C}\backslash 0)^{n}$ , counted with their multiplicities, of aregular system of $n$

equations in $n$ unknowns with acommon Newton polyhedron is equal to the volume
of the Newton polyhedron multiplied by $n!$ .

Example: The Newton polyhedron of the polynomial of degree $m$ in $n$ unknowns
is the simplex $0\leq x_{1}$ , $\ldots$ , $0\leq x_{n}$ , $\sum x$ , $\leq m$ (we assume that the polynomial
contains all monomials of degree $\leq m$). The volume of such asimplex is $m^{n}/n!$ .
The number of roots of the total system of $\mathrm{n}$ equations of degree $m$ in $n$ unknowns,
according to Kushnirenko’s theorem, is equal to $m^{n}$ . This answer agrees with
Bezout’s theorem. If the polynomial does not contain all monomials of degree less
than or equal to $m$ , then the Newton polyhedron can be smaller than the simplex,
so the number of solutions, calculated from Kushnirenko’s theorem, can be smaller
than the number $m^{n}$ calculated from Bezout’s theorem. Because of the absence
of the monomials, certain infinitely distant points may be roots of the system of
equations. Bezout’s theorem, which calculates the number of roots of the system
in projective space, takes into account these parasitic roots, while Kushnirenko’s
theorem does not.

3. How does one find the number of solutions of asystem of $\mathrm{n}$ equations
in $\mathrm{n}$ unknowns with different Newton polyhedra.

Here is the answer to this question for asystem in general position with fixed
Newton polyhedra: the number of solutions not lying on the coordinate planes is
equal to the mixed volume of the Newton polyhedra, multiplied by $n!$ Below we
shall give the definition of mixed volume and describe explicitly the conditions for
degeneracy.

The Minkow ski sum of two subsets of alinear space is the set of sums of all
pairs of vectors, in which one vector of the pair lies in one subset and the second
vector in the other. The product of asubset and anumber can be determined in a
similar manner. The Minkowski sum of convex bodies (convex polyhedra, convex
polyhedra with vertices at integer points) is aconvex body (convex polyhedron,
convex polyhedron with vertices at integer points). The following theorem holds:

Minkowski theorem. The volume of a body which is a linear combination with
positive coefficients of fixed convex bodies lying in $\mathbb{R}^{n}$ is a homogeneous polynomial
of degree $n$ in the coefficients of the linear combination.

Definition. The mixed volume $V(\Delta_{1}, \ldots, \Delta_{n})$ of the convex bodies $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ in
$\mathbb{R}^{n}$ is the coefficient in the polynomial $V(\lambda_{1}\Delta_{1}+\ldots, \lambda_{n}\Delta_{n})$ of $\lambda_{1}\cross\cdots\cross\lambda_{n}$ divided
by $n!$ (here $V(\Delta)$ is the volume of the body $\Delta$ ).

The mixed volume of $n$ identical bodies is equal to the volume of any one of
them. The mixed volume of $n$ bodies is expressed in terms of the usual volumes of
their sums in the same way as the product of $n$ numbers is expressed in terms of
the $n$-th powers of their sums. For example, for $n=2$ ,

$ab= \frac{1}{2}[(a+b)^{2}-a^{2}-b^{2}]$

$V( \Delta_{1}, \Delta_{2})=\frac{1}{2}[V(\Delta_{1}+\Delta_{2})-V(\Delta_{1})-V(\Delta_{2})]$
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Similarly, for $n=3$ ,

$V( \Delta_{1}, \Delta_{2}, \Delta_{3})=\frac{1}{3!}[V(\Delta_{1}+\Delta_{2}+\Delta_{3})-\sum_{\dot{|}<j}V(\Delta:+\Delta_{j})+\sum V(\Delta:)]$

Example: Suppose that $\Delta_{1}$ is the rectangle $0\leq x\leq a$ , $0\leq y\leq b$ and $\Delta_{2}$ is the
rectangle $0\leq x\leq c$ , $0\leq y\leq d\mathrm{O}$ . The Minkowski sum $\Delta_{1}+\Delta_{2}$ is the rectangle
$0\leq x\leq a+c$ , $0\leq y\leq b+d$ . The mixed volume $V(\Delta_{1}, \Delta_{2})$ is equal to $ad+be$ .

The number $ad+be$ is the permanent of the matrix $\{\begin{array}{ll}a cb d\end{array}\}$ (the definition of the

permanent differs from that of the determinant only in that all the terms in the
permanent have aplus sign). In the multidimensional case the mixed volume of
$n$ parallelepipeds with sides parallel to the coordinate axes is also equal to the
permanent of the corresponding matrix.

Let us consider asystem of $n$ Laurent equations $f_{1}=\cdots=f_{n}=0$ with Newton
polyhedra $\Delta_{1}$ , $\ldots$ , An. Below we define the regularity condition for such systems.

Bernshtein’s theorem. The number of solutions in $(\mathbb{C}\backslash 0)^{n}$ (which take account
of the multiplicity) of a regular system of $n$ equations in $n$ unknowns, is equal to
the mixed volume of the Newton polyhedra of the equations of the system, multiplied
by $n!$ .

Example: The number of roots of ageneral system of polynomial equations, in
which the $i$-th variable enters in the $j$-th equation with apower no higher than $a_{ij}$

is equal to the permanent of the matrix $(a_{\dot{|}j})$ , multiplied by $n!$ .
Kushnirenko’s theorem coincides with Bernshtein’s theorem for equations with

identical Newton polyhedra. We now proceed to the definition of aregular system
of equations. We first define the truncations of asystem associated with afunction
4. We take an arbitrary linear function 4on the space $\mathbb{R}^{n}$ in which the Newton
polyhedra lie. We denote by $f^{\xi}$ the restriction of the Laurent polynomial $f$ to that
face of its Newton polyhedron on which the linear function 4takes its maximum
value. We associate the restricted system $f_{\xi}^{1}=\cdots=f_{n}^{\xi}=0$ with the system of
equations $f_{1}=\cdots=f_{n}=0$ and the linear function (. For anonzero function 4
the restricted system actually depends on asmaller number of variables. Therefore,
in the case of general position such asystem is inconsistent in $(\mathbb{C}\backslash 0)^{n}$ . Agiven
system of equations has only afinite number of restricted systems (if the polyhedra
of all the equations coincide, then the truncations correspond to the faces of the
common polyhedron). Asystem of $n$ equations in $n$ unknowns is said to be regular
if its restrictions for all nonzero functions 4are inconsistent in $(\mathbb{C}\backslash 0)^{n}$ . It is just
such asystem to which Bernshtein’s theorem is applicable.

We note that if for each nonzero linear function $\xi$ , the maximum in one of the
polyhedra is attained at avertex then the regularity conditions are automatically
satisfied. [In this case the truncated system contains an equation which is contained
in amonomial set equal to zero; this equation has no solutions in $(\mathbb{C}\backslash 0)^{n}.]$ For
example, in the case of $n=2$ , the regularity conditions are satisfied automatically,
if the two Newton polyhedra on the real plane have no parallel sides.

4. Complete intersections.
Consider in $(\mathbb{C}\backslash 0)^{n}$ asystem of k Laurent equations $f_{1}=\cdots=f_{k}=0$ with

Newton polyhedra $\Delta_{1}$ , \ldots ,
$\Delta_{k}$
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Assume that the system is nondegenerate. It turns out that the nondegeneracy
condition holds for almost all Laurent polynomials with fixed Newton polyhedra.
Many discrete invariants of the set of solutions are identical and are expressed in
terms of the polyhedra.

Theorem. The Euler characteristic of the nondegenerate complete intersection
$f1=\cdots=f_{k}=0$ in $(\mathbb{C}\backslash 0)^{n}$ , $(k\leq n)$ , with the Newton polyhedra $\Delta_{1}$ , $\ldots.\Delta_{k}$

is equal to $(-1)^{n-k}n! \sum V(\Delta_{1}, \ldots, \Delta_{k}, \Delta:_{1}, \ldots\Delta:_{n-k})$, where the sum is taken over
all sets $1=i_{1}\leq\cdots\leq in-k\leq k$ .

We note one special case of this theorem.

Corollary. The Euler characteristic of a hypersurface in $(\mathbb{C}\backslash 0)^{n}$ defined by non
degenerate equation with fixed $N$ ewton polyhedron is equal to the volume of the
Newton polyhedron multiplied by $(-1)^{n-1}n!$ .

Another consequence of this theorem is Bernshtein’s theorem (see par.3.1.2):
for $k=n$, the nondegenerate complete intersections consist of points, and the
Euler characteristic is equal to the number of points (strictly speaking, Bernshtein’s
theorem is slightly stronger than this corollary, since it is applicable to adegenerate
regular system).

5. Genus of complete intersections.
The formulas given below for the genus of complete intersections are generaliza-

tions of the following formulas for Abelian and elliptic integrals. Let us consider a
Riemann surface $y^{2}=P_{3}(x)$ (the complex phase curve of motion of apoint in afield
with acubic potential). This Riemann surface, which is diffeomorphic to the torus,
exhibits asingle, everywhere holomorphic, differential form $dx/y$ (the differential
of the time of motion along the phase curve). In the case of apotential of degree
$n$ , the curve $y^{2}=P_{n}(x)$ is diffeomorphic to the sphere with $g$ handles, where $g$

is connected with $n$ either by the formula $n=2g+1$ , or the formula $n=2g+2$
(depending on the parity of $n$ ). The basis of holomorphic forms in this case is given
by $g$ forms of the type $x^{m}dx/y$ , $0\leq m<g$ . The number $g$ is the genus of the curve.
The Newton polyhedron of the curve $y^{2}==P_{n}(x)$ is atriangle with vertices $(0, 0)$ ,
$(0, 2)$ , and $(n, 0)$ . There are exactly $g$ points with integer coordinates strictly inside
this triangle. In terms of these points, one can give abasis for the space of hol0-
morphic forms: the point $(l, a)$ , which lies inside the triangle, corresponds to the
form $x^{a-1}dx/y$ . We give below the generalization of this procedure for constructing
abasis of holomorphic forms for the multi-dimensional case.

The nondegenerate complete intersections $f_{1}=\cdots=f_{k}=0$ , where the $f_{i}$ , are
Laurent polynomials, are smooth algebraic affine manifolds. In the cohomologies of
such manifolds there is an additional structure, namely, the mixed Hodge structure.
The discrete invariants of such astructure are calculated in terms of the Newton
polyhedra. We consider only the calculation of the arithmetic and geometric genus
which are invariants of this kind.

We first recall some definitions and general statements. Suppose that $\mathrm{Y}$ is a
nonsingular (possibly noncompact) algebraic manifold. The set of holomorphic
$p$ forms on $\mathrm{Y}$ , which extend holomorphically to any nonsingular algebraic com-
pactification, is automatically closed, and it realizes the zero class of homology of
the manifold $\mathrm{Y}$ only if it is equal to zero. Forms of this kind form asubspace in the
$p$-dimensional cohomologies of the manifold Y. We denote the dimension of this
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subspace by $h^{p,0}(\mathrm{Y})$ . The arithmetic genus of the manifold $\mathrm{Y}$ is the alternating
sum $\sum(-1)^{p}h^{p,0}(\mathrm{Y})$ of the numbers $h^{p,0}(\mathrm{Y})$ . The geometric genus of the manifold
$\mathrm{Y}$ is the number $h^{n,0}(\mathrm{Y})$ , where $n$ is the complex dimension of the manifold Y.

Now we turn to the Newton polyhedron. We shall use the characteristic $B(\Delta)$

of integer polyhedra. Here is its definition. Suppose that $\Delta$ is adimension$\mathrm{a}1$

polyhedron with vertices at integer points, lying in $\mathbb{R}^{n}$ and $\mathbb{R}^{q}$ is adimension$\mathrm{a}1$

affine subspace, containing $\Delta$ . The number $B(\Delta)$ is defined as the number of integer
points lying strictly within he polyhedron A(in the geometry of the subspace $\mathbb{R}^{q}$ ),
multiplied by $(-\mathrm{l})^{}$ .
Theorem. The arithmetic genus of the nondegenerate complete intersection $f_{1}=$

$\ldots=f_{k}=0$ in $(\mathbb{C}\backslash 0)^{n}$ , $(k\leq n)$ , with the Newton polyhedra $\Delta_{1}$ , $\ldots$ , $\Delta_{k}$ is

$1- \sum B(\Delta:)+\sum_{j>\dot{l}}B(\Delta:+\Delta_{j})-\cdots+(-1)^{k}B(\Delta_{1}+\cdots+\Delta_{k})$
.

Corollary. The geometr$r\cdot c$ genus of the nondegenerate complete intersection (for
$k<n)$ with the polyhedra of full dimensionality is

$(-1)^{n-k}((- \sum B(\Delta:)+\sum_{j>\dot{1}}B(\Delta:+\Delta_{j})-\cdots+(-1)^{k}B(\Delta_{1}+\cdots+\Delta_{k}))$

We now give acomplete description of the holomorphic forms of highest dimen-
sion which could be extended holomorphically to the compactification, for the case
of anondegenerate hypersurface $f=0$ in $(\mathbb{C}\backslash 0)^{n}$ with the Newton polyhedron
Aof complete dimension. For each integer point, lying strictly within the Newton
polyhedron $\Delta$ , we denote by $\omega_{a}$ the $n$-form on the hypersurface $f=0$, defined by
the formula

$\omega_{a}=z_{1}^{a_{1}}\cross\cdots \mathrm{x}$ $z_{n}^{a_{n}} \frac{dz_{1}}{z_{1}}\wedge\cdots\wedge\frac{dz_{n}}{z_{n}}/df$; $a=a_{1}$ , $\ldots$ , $a_{n}$ .

Theorem. The forms $\omega_{a}$ lie in the space offorms extendible holomorphically on the
compactification of the manifold $f=0$;they are linearly independent and generate
that space. In particular, the geometric genus of the hypersurface is equal to $|B(\Delta)|$ .

Example: Consider acurve in the plane determined by the equation $y^{2}=P_{n}(x)$ .
The interior monomials for the Newton polyhedron of this curve have the form $yxa$ ,
where $1\leq a<n/2$ . The forms $\omega_{a}$ corresponding to the monomials coincide [on the
curve $y^{2}=P_{n}(x)]$ with the forms $x^{a-1}dx/2y$ . Thus, for the curve $y^{2}=P_{n}(x)$ we
get the usual description of all Abelian differentials.

6. Affine case.
It is customary to consider systems of equations not in $(\mathbb{C}\backslash 0)^{n}$ , but in the

usual complex space $\mathbb{C}^{n}$ . Calculations with Newton polyhedra also are carried out
in this situation. The answers here are more messy. As an example we consider
the calculation of the Euler characteristic of ahypersurface in $\mathbb{C}^{n}$ . Suppose that
$f$ is apolynomial in $n$ complex variables with anonzero free term and Newton
polyhedron $\Delta$ . We introduce the following notation: $\Delta^{I}$ is the intersection of the
Newton polyhedron Awith the coordinate plane $R^{I}$ i$\mathrm{n}$

$\mathbb{R}^{n}$ , $d(I)$ is the dimension
of this plane, and $V(\Delta^{I})$ is the $d(I)$-dimensional volume of the polyhedron $\Delta^{I}$ .
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Theorem. Let $f$ be a nondegenerate polynomial with the Newton polyhedron $\Delta$

which has a nonzero free term. Then $f=0$ is a nonsingular hypersurface in $\mathbb{C}^{n}$ ,
intersecting transversally all the coordinate planes in $\mathbb{C}^{n}$ . The Euler characteristic
of this hypersurface is equal to $\sum(-1)^{d(I)-1}d(I)!V(\Delta)$ , where the summation runs
over all intersections of the Newton polyhedron $\Delta^{I}$ with the (nonzero) coordinate
planes.

This theorem follows from the calculation of the Euler characteristic in $(\mathbb{C}\backslash 0)^{n}$

and from the additivity of the Euler characteristic. We also note that the formula
given for ahypersurface is analogous to the formula for the Milnor number.

LECTURE 2. POLYHEDRA AND INDEX OF APOLYNOMIAL FIELD

In this lecture we will present an estimation for the index of apolynomial vector
field with components of fixed degrees. We also will give examples showing that
this estimation is best possible (see [1], [2]). The proof of the estimates in the
nondegenerate case is closely related to the proof in Petrovskii and Oleinik [3],
where the Euler characteristics of some algebraic sets are estimated. In addition,
the proof is closely related to the proof in the article by Arnol’d [4] and clarifies
the connection between these two methods of argument. As in [4], the index is
associated with the signature of acertain quadratic form (see also [5, 6]). As in [3],
akey factor in the proof is the use of the Euler-Jacobs formula.

1. Notation.
Let $V=P_{1}$ , $\ldots$ , $P_{n}$ be avector field in $\mathbb{R}^{n}$ with polynomial components $P_{i}$ . We

denote by ind the sum of the indices of all singular points of the field $V$ in $\mathbb{R}^{n}$ .
We will say that the field $V$ has degree not equal to $m=m_{1}$ , $\ldots$ , $m_{n}$ , provided
the degrees of all the polynomials $P_{i}$ , $i=1$ , $\ldots$ , $\mathrm{n}$ , are equal to $m_{i}$ . We will say
that the field $V$ is nondegenerate if the real singular points of the field $V$ have
multiplicity one and “lie in the finite part of the space $\mathbb{R}^{n}"$ . (We write the last
condition out in more detail. Let the $P_{i}$ be homogeneous polynomials of degree $m_{i}$

in the variables $x_{0}$ , $x_{1}$ , $\ldots$ , $x_{n}$ , such that $\overline{P}_{i}(1, x_{1}, \ldots, x_{n})\equiv P_{i}(x_{1}, \ldots, x_{n})$ . The
last condition means that the system $\overline{P}_{1}=\cdots=\overline{P}_{n}=x_{0}=0$ has only the trivial
solution $x_{0}=x_{1}=\cdots=x_{n}=0.$ )

We introduce some notation.
$\Delta(m)$ is the parallelepiped in $\mathbb{R}^{n}$ defined by the inequalities $0\leq y_{1}\leq m_{1}$ -

1, . . . ’
$0\leq y_{n}\leq m_{n}-1$

$\mu=m_{1}\ldots$ $m_{n}$ is the number of integer points in the parallelepiped $\Delta(m)$ .
$\Pi(m)$ is the number of integer points in the central section $y_{1}+\cdots+y_{n}=$

$\frac{1}{2}(m_{1}+\cdots+m_{n}-n)$ of the parallelepiped $\Delta(m)$ .

2. Statement of the result.

Theorem. If $V$ is a nondegenerate field of degree $m$ , the number satisfies the
inequality $|a|\leq\Pi(m)$ and the congruence $a\equiv\mu \mathrm{m}\mathrm{o}\mathrm{d} 2$ . Conversely, for every
number $a$ satisfying these conditions, there exists a nondegenerate field $V$ of degree
$m$ for which $\mathrm{i}\mathrm{n}\mathrm{d}=a$ .
Corollary. The index ind of an isolated singular point of the field $V=P_{1}$ , $\ldots$ , $P_{n}$

with homogeneous components of degree $m=m_{1}$ , $\ldots$ , $m_{n}$ satisfies the inequality
$|\mathrm{i}\mathrm{n}\mathrm{d}|\leq\square (m)$ and the congruence $\mathrm{i}\mathrm{n}\mathrm{d}\equiv\mu \mathrm{m}\mathrm{o}\mathrm{d} 2$ . The number ind is not subject
to any other restrictions

7



A. KHOVANSKII

3. Projective transformations.
Let $\Gamma$ be ahyperplane in $\mathbb{R}^{n}$ defined by alinear inhomogeneous equation $l(x)=$

$l_{1}(x)+l_{0}=0$ . We construct aprojective transformation $g:\mathbb{R}^{n}arrow \mathbb{R}\mathrm{n}$ , taking
the hyperplane $\Gamma$ into the hyperplane at infinity; $g(x)=[1/l(x)]A(x)$ , where
$A(x)$ is an affine transformation. Aprojective transformation of afield $V$ with
components $P_{1}$ , $\ldots$ , $P_{n}$ of degrees $m_{1}$ , $\ldots$ , $m_{n}$ is afield $\tilde{V}=\tilde{P}_{1}$ , $\ldots$ , $P\sim n$

’ where
$\tilde{P}_{\dot{l}}(x)=l^{m}:(x)P_{\dot{l}}(g(x))$ for $i=1$ , $\ldots$ , $n$ . If $a$ is asingular point of the field $V$ ,

then the point $\tilde{a}=g^{-1}(a)$ is singular for $\tilde{V}$ . The Jacobian $\det\frac{\partial g}{\partial x}$ i$\mathrm{s}$ defined
outside the hyperplane $\Gamma$ and vanishes nowhere. We say that atransformation
$xarrow g(x)=[1/l(x)]A(x)$ is positive if its Jacobian is positive in the region $l(x)>0$ .
For odd $n$ , the space $\mathbb{R}P^{n}$ is orientable and positive transformations coincide with
orientation-preserving transformations. In the general case, positive transforma-
tions correspond precisely to linear transformations of $\mathbb{R}^{n+1}$ with positive determi-
nant.

We will be interested in how the index, of the field $V$ changes under pr0-
jective transformations. The global characteristic ind is obtained by summing
the corresponding local characteristics over the set $X$ of singular points of $V$ ,
$\mathrm{i}\mathrm{n}\mathrm{d}=\sum_{a\in X}\mathrm{i}\mathrm{n}\mathrm{d}(\mathrm{V})\mathrm{a}$.

Given afield $V$ and aprojective transformation $xarrow g(x)$ , we write $X(g)$ for
the set of singular points $a$ of $V$ for which $\tilde{a}=g^{-1}(a)$ is defined. The index of
the field $V$ is called projectively invariant if for every positive $g=[1/l(x)]A(x)$ and
$a\in X(g)$ the equality $\mathrm{i}\mathrm{n}\mathrm{d}(V)_{a}=\mathrm{i}\mathrm{n}\mathrm{d}(\tilde{V})_{\tilde{a}}$ holds. The index is said to be projectively
antiinvariant if $\mathrm{i}\mathrm{n}\mathrm{d}(V)_{a}=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}$

$l(\tilde{a})\mathrm{i}\mathrm{n}\mathrm{d}(\tilde{V})_{\tilde{a}}$ .
Asimple verification proves the following assertion.

Assertion. 1. The index is projectively invariant if $m_{1}+\cdots+m_{n}\neq n\mathrm{m}\mathrm{o}\mathrm{d}$2.
2. The index is projectively antiinvariant if $m_{1}+\cdots+m_{n}=n\mathrm{m}\mathrm{o}\mathrm{d}$2.

We write $\Gamma_{\infty}$ for the image of the plane at infinity under aprojective trans-
formation. For $g(x)=[1/l(x)]A(x)$ , where $A(x)$ is alinear transformation and
$l(x)=-l_{1}(x)+l_{0}$ the equation of the hyperplane $\Gamma_{\infty}$ has the form $l_{1}(A^{-1}(x))=1$ .
We associate with the hyperplane $l_{1}(x)=p$ , where $p>0$ , the transformation
$xarrow(px)/(l_{1}(x)+l)$ , for which this plane is $\Gamma_{\infty}$ . The invariant characteristics
of the singular points of the field are preserved under aprojective transformation.
The antiinvariant characteristics remain unchanged for the singular points lying in
one of the halfspaces bounded by $\Gamma_{\infty}$ and change sign for the singular point lying
in the other half space.

4. Examples.
In the construction of our examples, aprincipal role will be played by the simplest

field $V(m)$ of degree $m=m_{1}$ , $\ldots$ , $m_{n}$ with components $P_{\dot{l}}= \prod_{0\leq k\leq m.-1}(x:-k)$ ,
$i=1$ , $\ldots$ , $n$ . We note that all the singular points of $V(m)$ coincide with the integral
points of the polyhedron $\Delta(m)$ defined by the inequalities $0\leq x:\leq m:-1$ , $i=$
$1$ , $\ldots$ , $n$ . The signs of the Jacobian at the singular points alternate in “chessboard
order”. Moreover, at the singular points lying on the single section $\sum x:=k$ , the
sign of the Jacobian is constant. Upon passing to the next section $\sum X:=k+1$ ,
this sign is replaced by the opposite sign. In this section we often encounter the

number $\frac{1}{2}\sum(m_{\dot{l}}-1)$ , which we denote by $\rho$ .
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Consider the case $m_{0}+\cdots+m_{n}\not\equiv n\mathrm{m}\mathrm{o}\mathrm{d} 2$. In this case $\Pi(m)=0$ , and by
Theorem 1every nondegenerate field $V$ has zero index.

We consider the case $m_{1}+\cdots+m_{n}\equiv n\mathrm{m}\mathrm{o}\mathrm{d} 2$ . In this case, the characteristic
ind is antiinvariant. The central section $\sum X:=\rho$ of the rectangular box $\Delta(m)$

contains exact $\Pi(m)$ singular points of the field $V(m)$ . The sections $\sum x:=\rho-k$

and $\sum x:=\rho+k$ contain the same number of singular points with Jacobians
of the same sign. We carry out aprojective transformation $xarrow g(x)$ for which
the plane $\Gamma_{\infty}$ has the equation $\sum x_{i}=\rho-1/2$ , e.g., the transformation $xarrow$

$( \rho-1/2)x/(\sum x:+1)$ . The sections $\sum x:=\rho-k$ and $\sum x:=\rho-k$ for $k>0$
lie in different half spaces bounded by $\Gamma_{\infty}$ . The indices of the inverse images of
the singular points of the field $V(m)$ lying in these sections cancel one another.
Therefore, the absolute value of the index of the field $\tilde{V}$ is equal to the number of
singular points of $V(m)$ lying on the section $\sum x_{i}=\rho$, i.e., it is equal to $\square (m)$ . Here
is an explicit formula for the component $\tilde{P}_{i}$ of the field $\tilde{V}$ : $P_{i}(x)= \prod_{0\leq k\leq m_{i}}[(p-$

$\frac{1}{2})x_{i}-k(\sum x_{i}+1)]$ .
The index of the field $\tilde{V}$ does not change if the position of the plane $\Gamma_{\infty}$ is

perturbed slightly. We define $\Gamma_{\infty}$ by the equation $\sum a_{i}x_{i}=t$ , where the $a_{i}$ are
scalars close to unity which are independent over the rationals, and $t$ is close to
$\rho-1/2$ . We now begin to let $t$ get bigger. This will not change the index of the
field $\tilde{V}$ until $\Gamma_{\infty}$ passes through asingular point of $V(m)$ from the direction of the
central section $\sum x_{\dot{\iota}}=\rho$ . When this occurs, $\tilde{V}$ becomes degenerate and its index
changes by one. If the number $t$ is increased abit more, the field $\tilde{V}$ again becomes
nondegenerate and its index again changes by one. Continuing the motion of the
plane $\Gamma_{\infty}$ , we obtain examples of nondegenerate fields $\tilde{V}$ of degree $m$ with any index
satisfying the conditions $|\mathrm{i}\mathrm{n}\mathrm{d}|\leq\Pi(m)$ , $\mathrm{i}\mathrm{n}\mathrm{d}\equiv\mu \mathrm{m}\mathrm{o}\mathrm{d} 2$ . The leading homogeneous
components of the field $\tilde{V}$ form afield with an isolated singular point at zero with
the same index.

5. Signature and index.

5.1. A Finite Set with Involution. Let $A$ be afinite set containing $\mu$ elements,
$\tau:Aarrow A$ an involution of $A$ , and let $X$ be the set of fixed points of $\tau$ . We consider
the algebra $L_{\tau}$ over the field $R$ consisting of all complex value functions on $A$ for
which $f\tau=\tilde{f}$. Let $\varphi$ be afixed function in $L_{\tau}$ which is nowhere zero. The number
of points of the set $X$ at which $\varphi$ is positive is denoted by $\varphi^{+}$ , the number of points
at which it is negative, by $\varphi^{-}$ . We consider the bilinear form $\omega_{\varphi}$ on $L_{\tau}$ defined by
$\omega_{\varphi}(f, g)=\sum_{a\in A}\varphi(a)f(a)g(a)$ . The signature of aquadratic form $K$ is denoted by
$\sigma K$ .
Lemma 1. The dimension of the algebra $L_{\tau}$ is equal to $\mu$ . The quadratic form
$K_{\varphi}(f)=\omega_{\varphi}(f, f)$ takes real values and is nondegenerate. The signature $\sigma K_{\varphi}$ is
equal to $\varphi^{+}-\varphi^{-}$ In particular, $\sigma K_{\varphi}$ for $\varphi=1$ is equal to the number of fixed
points of $\tau$ .

Proof. Under the action of $\tau$ , the set $A$ decomposes into invariant sets $A^{k}$ consisting
of one or two points. Let $L_{\tau}^{k}$ denote the subalgebra of $L_{\tau}$ consisting of functions
with support $A^{k}$ , $l_{\tau}= \sum L_{\tau}^{k}$ . The subspaces $L_{\tau}^{k}$ are orthogonal with respect to
the form $\omega_{\varphi}$ . If $A^{k}$ consists of asingle point $a$ , $a\in X$ , then $\dim L_{\tau}^{k}=1$ and the
signature of the restriction of the form $K_{\varphi}$ to $L_{\tau}^{k}$ is equal to sign $\varphi(a)$ . For two
point sets $A^{k}=\{a, \tau a\}\dim L_{\tau}^{k}=2$ . In this case, the restriction of the form $K_{\varphi}$

9
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to $L_{\tau}^{k}$ is equal to $\varphi(a)f^{2}(a)+\varphi(\tau a)f^{2}(\tau a)=2{\rm Re}[\varphi(a)f^{2}(a)]$ . As is easily seen, the
signature of such aform is zero. The lemma is proved.

Corollary. 1. The congruence $\varphi^{+}-\varphi^{-}\equiv\mu \mathrm{m}\mathrm{o}\mathrm{d} 2$ holds. 2. Let $L_{0}$ be any linear
subspace of the algebra $L_{\tau}$ on which the form $K_{\varphi}$ is identically equal to zero. Then
the estimate $|\varphi^{+}-\varphi^{-}|\leq\mu-2\dim L_{0}$ is valid. If the null subspace is maximal,
this estimate is best possible.

Proof. Indeed, the signature of anondegenerate form always has the same parity
as the dimension of the space. In addition, the estimate $|\sigma K|\leq\mu-2\dim L_{0}$ holds
for every nondegenerate form $K$ on $\mathbb{R}^{\mu}$ with nullspace $L_{0}$ . For amaximal subspace
$L_{0}$ , this estimate is an equality.

We will apply the lemma 1and corollary to the case when $A$ is the set of complex
singular points of areal vector field and $\tau:Aarrow A$ is the involution given by complex
conjugation.

5.2. We consider areal vector field V in $\mathbb{R}^{n}$ with polynomial components V $=$

$P_{1}$ , \ldots ,
$P_{n}$ . Let A $\subset \mathbb{C}^{n}$ be the set of complex solutions of the system

(1) $P_{1}=\cdots=P_{n}=0$

and let the involution $\tau:Aarrow A$ be complex conjugation. The set $X$ of fixed points
$\tau$ under coincides with the set of real solutions of system (1). We assume that all
the complex solutions $a\in A$ of system (1) have multiplicity one. This means that

the Jacobian $j(x)= \det\frac{\partial P}{\partial x}$ of (1) does not vanish at the points of $A$ . Let $P_{0}$ be
any polynomial with real coefficients which does not vanish at the points of $A$ .

We obtain the following assertion by applying the preceding lemma.

Assertion. The signature $\sigma K_{\varphi}$ of the quadratic form $K_{\varphi}(f)= \sum_{a\in A}\varphi(a)f^{2}(a)$

is equal to the number of real singular points of the field $V$ if $\varphi=1$ . If $\varphi=1/j$ ,
where $j$ is the Jacobian of system (1), then $\sigma K_{\varphi}=\mathrm{i}\mathrm{n}\mathrm{d}$ .

In order to estimate the number $\mathrm{i}\mathrm{n}\mathrm{d}$ , it is now necessary to describe the algebra
$L_{\tau}$ and exhibit anullspace for the form $K_{\varphi}$ which is as large as possible for $\varphi=1/j$ .
The null subspace is obtained with the aid of the Euler-Jacobi formula, which we
recall.

Consider asystem of $n$ polynomial equations of degrees $m_{1}$ , $\ldots$ , $m_{n}$ , in $\mathrm{n}$ complex
unknowns,

$P_{1}=\cdots=P_{n}=0$ .

We assume that the set of roots of the system contains exactly $\mu=m_{1}\ldots$ $m_{n}$

elements. In this case, the Jacobian of the system $j= \det\frac{\partial P}{\partial x}$ does not vanish on
the set $A$ . Then for every polynomial $Q$ of degree less than $\sum m:-n$ , we have the

following Euler-Jacobi formula: $\sum_{a\in A}\frac{Q(a)}{j(a)}=0$ .
Apurely algebraic proof of this formula can be found in [7]. An analytic proof and

generalization to nondegenerate systems of equations with fixed Newton polyhedra
is given in [8]
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6. Convenient systems of equations.
Asystem of equations $P_{1}=\cdots=P_{n}=0$ of degrees $m_{1}$ , $\ldots$ , $m_{n}$ will be called

nondegenerate if it has exactly $\mu=m_{1}\ldots$ $m_{n}$ distinct roots.
Consider the parallelepiped $\Delta(m)$ in $\mathbb{R}^{n}$ defined by the inequalities $0\leq y_{1}\leq$

$m_{1}-1$ , $\ldots$ , $0\leq y_{n}\leq m_{n}-1$ . Let $M(m)$ be the space of polynomials with Newton
polyhedron $\Delta(m)$ . Apolynomial $Q\in M(m)$ , if and only if the degree of $Q$ with
respect to the variables $x_{i}$ is less than $m_{i}$ . The dimension of the space $M(m)$ over
the field $\mathbb{C}$ is equal to $m_{1}\ldots$ $m_{n}-n=\mu$ .

Anondegenerate system is said to be convenient if every complex valued function
$f$ on the set $A$ of roots of the system is the restriction of some polynomial in $M(m)$ .

Lemma 2. The system of equations

$\prod_{0\leq k\leq m_{1}}(x_{1}-k)=\cdots=\prod_{0\leq k\leq m_{n}}(x_{n}-k)=0$

is convenient.

Indeed, the set $A$ of roots of this system contains precisely $\mu=m_{1}\ldots$ $m_{n}$ el-
ement. In addition, the equations of the system can be rewritten in the form of
equalities $x_{1}^{m_{1}}=Q_{1}(x_{1})$ , $\ldots$ , $x_{n}^{m_{n}}=Q_{n}(x_{n})$ , in which $Q_{1}$ , $\ldots$ , $Q_{n}$ are polynomials
of degrees $m_{1}-1$ , $\ldots$ , $m_{n}-1$ . Using these equations, it is not hard to show that
every polynomial $Q(x)$ coincides on the set $A$ with some polynomial in the space
$M(m)$ . This implies Lemma 1, since every function $f$ on the finite set $A$ is the
restriction of some polynomial.

Lemma 3. The inconvenient systems form a hypersurface in the space of all sys-
tems of degree $m$ .

Indeed, as is well known, the degenerate systems form ahypersurface in the
space of all systems of degree $m$ . Take any nondegenerate system and enumerate
its roots arbitrarily $a_{1}$ , $\ldots$ , $a_{\mu}$ . Then enumerate in some way the integer points in
the Newton polyhedron $\Delta(m)$ . These numerations define bases in the $\mu$-dimensional
space $C(A)$ of all complex-valued functions on $A$ and in the $\mu$ dimension space
$M(m)$ . Let $\det$ denote the determinant of the matrix of the restriction mapping
$i:M(m)arrow C(A)$ with respect to these bases. The number det2 does not depend
on the choice of enumeration; it depends only on the coefficients of the system, this
dependence being analytic. Anondegenerate system is convenient if and only if the
number $\det^{2}$ for it is distinct from zero. The function det2 is not identically equal
to zero. Indeed, by Lemma 1, there exist convenient systems of degree $m$ . Lemma
2is proved.

Let $M(m, R)$ denote the space of polynomials with real coefficients with Newton
polyhedron $\Delta(m)$ , $M(m, R)=M(m)\cap R(x)$ .

Lemma 4. For a convenient system of equations of degree $m$ with real coefficients,
the restriction of polynomials in the space $M(m, R)$ to the set A defines an isomor-
phism of $M(m, R)$ with the algebra $L_{\tau}$ onto $A$ , where $\tau:Aarrow A$ is the involution
of complex conjugation.

The restrictions of polynomials in $M(m, R)$ clearly lie in the algebra $L_{\tau}$ . In
addition, for convenient systems anonzero polynomial in $M(m)$ corresponds to a
nonzero function on $A$ . Lemma 4follows from the inclusion $M(m, R)\subset M(m)$ and
the fact that $\dim M(m, R)=\mu$ , and $\dim L_{\tau}=\mu$ .

11



A. KHOVANSKII

7. Inequalities for nondegenerate fields.
We conclude the proof of Theorem (see Sec. 2). Let $V$ be anondegenerate field

of degree $m$ . Under asmall change in the coefficients of the components $P_{1}$ , $\ldots$ , $P_{n}$

of $V$ the number ind will not change. It can therefore be assumed, without loss of
generality, that $P_{1}=\cdots=P_{n}=0$ is aconvenient system of degree $m$ (see Lemma 3)
and that the surface $P_{0}=0$ in $\mathbb{C}^{n}$ does not intersect the set of roots $A$ of the system.
By Lemma 4, every function on $A$ in $L_{\tau}$ , where the involution $\tau:Aarrow A$ is complex
conjugation, is the restriction of aunique polynomial in $M(m, R)$ . We consider the

quadratic form $K_{\varphi}(f)$ on $L_{\tau}$ with $\varphi=1/j$ (here $j= \det\frac{\partial P}{\partial x}$ ). According to the
assertion in Sec. 5, $\sigma K_{\varphi}=\mathrm{i}\mathrm{n}\mathrm{d}$ . It follows from the Euler-Jacobi formula that for
all polynomials $f$ of degree less than $\frac{1}{2}\sum_{:>0}(m:-1)$ , the identity $K_{\varphi}(f)=0$ is
valid. In our case, the inequality $|\sigma K_{\varphi}|\leq\mu-2\dim L_{0}$ takes the form $|\mathrm{i}\mathrm{n}\mathrm{d}|\leq \mathrm{A}(\mathrm{m})$ .
Indeed, $\mu$ is equal to the number of integer points in the polyhedron $\Delta(m)$ , and
$\dim L_{0}$ is equal to the number of integer points in $\Delta(m)$ satisfying the inequality
$\sum y:<1/2\sum_{:>0}(m:-1)$ . The inequality $|\mathrm{i}\mathrm{n}\mathrm{d}|\leq\Pi(m)$ has been proved. The
congruence $\mathrm{i}\mathrm{n}\mathrm{d}\equiv\mu \mathrm{m}\mathrm{o}\mathrm{d} 2$ is almost obvious. Theorem is proved.
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LECTURE 3. SYSTEM OF EQUATIONS
WITH GENERIC NEWTON POLYHEDRA

Consider the system of equations $P_{1}=\cdots=P_{n}=0$ in $(\mathbb{C}\backslash 0)^{n}$ , where $P_{1}$ , \ldots ,
$P_{n}$

are Laurent polynomials with the Newton polyhedra $\Delta_{1}$ , \ldots ,
$\Delta_{n}$ .

Assume that Newton polyhedra $\Delta_{1}$ , \ldots ,
$\Delta_{n}$ are developed (see \S 1), which means

that they are located sufficiently generally with respect to each other.
The geometrical meaning of being developed is especially clear in the tw0-

dimensional case: two polygons on aplane are developed if and only if they do
not have parallel sides with identically directed outer normals.

We will present two following results about the system of equations whose New-
ton polyhedra are developed.

First result: Let Q be aLaurent polynomial. Consider the n-for

$\omega=(Q/P)\frac{dz_{1}}{z_{1}}\wedge\cdots\wedge\frac{dz_{n}}{z_{n}}$ ,
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where $z_{1}$ , $\ldots$ , $z_{n}$ are independent variables and $P=P_{1}\cdot\ldots$ $\cdot P_{n}$ . Then the sum of
the Grothendieck residues of the form $\omega$ over all roots of the system of equations
can be explicitly evaluated (see [1]).

Second result: Vieta formula for the product of roots of apolynomial can be
generalized to the multidimensional case: one can compute in the group $(\mathbb{C}^{*})^{n}$ the
product of all roots of asystem of $\mathrm{n}$ polynomial equations with sufficiently general
Newton polyhedra (see [2]).

1. Combinatorial coefficient.
Let $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ be convex polyhedra in $\mathbb{R}^{n}$ and Abe their Minkowski sum. Each

face of the polyhedron $\Delta$ is the sum of faces of $\Delta_{i}$ polyhedra. Aface $\Gamma$ will be called
locked if its terms include at least one vertex. Avertex $A\in\Delta$ will be called critical
if all faces adjacent to this vertex are locked.

Consider acontinuous map $F:\Deltaarrow \mathbb{R}^{n}$ , $F=$ $(f_{1}, \ldots, f_{n})$ , such that each its
components $f_{\dot{l}}$ is nonnegative and vanishes on those and only those faces $1’=$

$\Gamma_{1}+\cdots+\Gamma_{n}$ whose term $\Gamma_{i}$ is apoint-vertex of the polyhedron $\Delta_{i}$ .
The restriction $\tilde{F}$ of the map $F$ onto the boundary $\partial\Delta$ of the $\Delta$ polyhedron

transfers aneighborhood of acritical vertex into aneighborhood of the zero point
on the boundary $\partial \mathbb{R}_{+}^{n}$ of the positive octant.

The combinatorial coefficient $k_{A}$ of acritical vertex $A\in\Delta$ is the local degree of
the germ of the map $\tilde{F}:(\partial\Delta, A)arrow(\partial \mathbb{R}_{+}^{n}, 0)$. The coefficient $k_{A}$ is well-defined and
depends only on the orientations of the polyhedron $\Delta$ and the positive octant $\mathbb{R}_{+}^{n}$ .

The set of the polyhedra $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ is called developed if all faces of the sum
polyhedron $\Delta$ are locked. Almost all sets of $n$ polyhedra in the space $\mathbb{R}^{n}$ are
developed.

2. Orientations.
The sign of the form $\omega$ depends on the order of the independent variables

$z_{1}$ , $\ldots$ , $z_{n}$ . This order also determines the orientation of the linear space $\mathbb{R}^{n}$ that
contains me lattice of the monomials $z^{a}$ and the Newton polyhedron $\Delta=\Delta_{+}\cdots+$

$\Delta_{n}$ .
The order of the equations $P_{1}=\cdots=P_{n}=0$ (or their Newton polyhedra

$\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ ) determines the orientation of the space $\mathbb{R}_{+}^{n}$ , which is involved in the
definition of the combinatorial coefficient. The order of the equations also deter-
mines the sign of the Grothendieck residue in the roots of the system of equations.

Let us arbitrarily select the orders of the independent variables and the equations.
These determine the signs of the form $\omega$ , the Grothendieck residue, and the signs
of the combinatorial coefficients.

3. Residue of the form in avertex of apolyhedron.
For each vertex $A$ of the Newton polyhedron $\Delta(P)$ of the Laurent polynomial

$P$ , we construct the Laurent series or the function $Q/P$ , where $q$ is an arbitrary
Laurent polynomial.

The monomial $z^{a}$ corresponding to the vertex $A$ of the polyhedron $\Delta(P)$ is
included in $P$ with some nonzero coefficient $C_{A}$ ; therefore, the free term of the
Laurent polynomial $\tilde{P}=P/(C_{A}z^{a})$ is equal to unity. Let us specify, the Laurent
series for $1/\tilde{P}$ by the formula $1/\tilde{P}=1+(1-\tilde{P})+(1-\tilde{P})^{2}+\ldots$ . Each monomial $z^{b}$

is included with nonzero coefficients in only afinite number of the terms $(1-\tilde{P})^{k}$ .
Therefore, the coefficient of each monomial $z^{b}$ in this series is well-defined. The
formal product of the series obtained and the Laurent polynomial $C_{A}z^{a}Q$ will be
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called the Laurent series of the rational function $Q/P$ at the vertex $A$ of the Newton
polyhedron A(P).

The residue resAW of the rational form $\omega=\frac{Q}{P}\frac{dz_{1}}{z_{1}}\wedge\cdots\wedge\frac{dz_{n}}{z_{n}}$ at the vertex $A$ at

the vertex $A$ of the Newton polyhedron $\Delta(P)$ is the free term of the Laurent series
of the function $Q/P$ at the vertex $A$ . The residue $\mathrm{r}\mathrm{e}\mathrm{s}_{A}\omega$ can explicitly be written
as apolynomial of $C_{A}^{-1}$ and the coefficients of the Laurent polynomials $P$ and $Q$ .

4. The first main result.

Main Theorem. If the Newton polyhedra of the equations in the system are de-
veloped, then the sum of the Grothendieck residues can be evaluated for a form $\omega$

with any Laurent polynomial Q. This sum is equal to $(-\mathrm{l})^{}$ $\sum k_{A}\mathrm{r}\mathrm{e}\mathrm{s}$ $A\omega$ , where the
summation is over all critical vertices $A$ of the polyhedron $\Delta$ .
Corollary. The sum $\sum R(a)\mu(a)$ of values of an arbitrary Laurent polynomial $R$

over roots $a$ of a system of equations with developed Newton polyhedra, where the
roots are evaluated while taking into account their multiplicities $\mu(a)$ is $(-\mathrm{l})^{}$ $\sum k_{A}\mathrm{r}\mathrm{e}\mathrm{s}_{A}\omega$

where

$\omega=R\frac{dP_{1}}{P_{1}}\wedge\cdots\wedge\frac{dP_{n}}{P_{n}}=[Rz_{1}\ldots z_{n}\det(\frac{dP}{dz})/(P_{1}\ldots P_{n})]\frac{dz_{1}}{z_{1}}\wedge\cdots\wedge\frac{dz_{n}}{z_{n}}$ .

5. Geometric application.
For each vertex $A$ of the polyhedron $\Delta=\Delta_{1}+\cdots+\Delta_{n}$ , aset of vertices $A_{:}\in\Delta_{i}$

such that $A=A_{1}+\cdots+A_{n}$ is determined. Put $\det$ $A$ to be equal to the determinant
of the matrix formed by the vectors $A_{1}$ , $\ldots$ , $A_{n}$ .
Theorem. For the mixed volume $V$ of developed polyhedra $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ with valid
$nal$ vertices,

$n!V=(-1)^{n} \sum k_{A}\det A$ .
For polyhedra with integer vertices, this theorem is proved by comparing the

Bernstein formula for the number of the roots of the system of equations with
Corollary for $R=1$ . One can prove the theorem geometrically and eliminate the
condition that the vertices are rational [2].

6. Algebraic application.
Corollary makes it possible to construct an explicit theory of elimination for a

system of equations in $(\mathbb{C}\backslash 0)^{n}$ with developed Newton polyhedra. Let us explain,
for example, how an equation for the first coordinate $z_{1}$ of the roots of the system is
obtained. For this purpose it is sufficient to evaluate the sums $\sum R(a)\mu(a)$ , where
$R$ are polynomials equal to 1, $z_{1}$ , $\ldots$ , $z_{1}^{N}$ , with $N=n!V-1$ , and use the Newton
formulas expressing the coefficients in an equation in terms of the sums of powers
of its roots.

7. Local version.
Consider asystem of analytic equations $p_{1}=\cdots=p_{n}=0$ in aneighborhood

of the point $\mathrm{O}\in \mathbb{C}\mathrm{n}$ . Let the Newton diagrams of $\Gamma_{1}$ , $\ldots$ , $\Gamma_{n}$ of these equations be
convenient. The definitions of developed Newton diagrams and the combinatorial
coefficients of the vertices of the diagram of the sum $\Gamma=\Gamma_{1}+\cdots+\Gamma_{n}$ and the
residues $\mathrm{r}\mathrm{e}\mathrm{s}A\omega$ almost literally repeat the definitions given above. The following
theorem is valid.

14



THREE LECTURES ON NEWTON POLYHEDRA

Theorem. For a system of analytic equations $p_{1}=\cdots=p_{n}=0$ with developed
Newton diagrams, the point 0is an isolated solution. The Grothendieck residue at

zero of the form $\omega=\frac{q}{p_{1}\ldots p_{n}}\frac{dz_{1}}{z_{1}}\wedge\cdots\wedge\frac{dz_{n}}{z_{n}}$ , where $q$ is an arbitrary analytic func-
tion divisible by $z_{l}\cdot\ldots\cdot$ $z_{n}$ , is equal to $(-\mathrm{l})^{}$ $\sum k_{A}\mathrm{r}\mathrm{e}\mathrm{s}_{A}\omega)$ , where the summation
is over all vertices $A$ of the Newton diagram $\Gamma=\Gamma_{1}+\cdots+\Gamma_{n}$ that lie strictly inside
the positive octant.

8. Vieta formula.
According to the classical Vieta formula, the product of the nonzero roots of

an equation $a_{n}x^{n}+\cdots+a_{k}x^{k}=0$ with $a_{n}\neq 0$ , $a_{k}\neq 0$ is equal to the number
$(-1)^{n-k}a_{k}a_{n}^{-1}$ . We generalize the Vieta formula to the multidimensional case.
More precisely, we compute in the group $(\mathbb{C}^{*})^{n}$ the product of all the roots of the
system of equations

$P_{1}(x)=\cdots=P_{n}(x)=0$ , $x\in(\mathbb{C}^{*})^{n}$ ,

whose Newton polyhedra $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ are developed.
We will present two different formulas for this product. In the first formula

we use the so called Parshin symbols, in the second formula we use derivatives of
the mixed volume with respect to vertices of all polyhedra. Let us start with the
one-dimensional case.

The Vieta formula has an interpretation connected with Weil’s theorem. First
let us recall Weil’s theorem (see, for example, [3]). Let $X$ be acomplex algebraic
curve, and $f$ and $g$ be two nonzero meromorphic functions on $X$ . With each point
$a\in X$ is associated the s0-called the Weil symbol $[f, g]_{a}$ . Here is its definition. Let
$u$ be alocal parameter about the point $a$ , $u(a)=0$ , and let $f=c_{1}u^{k_{1}}+\ldots$ and
$g=c_{2}u^{k_{2}}+\ldots$ be the leading terms of the expansion of the functions $f$ and $g$ at
the point $a$ . The Weil symbol $[f, g]_{a}$ is the number $(-1)^{k_{1}k_{2}}c_{1}^{k_{2}}c_{2}^{-k_{1}}$ For all the
points on the curve $X$ , except for afinite number of them, the Weil symbol is equal
to one. The following holds:

Weil’s theorem.
$\prod_{a\in X}[f,g]_{a}=1$

.

Let us apply Weil’s theorem in the case that the curve $X$ coincides with the
Riemann sphere, the function $f$ is equal to the coordinate function $x$ , and the
function $g$ is equal to apolynomial $P$ . We will get

$\prod x(a)=[x, P]_{0}^{-1}[x, P]_{\infty}^{-1}$ ,

where the product is taken over all nonzero roots $a$ of the polynomial $P$ . This
formula coincides with the Vieta formula.

The Vieta formula also has acompletely different interpretation.
The Newton polygon of the polynomial $P(x)=a_{n}x^{n}+\cdots+akx^{k}$ is asegment

$I(n, k)$ on the real line with vertices $n$ and $k$ , where $n>k\geq 0$ . The product of the
nonzero roots of the polynomial $P$ is equal, up to asign, to the monomial $a_{k}a_{n}^{-1}$ in
the coefficients an, $a_{k}$ at the vertices $n$ and $k$ of the Newton polyhedron $I(n, k)$ of
the polynomial $P$ . The coefficient $a_{n}$ enters in this monomial to the power given by
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the value, taken with opposite sign, of the derivative of the length of the segment
$I(n, k)$ by the vertex $n$ , i.e. to the power minus one. The coefficient $a_{k}$ enters in
this monomial to the power also given by the value, taken with opposite sign, of
the derivative of the length of the segment $I(n, k)$ by the vertex $k$ , i.e. to the power
one.

9. Parshin symbols and the product of roots.
Parshin-Kato theory gives afar-reaching generalization of Weil’s theorem. In

this theory to $(n+1)$ meromorphic functions on an $n$-dimensional algebraic manifold
$X$ and aflag of submanifolds in the manifold $X$ is associated the s0-called Parshin
symbol which generalizes the Weil symbol. According to Parshin-Kato theory, the
product of Parshin symbols over certain flags of submanifolds also turns out to by
equal to one (see [4], [5], [6]).

Let $M(P_{1}, \ldots, P_{n})$ be the product in the group $(\mathbb{C}^{*})^{n}$ of the roots of the system
of equations (1). The computation of the point $M(P_{1}, \ldots, P_{n})$ in the group $(\mathbb{C}^{*})^{n}$

is equivalent to the computation of the value $\chi(M(P_{1}, \ldots, P_{n}))$ of each character
$\chi:(\mathbb{C}^{*})^{n}arrow \mathbb{C}$

’ at this point.
Let Abe the Minkowski sum of the polyhedra $\Delta_{:}$ , A $=\Delta_{1}+\cdots+\Delta_{n}$ . With

each vertex $A$ of the polyhedron $\Delta$ is associated an integer –the combinatorial
coefficient $C_{A}$ of the vertex $A$ .

With each vertex $A$ of the polyhedron $\Delta$ it is possible to associate anumber
$[P_{1}, \ldots, P_{n}, \chi]$ , which we will call the Parshin symbol of the functions $P_{1}$ , $\ldots$ , $P_{n}$ , $\chi$

at the vertex $A$ of the polyhedron A(see [2]).

Theorem. The following equality holds:

$\chi(M(P_{1},$
\ldots ,$P_{n}))= \prod_{A\in\Delta}[P_{1},$\ldots ,

$P_{n}, \chi]_{A}^{(-1)^{n}C_{A}}$ .

Here the product is taken over all the vertices A of the polyhedron A.

The equality from the theorem is analogous to the interpretation of Vieta formula
with the help of Weil’s theorem. It could be explained in the framework of Parshin-
Kato theory. Our proof, however, is elementary and does not require this theory
(see [2]).

10. Volume and the product of roots.
Let Abe apolyhedron in $\mathbb{R}^{n}$ , let $A$ be one of its vertices, let $L$ be the set of

the other vertices of this polyhedron A. For every vector $h$ we can consider the
point $(A+h)$ and define the polyhedron $\Delta(A+h)$ as the convex hull of the set
$L\cup(A+h)$ . For example, by definition, the polyhedron $\Delta(A+0)$ coincides with
the polyhedron $\Delta$ .

Now let $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ be acollection of polyhedra in $\mathbb{R}^{n}$ , and let $A_{\dot{l}}$ be one of
the vertices of the polyhedron $\Delta_{:}$ . Let us consider the mixed volume $V(h)$ of the
polyhedra $\Delta_{1}$ , $\ldots$ , $\Delta:-1,$ $\Delta:(A+h)$ , $\Delta_{:+1}$ , $\ldots$ , $\Delta_{n}$ as afunction of the vector $h$ .

Suppose that the function $V(h)$ is differentiate by $h$ at the point 0, and let $dV$

be its differential. We will call this differential the derivative of the mixed volume
by the vertex $A$ of the polyhedron $\Delta_{:}$ and we will denote this differential by the
symbol $d_{A:}\mathrm{V}\mathrm{o}\mathrm{l}$ $(\Delta_{1}, \ldots, \Delta_{n})$ .

One can prove that the mixed volume of adeveloped collection of the polyhedra
$\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ is differentiate with respect to every vertex of every polyhedron
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The Newton polyhedra are located in the space $\mathbb{R}^{n}$ of characters of the group
$(\mathbb{C}^{*})^{n}$ ; to every integral point $k\in \mathbb{R}^{n}$ corresponds the character $\chi_{k}$ : $(\mathbb{C}^{*})^{n}arrow \mathbb{C}$

’

which maps the point $x$ to the number $x^{k}$ . The dual space $(\mathbb{R}^{n})^{*}$ to the space
$\mathbb{R}^{n}$ is the space of one-parameter subgroups in the group $(\mathbb{C}^{*})^{n}$ ; to every integral
point $on=m_{1}$ , $\ldots$ , $m_{n}$ corresponds the $\mathrm{o}\mathrm{n}\mathrm{e}\sim \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}$ subgroup $t^{m}$ : C’ $arrow(\mathbb{C}^{*})^{n}$

which assigns to every nonzero number $t$ the point $x=x_{1}$ , $\ldots$ , $x_{n}$ , where $x_{1}=$

$t^{m_{1}}$ , $\ldots$ , $x_{n}=t^{m_{n}}$ .
For adeveloped collection of integral polyhedra $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ every derivative

$n!d_{A_{i}}\mathrm{V}\mathrm{o}\mathrm{l}$ $(\Delta_{1}, \ldots, \Delta_{n})$ is an integral covector on the space $\mathbb{R}^{n}$ . Therefore to the
derivative $n!d_{A}\mathrm{V}o1$: $(\Delta_{1}, \ldots, \Delta_{n})$ corresponds aone-parameter group in the space
$(\mathbb{C}^{*})^{n}$ . For every nonzero complex number $t\neq 0$ the element $t^{n!d_{A_{i}}\mathrm{V}\mathrm{o}\mathrm{l}(\Delta_{1},\ldots,\Delta_{n})}$ in
the group $(\mathbb{C}^{*})^{n}$ is defined. In the new version of the formula for the product of
roots $M(P_{1}, \ldots, P_{n})$ we will use these notations.

Theorem. For every system of equations $P_{1}=\cdots=P_{n}=0$ with the developed
collection ofNewton polyhedra $\Delta_{1}$ , $\ldots$ , $\Delta_{n}$ , up to signs the element $M(P_{1}, \ldots, P_{n})$

of the group $(\mathbb{C}^{*})^{n}$ is defined by the formula

$M(P_{1}, \ldots, P_{n})=q\prod_{1\leq i\leq n}\prod_{A_{i}\in\Delta_{\mathrm{i}}}P_{\dot{l}}(A_{i})^{-n!d_{A_{i}}\mathrm{V}\mathrm{o}\mathrm{l}(\Delta_{1},\ldots,\Delta_{n})}$
,

where the inner product is conducted over all the vertices $A_{i}$ of the polyhedra
$\Delta_{i}$ ; $P_{i}(A_{i})$ is the number equal to the coefficient of Laurent polynomial $P_{i}$ at the
monomial corresponding to the vertex $A_{i}$ ; $n!d_{A_{i}}\mathrm{V}\mathrm{o}\mathrm{l}$ $(\Delta_{1}, \ldots, \Delta_{n})$ is aone-charameter
subgroup in the group $(\mathbb{C}^{*})^{n}$ which corresponds to the derivative of the mixed vol-
$ume$ VO1 $(\Delta_{1}, \ldots, \Delta_{n})$ by the vertex Ai, $q$ is an element in $(\mathbb{C}^{*})^{n}$ which coordinates
are equal $to\pm 1$ .
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