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Abstract

Motivated by the classification problem of atomic degenerations, in our
series of papers, we make a systematic study for splitting deformations of de-
generations of complex curves. We provide various new methods to construct
splitting deformations, and deduce many splitting criteria of degenerations,
which will be applied to the classification of atomic degenerations. Roughly,
our criteria are separated into two types; in the first type the criteria are
expressed in terms of the configuration of a singular fiber, and in the second
type, in terms of sub-divisors of a singular fiber. In both types, our construc-
tions are ‘visible’, in that we can view how the singular fiber is deformed. In
the present paper, we demonstrate splitting criteria of the first type.
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Introduction

This paper constitutes one part of our series of papers on degenerations. By a
degeneration, we mean a proper surjective map 7 : M — A from a smooth complex
surface M to the unit disk A such that the fiber over the origin is singular and any
other fiber is a smooth curve of genus g (¢ > 1). A deformation of a degeneration is
called a splitting deformation, provided that it induces a splitting of its singular fiber.
We notice that it may occur that a degeneration admits no splitting deformation
at all, in which case the degeneration is called atomic. Our main problem is to
classify atomic degenerations of arbitrary genera (see [Re]). The classification has
been known only for the very low genus cases; for the genus 1 case, by Moishezon
[Mo], and for the genus 2 case, by Horikawa [Ho] (see also §6.3), where they used
the double covering method for constructing splitting deformations.

Recent progress for the genus 3 case was made by Ashikaga and Arakawa [AA],
who obtained results on the classification of atomic degenerations of hyperelliptic
curves of genus 3. Their method is also based on the double covering method. Un-
fortunately, this method fails to work for degenerations of non-hyperelliptic curves.
Some new idea is needed for constructing splitting deformations of degenerations of
non-hyperelliptic curves even for the genus 3 case (note that for the genus 1 and 2
cases, all curves are hyperelliptic, but this is not the case for genus 2> 3). In our series
of papers we develop completely different methods for constructing splitting defor-
mations, and apply them to the classification of atomic degenerations for the genus
3.4 and 5 cases [Ta,III, Ta]. The aim of this paper is to study the relation between
the configurations of singular fibers and the existence of splitting deformations. We
first show that two types of degenerations are atomic.

Theorem 2.0.2 Let7w: M — A be a degeneration of curves such that the singular
fiber X is either (I) a reduced curve with one node, or (II) a multiple of a smooth
curve of multiplicity at least 2. Then ©: M — A is atomac.

We remark that the proof of Theorem 2.0.2 carrries over to arbitrary dimensions
to show that a degeneration of type (II) is atomic, i.e. letting = : M — A be a
degeneration of compact complex manifolds of arbitrary dimension, if the singular
fiber X is a multiple of a smooth complex manifold, then 7 : M — A is atomic.
Next, we shall state results on existence of splitting deformations. We demon-
strate several splitting criteria via the configuration of the singular fiber. Roughly,
these criteria are classified into two types; the first one is in terms of some singulari-
ties on the singular fiber and the second one is in terms of the existence of irreducible
components of multiplicity 1 satisfying certain properties (see the list of splitting
criteria in the bottom of this introduction). Most of our criteria also give the explicit
description of splittings of singular fibers. We note that the commutativity of some
topological monodromies follows from one of these criteria (see Proposition 6.1.2).
From our criteria, we will see that many degenerations with non-star-shaped! sin-
gular fibers always admit splitting deformations. Together with Theorem 2.0.2 it is

1See §4.
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interesting to know whether the following is true or not.

Conjecture 6.3.1 A degeneration is atomic if and only if its singular fiber is either
a reduced curve with one node, or a multiple of a smooth curve.

See [Ta,lIlI], [Ta] for results on this conjecture. (Actually, this conjecture seems
too optimistic for higher genus cases. A more reasonable conjecture is given by
replacing ‘atomic’ by ‘absolutely atomic’, where a degeneration 7 : M — A is
absolutely atomic provided that all degenerations with the same topological type as
7 : M — A are atomic.) In order to classify atomic degenerations, the results of this
paper enable us to use the induction with respect to genus g (see §6.3 for details);
let A, be a set of degenerations 7 : M — A of curves of genus g such that

(1) the singular fiber X has a multiple node? (here we exclude the case where X
is a reduced curve with only one node), or '

(2) X contains an irreducible component ©, of multiplicity 1 satisfying the fol-
lowing condition®: if X \ @ is connected, then either genus(©y) > 1, or O,
is a projective line intersecting other irreducible components at at least two
points.

As a consequence of our splitting criteria, we obtain the following.

Theorem 6.3.2 Suppose* that Conjecture 6.3.1 is valid for genus < g — 1. If
m: M — A is a degeneration in A,, then 7 is not atomic.

Hence, if the assumption of this theorem is fulfilled, to determine atomic degen-
erations of curves of genus g, it suffices to check the splittability of degenerations
m: M — A such that

(A) X = n~1(0) is star-shape, or

(B) X is not star-shaped and (B.1) X has no multiple node and (B.2) if X has an
irreducible component ©¢ of multiplicity 1, then @ is a projective line, and
intersects other irreducible components of X only at one point.

In [Ta,III], we develop another method for constructing splitting deformations, which
uses- ‘barkable’ sub-divisors in singular fibers. This method is quite powerful and
works for degenerations satisfying (A) or (B).

List of splitting criteria via configurations of singular fibers

(In most cases, we assume that a degeneration is normally minimal (see §1). This
assumption is not restrictive at all. See §1. We notice that in some cases, two
different criteria are applicable to one degeneration.)

2A multiple node is either an intersection point of two irreducible components of the same
multiplicity, or a self-intersection point of an irreducible component.

3If X \ Oy is not connected, we pose no condition.

*This assumption is valid for g = 2 and 3.

20



Criterion 5.1.2 Let 7 : M — A be normally minimal such that the singular
fiber X has a multiple node of multiplicity at least 2. Then there exists a splitting
deformation of m : M — A, which splits X into X; and X;, where X; is a reduced
curve with one node and X, is obtamed from X by replacing the multiple node by a
multiple annulus. :

Criterion 5.1.3 Let 7 : M — A is normally minimal such that the singular fiber
X contains a multiple node (of multiplicity > 1). Then m: M — A is atomic if and
only if X is a reduced curve with one node.

Criterion 5.2.2 Let m : M — A be relatively minimal. Suppose that the singular
fiber X has a point p such that a germ of p in X is either

(1) a multiple of a plane curve singularity’ of multiplicity at least 2, or

(2) a plane curve singularity such that if it is a node, then X \ p is not smooth.

Then © : M — A admits a splitting deformation.

Criterion 6.1.1 Let 7 : M — A be normally minimal. Suppose that the singular
fiber X contains an irreducible component ©¢ of multiplicity 1 such that X \ ©q s
(topologically) disconnected. Denote by Y1,Ys,..., Y1 (I > 2) all connected compo-
nents of X \ ©g. Then © : M — A admits a splitting deformation which splits X
into X1,Xs,...,X;, where X; (1 = 1,2,...,1) is obtained from X by smoothmg
Y., Y,,.. .,Yi,.. Y;. Here Y} is the omission of Y;.

Criterion 6.2.1 Let 7 : M — A be normally minimal such that the singular fiber
X contains an irreducible component ©¢ of multiplicity 1. Let my : My — A be
the restriction of © to a tubular neighborhood My of X \ ©¢ in M. Suppose that
T : My — A admits a splitting deformation Uy which splits Y+ := My N X into
Y Y. Yt Then m: M — A admits a splitting deformation ¥ which splits X
into XI,X«Z, ., Xi, where X; s obtained from Y;* by gluing ©F along the boundary.

Acknowledgment. 1 would like to express my deep gratitude to Professor Tadashi
Ashikaga for valuable discussions and warm encouragement. It is also my great
pleasure to thank Professor Fumio Sakai for valuable advice and suggestions after
he read the early draft of this paper. I also would like to thank Professors Toru
Gocho and Mizuho Ishizaka for fruitful discussions. I also would like to thank the
Max-Planck-Institut fiir Mathematik at Bonn, and the Research Institute for Math-
ematical Sciences at Kyoto University for their hospitality and financial support.

1 Preparation

In this paper, A := {s € C : |s| < 1} stands for the unit disk. Let = : M — A
be a proper surjective holomorphic map from a smooth complex surface M to A,

* 5In this paper a plane curve singularity always means a reduced one.
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such that 7~1(0) is singular, and 7~!(s), (s # 0) is a smooth complex curve of
genus g (¢ > 1). We say that 7 : M — A is a degeneration of complex curves of
genus g with the singular fiber X := #71(0). Two degenerations m; : M; — A and
Ty : My — A are called topologically equivalent if there are orientation preserving
homeomorphisms H : M; — M; and h : A — A, which make the following diagram

commutative:

M, 2> M,

,11 h j

A——A.

Next, we introduce basic terminology concerned with deformations of degenera-
tions. We set At := {t € C: [t| < §}, where 6 is sufficiently small. Suppose that
M is a smooth complex 3-manifold, and ¥ : M — A x Al is a proper surjective
holomorphic map. We set M, := ¥~1(A x {t}) and m; := U|py, : My — A x {t}.
Since M is smooth and dimA'! = 1, the composite map proo ¥ : M — Atisa
submersion, and so M; is smooth. We say that ¥ : M — A x Al is a deformation
ofm: M — Aif g : My — A x {0} coincides with 7 : M — A. For consistency, we
mainly use the notation A, instead of A x {t}.

We introduce a special class of deformations of a degeneration. Suppose that
™ : M — A is relatively minimal, i.e. its singular fiber contains no (—1)-curve
(exceptional curve of the first kind). A deformation ¥ : M — A x Af is said to be
a splitting deformation of 7 : M — A, provided that for ¢t # 0, 7, : M; — A, has
at least two singular fibers. In this case, if X3, X,,...,X; (I > 2) are singular fibers
of m : My — A, then we say that X splits into X;, Xs,...,X;. We note that a
splitting of the singular fiber induces a factorization of the topological monodromy
ofm: M — A. Letting ; be the topological monodromy around X; in 7; : M; — A,

we have v = y172 -+ - .
Next, we define the notion of splitting deformations for a degeneration 7 : M —

A which is not relatively minimal. We first introduce some notation. Let us take a
sequence of blow down maps

MEIMm ML Iy,

and degenerations 7; : M; —» A*(: =1,2,...,r) where

(1) fi : Mi-y — M; is a blow down of a (—1)-curve in M;_; and the map = :
M; — A is naturally induced from 7;_; : M;_; — A, and

(2) m : M, — A is a relatively minimal.

Given a deformation ¥ : M — A x At of 7 : M — A, we shall construct a
deformation ¥, : M, — A x Al of the relatively minimal degeneration 7, : M, — A.
First, recall that by Kodaira’s stability theorem [Ko2], any (—1)-curve in a complex
surface is preserved under an arbitrary deformation of the surface. Thus, there
exists a family of (—1)-curves in M. We blow down them simultaneously to obtain
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a deformation ¥, : M; — A of my : M} — A. Again, by Kodaira’s stability, there
exists a family of (—1)-curves in M, which we blow down simultaneously to obtain
a deformation ¥y : My — A of my : M3 — A. We repeat this process and finally
obtain a deformation ¥, : M, — A of 7, : M, — A. Namely, given a deformation
U: Mo AxAtof 1: M - A, we obtain a deformation ¥, : M; — A x Al
of m, : M, — A. We say that ¥ : M — A x Al is a splitting deformation of
™ : M — A, provided that ¥, : M, — A x Al is a splitting deformation of the
relatively minimal degeneration 7, : M, — A. We say that a degeneration is atomic
if it admits no splitting deformation at all.

In this paper, instead of relatively minimal degenerations, we mainly use nor-
mally minimal degenerations, because they reflect the topological type (or topolog-
ical monodromies) of degenerations. See §4. Recall that 7 : M — A is normally
minimal if X satisfies the following conditions:

(1) the reduced part X,eq := Y ; ©; is normal crossing, and

(2) if ©; is a (—1)-curve, then ©; intersects other irreducible components at at
least three points. :

In this case, we also say that the singular fiber X is normally minimal. The followin

lemma is useful.

Lemma 1.0.1 Let # : M — A be a normally minimal degeneration of complex
curves of genus g. Suppose that ¥ : M — A x Al is a deformation of 7 : M — A
such that 7y : My — A (t # 0) has at least two normally minimal singular fibers.
Then ¥ : M — A x Al is a splitting deformation of 7 : M — A.

Proof. We first show the statement for the case ¢ > 2. Let 7, : M, — A be the
relatively minimal model of 7 : M — A, and let ¥, : M, — A X Al be the defor-
mation of =, which is determined from ¥. Suppose that Y; and Y are normally
minimal singular fibers of 7, ; : M, ; — A;. Then the image of Y; (: =1,2) in M, is
also singular, because the topological monodromy of 7, around Y; is nontrivial (see
[MM2], and also [ES, Im, ST]). If g = 1, this argument is valid except that none
of Y7 and Y5 is a multiple of a smooth elliptic curve, in which case, the topologi-
cal monodromy is trivial. However, a multiple of a smooth elliptic curve is clearly

relatively minimal (it contains no projective line at all), so we completes the proof. O

2 Atomic degenerations

In this section, we exhibit two types of atomic degenerations.

Theorem 2.0.2 Let # : M — A be a degeneration of curves such that the singular
fiber X is either (I) a reduced curve with one node, or (II) a multiple of a smooth
curve of multiplicity at least 2. Then w: M — A is atomic.
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We notice that in the type (I), X has one or two irreducible components, in the later
case, two smooth irreducible components intersecting at one point transversally. The
type (II) means that X is of the form m®, where m > 2, and O is a smooth curve.

Remark 2.0.3 Weremark that the proof of Theorem 2.0.2 carrries over to arbitrary
dimensions to show that a degeneration of type (II) is atomic, i.e. letting = : M —
A be a degeneration of compact complex manifolds of arbitrary dimension, if the
singular fiber X is a multiple of a smooth complex manifold, then 7 : M — A is
atomic.

We first demonstrate that if X is a reduced curve with one node, then 7 : M — A
is atomic. We prove this by contradiction. Assume that ¥ : M — A x At is a
splitting deformation of 7 which splits X into X;,Xs,...,X; (I > 2). We notice
that a deformation of a node is either equisingular, or smoothing. Hence X; is an
equisingular deformation of X, and so it is also a reduced curve with one node.
Since M is diffeomorphic to M;, we have x(M) = x(M;), where x(M) stands for the
topological Euler characteristic of M. From this equation, we deduce the following
relation of Euler characteristics (see [BPV] p97):

(2.0.1) X(X) = (2-29) = ) _ [x(X:) - (2 - 29)].

=1

Since X and X;, X,,...,X; are reduced curves with one node, we have
x(X) = x(X1) = =x(X)) =2-29+ 1.
Then (2.0.1) implies that 1 = [, which gives the contradiction.

Note: We can also show the above statement purely analytically by the computation
of Ext! (cf. [Pal]). In fact, if X splits into X1, Xs,...,X; (I > 2), then the node
(A;-singularity) of X splits into ! nodes. However, an A;-singularity does not admit
any splitting. This gives a contradiction.

3 The proof of Theorem 2.0.2 for the type (II)

Next, we shall demonstrate that if X is a multiple of a smooth curve, then 7 : M —
A is atomic. The proof is quite intricate and long, so we separate the statement into
several claims to clarify the main step of the proof; for a deformation 7 : M; — A,
of 7 : M — A, we first construct an unramified covering p; : My —» M;, and then
show that the Stein factorization of m; o p, factors through a smooth family over a

disk. .

3.1 Preparation

First, we construct an unra.miﬁed”cyclic m-covering of M. For this purpose, we
consider a line bundle L = O (0) on M. Notice that L®™ = Oy, because mO is
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the principal divisor defined by the holomorphic function =. We set F, := n71(s)
(so Fy = m0O). Then L has the following property: (1) For s # 0, the restriction
L|F, is a trivial bundle on F,, and (2) the restriction Ll is a line bundle on © such
that (L]e)®™ = Oe.

Next, we take an open covering M = |J, U,, and let U, x C be local trivializa-
tions U, x C of L, with coordinates (z4,(s) € U, x C. We take a non-vanishing
holomorphic section 7 = {'ro,} of L&8(-™) = Oy,. Equa.tlons To(20) (T +1 = 0 define
a smooth hypersurface M in L. The map f : M- M given by f(za,(a) = 24 is
an unramified cyclic m-covering. From the property of the line bundle L, (1) for
s # 0, f7Y(F,) has m connected | components such that each connected component
is diffeomorphic to F,, and (2) 0 := f71(©) is connected, and fj : © - Oisan
unramified cyclic m-covering.

In order to show that = : M — A is atomic, we shall prove that for an arbitrary
deformation ¥ : M — A x Al of 7, m; : My — A; has a unique singular fiber, and
it is of the form m©®,;, where O, is diffeomorphic to ©. For this purpose, we first
construct an unramified cyclic covering of M; notice that M is diffeomorphic to
M x Af, and the map M x At — M x Al (z, t) (f(z),t) is an unramified cyclic
m-covering. Thus we have an unramified cyclic m-covering p : M — M, where we
give the complex structure on M induced from that on M by p. (Thls is possible,
because p is unramlﬁed) By construction, setting M, = p~1(M,), the restriction
| M, — M, of p to Mt is also an unramified cyclic m-covering. Applymg the Stein
factorization to the map 7; o p; : Mt — A, we obtain a commutative diagram

—~—

(3.1.1) | M, —> M,

~ Dt

At —_— Aty

where e (1) Zt is a smooth” curve, and P, : At — A is an m- covermg, and (2)
.M, = A is a proper surjective map such that all fibers are (topologlcally)

connected We notice that since p; is a cyclic covering, from the commutativity of

the above diagram, it is easy to check that p, is also a cyclic covering. '

3.2 The proof of Theorem 2.0.2 for the type (II)

After the above preparation, we prove Theorem 2.0.2 for the type (II). The key
ingredients of the proof are the following two claims, which together imply that the
Stein factorization (3.1.1) is nothing but the stable reduction of 7, : My — A;. In
what follows, we always assume that |t| is sufficiently small.

Claim A 7;: ]\Z — Zkt is a smooth family, i.e. all fibers of 7; are smooth.

6These equations are compatible with the transition functions of L.
"The Stein Factorization Theorem 1mphes that since Mt is normal At 1s also normal As is
well known, a normal curve is smooth.
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Claim B Zt is an open disk.

Assuming Claims A and B for a moment, we will verify that 7, : M; — A, has only
one singular fiber, and it is of the form m®©;. First, we note the following.

Lemma 3.2.1 Suppose that p: AoAisa cyclic m-covering, where A and A are
open unit® disks. Then the covering transformation group fizes ezactly one point in
A, and p is given by the map z — 2™ possibly after coordinate change.

Proof. Let v : A— &~be a generator of the covering transformation group. Then ~
is an element of Aut(A), which is isomorphic to the fractional linear transformation
group PSL,(R) of the unit disk (Poincaré disk). From 4™ = 1, the transformation
7 is an elliptic element. Thus it fixes exactly one point in Z, and 7« is of the form
z — e2™/™ z possibly after coordinate change. Thus p: A — A is given by z — 2™.
O

Now we complete the proof of the theorem. By Claim A, 7, : ]\Aft — A, is
a_smooth family. Let 7, be a generator of the covering transformation group of
M; — M,. By the construction of the Stein factorization of m;0p;, the transformation
v: determines a generator 7, of the covering transformation group of A; — A, such
that the following diagram commutes.

(3.2.1) M,—/ M,
A, —A,.

Namely, the pair (7:,7:) generates an equivariant Z.-action on 7, : My — A, and
T : My — A, is the quotient of 7 M, — Zt by this action. Recall that A; is
a disk, while by Claim B, A; is also a disk. Applying Lemma 3.2.1 to the cyclic
m-covering A; — A, we see that v; fixes exactly one point, say z; on A;. From the

commutativity of the diagram (3.2.1), we have

Lemma 3.2.2 The 7;-action on JE stabilizes precisely one fiber ét :=7; (3:) and
except this fiber this action cyclically permutes the m fibers in each orbit.

ét erit—%>ét CAZ

igl J“;'I'g

~ ~ M ~.
Tt € At > € At.

As m : My — A, is the quotient of the smooth family 7, JTI: — A, by the
equivariant Z,,-action, it follows from Lemma 3.2.2 that =; : M; — A, has a unique

8This is not restrictive at all; any open disk is biholomorphic to the unit one.
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singular fiber over the point z, := P,(Z;). This fiber is a multiple of a smooth curve,
because M; — M, is unramified cyclic, so in particular, the Z,-action on o, is
unramified cyclic action. ‘Namely, the singular fiber is m©;, where ©; is the image
of @t under the quotient map (the multiplicity equals the order m of the ¥;-action
on G)t) Finally, we claim that ©, diffeomorphic to ©. In fact, the restriction of ¥ to
U, ©: is a smooth family over the reduced part D,.q of discriminant of U. (Note that
D,eq is a disk. See Remark 3.3.3 below.) By Ehresmann’s Theorem, any fiber ©,
is diffeomorphic to @y = ©. Thus, assuming Claims A a,nd B, we proved Theorem
2.0.2, and so it remains to demonstra.te these claims.

3.3 Proof of Claim A

We will show that 7 is a smooth family, i.e. any fiber of 7; is smooth. This is a
crucial step in the proof of the theorem.

Step 1. Preparation

Let X;, X, ..., X4 be the singular fibers of m, : M; — A, and set z; := m,(X;). We
need to mtroduce notation associated to the basic diagram: =

—~

(3.3.1) M, —— M,

~ P
At At

We set p; *(z;) := {N(l) ~(2) R S ) }, and let r; be the ramlﬁcatlon index® of a:(J )
(so P, : z — 2" around (J)) Since the covering degree of p, : Ay — At is m, we
have

(3.3.2) m=r;- #(‘p‘t‘l(x,)) = T'iN,'.

We write X @) =g Y(J ), where @; is a positive integer and Y(] ) is not a multiple
divisor, i.e. gcd{coeflicients of Y(J)} = 1. (Note that @; does not depend on j,
because p, : A, — A is a cyclic covering.) Next, recalling that X; is a singular fiber
of 7, : M, — A, we write X; = a;Y;, where a; is a positive integer and Y; is not a

multiple divisor. Notice that |
(3.3.3) (B, 0 o) M) = 1 s v,

where r; is the ramification index of P, at 4]). As p; is unramified, the fiber'® of
T O Dy ° M, — A, over the point z; is a multiple fiber of multiplicity a;. Thus from
the commutativity of the diagram (3.3.1), together with (3.3.3), we have

(334) a; = T,‘E,‘.

We notice

9p; does not depend on j, because p, : A; — Ay is a cyclic covering.
10The fiber (m; 0 B,)~1(z:) is not connected; there are N; connected components.
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Lemma 3.3.1 ma; = Na;.

Proof. Indeed, ma; = r;N;a; = a;N;, where the ﬁrst and second equalities follows
from (3.3.2) and (3.3.4) respectively. O

_Next, we note that if there is a singular fiber of 7,, then it is a ﬁber over some

(J . In fact if X is a singular fiber of 7;, then the image pi(X) is a singular fiber of
7. Therefore, to prove Claim A, it is enough to demonstrate that for any E,(j ), the
fiber X9 = 7;71(1) is smooth.

Step 2. All X',-(j) are smooth

Now we shall show that all )2,“ ) are smooth. Although the proof is involved, the
essential part of the idea is to relate the singular fibers of m; o p; and the singular
fiber of my 0 p. Namely, using the diagram??

M- ML A XA

we relates the singular fibers of the following two diagrams (‘embedded’ in the above
diagram) by taking the limit ¢ — 0:

Y3 ™ AT 0 T
M, 2 M, =5 A, and M, 2 M, = A,.

Step 2.1 We consider the discriminant D C A x A' of ¥; it is a complex subspace
(plane curve) of A x At through (0,0), and defined by the locus where the rank of
d¥ is not'maximal. Roughly, D is {(s,t) € A x Al : ¥~1(s,¢) is singular }, but
possibly non-reduced. For our discussion, we rather use the reduced part D.eq of D.
By the Weierstrass Preparation Theorem the reduced plane curve Dieq is deﬁned
by a Weierstrass polynomial

(3.3.5) 8"+ cno1(t) " 4 cama(t) ST 4 -+ cot) =

where ¢;(t) is a holomorphic function with ¢;(0) = 0. By the definition of the re-
duced part, this equation contains no multiple root, in other words, the discriminant
A(2) of the'above Weierstrass polynomial does not vanish identically (but possibly
vanishes for some t). Now we claim that n = d, where d is the number of the singular
fibers in 7 : M; — A,. Indeed, when ¢t = 0, (3.3.5) is s" = 0, which clearly has
a multiple root, so A(0) = 0. Since zeroes of the holomorphic function A(t) are
isolated, A(t) does not vanish for sufficiently small ¢ (¢ # 0). Consequently, (3.3.5)
has n distinct roots, and so 7; has precisely n singular fibers, implying that n = d.
This verifies the claim, and we have

(3.3.6) Drea = {s% + cam1(t) s + caa(t) s 2 4 - + co(t) = 0.

1We do not use the Stein factorization of the map ¥ o p, but it is worth while pointing out
that it factors through a normal surface S, which possibly has a singularity. In contrast, the Stein
factorization for the map with a one-dimensional base factors through a smooth curve.
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Next, we define a ramified d-fold ¢ : D;.q — AT by (s,t) — t. Then

b ) = d distinct points fort#0
a multiple point s =0 for ¢t = 0.

Step 2.2 To relate the singular fibers of m; o p; and my o pp, we consider the
hypersurface H := (¥ 0 p)~!(Dreq) in the complex 3-manifold M. For the remainder

9)

of the proof, to emphaswe the parameter ¢, we use ‘precise’ notation X, (, instead of

XY etc. Notice that

the disjoint union of all )Z',(Jt) fort #0

(3.3.7) HAM, = <
dmO fort =0,

where we can see ’HﬂMo = dm® as follows. Since To >1(0) = mO and p, is unramified
(locally blholomorphlc) we have (o0 Do)~ 1(O) m®, hence the fiber of m 0 po over

the multiple point s¢ = 0 is dm®, so H N M, = dm®.
By the first equation of (3.3. 7) our goal is to show that HN ]VIt is smooth for all

t # 0. To demonstrate this, fixing an arbitrary point y € @( 01 (9©)), we take a
local coordinate!? (21, z,t) around y in M, suchthat z; =0, t = 0 locally defines ©.

Let f(z1,22,t) = 0 be a defining equation of H around y in M. For later discussion,
we use the notatlon ft(zl, z;) instead of f(z1,22,t). By the first equation of (3.3.7),

HNM, = l(H ) (disjoint union) and X f’t) = a,Y;(Z ), 50 we can write
(3.3.8) fi= H 1, where f;; = Hgf’t),
=1

and g(J ) = 0 defines Y(J ) Jocally. By the second equation of (3.3.7), folz1,22) = 2™,
hence setting!® t = 0 in (3.3.8), we have

, d -
(3.3.9) g =h=1] %
. =1

and so we may express g,(’ )(zl, 23) = zld( -ufj)(zl, z2), where dgj )isa positive integer,
and ugj isa non-vanishing holomorphic function. By the comparison of the degrees
of z; in (3.3.9), we have

d .
(3310) dm = Z a‘i(di(l) + di(z) + ot + d,"(Ni)).
i=1

Now we show the key lemma.

12By the definition of deformations, proo ¥ : M — A x Al — Al is a submersion. Since p is
unramified, proo ¥ o p: M — At is also a submersion. By the Imphclt Function Theorem, we
may lift’ t € Al to a coordinate of M.

13We take the limit ¢ — 0 along a path [ in D.eq such that I is homeomorphlcally mapped to a path
in At under the ramified covering Dreq — Al (5,t) — t. For example, in s2~t3 = (s—t*/2)(s+1%/2),
two factors are multi-valued on Dreq, s0 takmgt — 0, we must choose a path [ on which each factor
is single-valued.



Lemma 3.3.2 ; = d(l) d(2 = di(N‘) =1 for 1=1,2,...,d.
Proof. First, we note

d

dm = Za,—(d,-(l) +d® 4. M) by (3.3.10)
i=1
. d ’
(3.3.11) >3 by d,d?, ..., d™ >1
1=1 '
d
= ZE,-m by Lemma 3.3.1.
i=1
Thus we have dm > Ed a;m, which implies that @; = @, = --- = a4 = 1, and
this 1nequa.hty 1s an equahty In particular, (3.3.11) is also an equality, and so
dM =d® =... = d™) = 1. This complete the proof. O

Now, it is immediate to complete the proof of Claim A. From a@; = 1, we have
X,('? K(t’) . On the other hand, from d; = 1, Y,({, is smooth, because it is locally

defined by 2 - f’ )(zl, z2) = 0. Thus for sufficiently small ¢, Y,ff ) is smooth, and so
X’f’t) = }7,(:) is smooth. This completes the proof of Claim A.

Remark 3.3.3 If d = 1, i.e. m : M; — A, has only one singular fiber, then
Died = {5 + co(t) = 0} (see (3.3.6)) is a disk in A x Af,

3.4 Proof of Claim B

We shall show Claim B which asserts that Zt is a disk. The proof below is based on
a topological argument, and by shrinking M,;, M;, A, and A,, we regard them with
closed manifolds with boundary. We first take diffeomorphisms* ¢; : My — M, and
@, : 0A¢ — OA, which make the following diagram commute:

3Mo _" 3Mt

o

3Ao i"' 3At

(Namely, the restriction of @, to the boundary M, is fiber-preserving.) Recall
that we constructed p; : AZ — M, from po : My — M, via the diﬁeogorphism
¢: : My — M,;. Hence there is a natural diffeomorphism ®, : M, — M,, which
is a lifting of ¢; (that is, ®; o p; = po 0 @;), and the restriction of ®, to IM, is

14For the existence of ¢;, see Lemma 3.5.1 in §3.5 Supplement below.
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fiber-preserving, i.e. the following diagram commutes
— @~
OMy — M,

N

ORy —> 9,
where @, is a diffeomorphism. Now we fix a fiber C, := 75 (yo), where yo € A,
and let (o : Cy — M0~be the natural embedding. Then C; := @;(C’o) is a.‘ﬁb}er of 7
over y, := ®,(yo) € A, and let ¢; : C; — M, be the natural embedding.

—_ &, —_
CO - 8]\/[0 - Ct C 8Mt

| o [

~ B, .
Yo € 8At"——>yt € aAt

After this preparation, we can demonstrate that At is a disk. Note that At is
a real compact surface with a connected’® boundary (Whlch is isomorphic to S?).

Thus if the genus of A, is g, then A is homotopically equivalent to the bouquet
Stv Stv...v 81 of 2g circles, and so

wl(gt) =ZxZx---x7, the free group of rank 2g.
29

Hence it suffices to show that 7r1(A,,) = 1. For this, we first take the homotopy exact
sequence associated to the differentiable fiber bundle!® 7, : My — Ao

(3.4.1) 72(Bo) — m1(Co) 25 my(Mo) —> wl(Ao) 1

Next, noting that from Claim A, 7, : Mt — At is a differentiable fiber bundle, so we
may take the homotopy exact sequence associated to it.

llta

(342) 71'2(At) — W](Ct) —4 W](Mt) — Wl(At) — 1
The following commutative diagram relates (3.4.1) and (3.4.2):

(3.4.3) 71'2(&0) —11(Co) “fo_"m(]’%) - 7"1(50) —1

1

~ Les —_— ~
7T2(At) —_—> Wl(Ct) — ] (Mt) —_—> TI(At) — 1‘)

where the vertical arrows are induced by ®;. Since ZO is a disk, we have ’/TI(Z()) =
m(&,) =1, and so tg, is an isomorphism. Two vertical arrows are also isomorphisms,
because they are induced by the diffeomorphism ®;. From the commutativity of the
diagram (3.4.3), we see that ¢, is an isomorphism. Then the exactness of (3.4.1)

implies that 7r1(At) =1 and so A, is a disk.

15By the construction of M,, the boundary M, is connected, and so 9A, is connected.
16By Ehresmann’s Theorem, a smooth family is a fiber bundle in the differentiable category.
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3.5 Supplement: Construction of diffeomorphisms

Suppose that ¥ : M — A x Al is a deformation of 7 : M — A. Note that the
restriction m¢|gpn, : OM; — O0A; is a fiber bundle!”. The following lemma may be
known to the geometers, but for the convenience of the reader, we include the proof.
(Hereafter, for consistency, we denote 7o : Mo — Ag instead of m: M — A)

Lemma 3.5.1 There ezists a diffeomorphism ¢, : My — M, such that the restric-
tion ¢¢|om, preserves fibers, that is, there ezists a diffeomorphism ¢, : Ay — A,
which makes the following diagram commute:

Warning: Although the restriction of ¢, to the boundary M, commutes with
maps 7o and 7, this is not case for ¢, itself.

Proof. For simplicity, we assume that A is the unit disk. We choose r;,7, € R so
that 0 < r, < r; <1, and define an open covering A x At = Um U Ugut, where

Un = {(s,t) € A x At : |s| < 7}, Usut := {(s,1) € A x Al : |s] > r,}.

We then take an open covering M = M;, U M,,,, where M;, := U-1(U,) and
Moyt := U~ (Uyy). Taking r; sufficiently close to 1, we assume that M.y, contains
no singular fiber, i.e. the restriction ¥ey := ¥|u4,,, is a fiber bundle. In particular,
W,y is a submersion. Hence there exists a vector field vy on Mg, such that

0
(3.5.1) dlI’Ollt (vout) _ a.

Similarly, we set Woy := ¥|a4,,,. By the definition of deformations, the composite
map prao ¥y : Moy — Alis a fiber bundle with smooth complex surfaces as fibers,
and so a submersion'®. Thus there exists a vector field v, on M,, such that

(3.5.2) - d(pry 0 Usn) (via) = %.

Notice that in (3.5.1), g—t-.is a vector field on A x A, while in (3.5.2), it is a vector

field on At. We shall ‘patch’ two vector fields v, and vou by a partition of unity,
and define a vector field v on M; we first define open subsets Uy, C Ui, (resp.
Ul C Uom) as follows TaLe rl, ry € R sat1sfy1ng 0 < rp < 7’2 <rn < ry < 1, and
set '

:—{(st)GAxA* |s|<r1} out—{(st)eAxAT ]3|>r2}

17In this subsection, by a fiber bundle we always mean a dlﬂ'erentlable one.
By =My — A X Af has a singular fiber, and so. it is not a fiber bundle.
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Notice that Uy, N U.,, = 0. Now we put M} := U~Y(U;) and M., := O~Y(U.,).
Then M, N M., = 0. Using a partition of unity, we can construct a vector field v

out —

on M such that -

!
VUout ON M .

{ Vn on M,
v =

Finally, we integrate the vector field v on M to obtain a one-parameter family of
diffeomorphisms ¢, : My — M, with the desired property. a

4 Topological monodromies and singular fibers

Before we proceed to state splitting criteria, we briefly review the relation between
topological monodromies and configurations of singular fibers (see [MM2] and [Ta,I]]
for details). First, we recall the topological monodromy of a degeneration 7 : M —
A. For this purpose, it is convenient to consider M and A as manifolds with
boundary, so A is the closed unit disk. We write A = {¢ : 0 < 6 < 27}, and
set Cy := 7 1(e?). Using a partition of unity, we construct a vector field v on
OM such that dr(v) = 8/80. Then the integration of v yields a one-parameter
family of diffeomorphisms hg : Co — Cy (see Figure 1). In particular, Ay, is a self-
homeomorphism of Co. Setting h := hq,, we refer to A as the topological monodromy
of m: M — A.

ho(z)

’ Figure 1:

Topological monodromies are very special homeomorphisms; they are either pe-
riodic or pseudo-periodic (see [MM2], and also [ES, Im, ST]). Recall that a homeo-
morphism A of a curve C is (1) periodic if for some positive integer m, h™ is isotopic

to the identity, and (2) pseudo-periodic if for some:loops L, 1;,...,1, on C, the re-

striction & on C \ {l1, 1z, ..., 1.} is periodic. (In [MMZ2], periodic homeomorphisms
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are considered to be special cases of pseudo-periodic homeomorphisms by taking
{h,l5,...,1,} = 0. However for our discussion it is convenient to distinguish peri-
odic homeomorphisms with pseudo-periodic ones.) According to whether the topo-
logical monodromy is periodic or pseudo-periodic, the singular fiber is star-shaped
or non-star shaped. In some sense, a non-star-shaped singular fiber is obtained by
‘bonding’ star-shaped ones (see [MM2] and [Ta,II]).

Remark 4.0.2 Based on a topological argument, Matsumoto and Montesinos [MM2]
showed that the configuration of the singular fiber of a degeneration is completely
determined by its topological monodromy. In [Ta,Il], we gave an algebro-geometric
proof for their results, and clarified the relation between topological monodromies
and quotient singularities.

Now the followings are the simplest examples for periodic and pseudo-periodic home-
omorphisms respectively:

Example 4.0.3 (Periodic) A is an unramified periodic homeomorphism, that is,
the quotient map C' — C/ (h) is a unramified cyclic covering.

Example 4.0.4 (Pseudo-periodic) A is a right Dehn twist along one loop / on
C, so the restriction of A to C \ [ is isotopic to the identity.

A degeneration with the topological monodromy in Example 4.0.3 has a singular
fiber m©, where m is the order of &, and © is a smooth curve which is the quotient of
C by the action of . On the other hand, the singular fiber of a degeneration with the
topological monodromy in Example 4.0.3 is a reduced curve with one node (this node
is obtained by ‘pinching’ [ on C). By Theorem 2.0.2, both of these degenerations
are atomic. Namely, all degenerations with the simplest topological monodromies
are atomic. To the contrary, if the topological monodromy is ‘complicated’, what
can we say about splittability? In this caée, the singular fiber is also complicated,
so the reader may imagine that they are not atomic (complicated objects should not
be atoms!). In the later half of this paper, we will show that this intuition is true.

5 Splitting criteria via configurations, I

In this and subsequent sections, we will give splitting criteria of degenerations in
terms of configurations of their singular fibers. As a consequence of these criteria, we
will see that many degenerations with non-star-shaped singular fibers always admit
splitting deformations. We point out that these criteria are powerful for determining
atomic degenerations by induction with respect to genus g (see §6.3 for details).

In the discussion below, we often use the realization of M as a graph of «; for a
degeneration 7 : M — A, the graph of 7 is defined by

Graph(7) = {(z,s) € M x A : w(z) —s = 0}.

Of course, Graph(7) is a smooth hypersurface in M x A, and M is canonically
isomorphic to Graph(w) by £ € M — (z,7(z)) € M x A. Under this isomorphism,
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the map 7 : M — A corresponds to the projection (z,s) € Graph(wr) — s € A. In
the discussion below, we identify Graph(w) with. M via the canonical isomorphism,
and we write M instead of Graph(r). ‘

5.1 Criterion in terms of nodes

In this subsection, we shall provide splitting criteria in terms of some singularity on
the singular fiber. We start with a definition. Consider a singularity

Vi = {(z,y) € C* : z™y™ = 0},

where m is a positive integer. We say that V,, is a multiple node of multiplicity m.
Note that when m > 2, V,, is non-reduced. By abuse of terminology, we also say
that the origin of V,, is a multiple node.

We consider a hypersurface M = {(z,y,s,t) € C* : (zy+¢t)™ —s = 0} in
C*, and define a holomorphic map ¥ : M — C? by (z,y,s,t) — (s,t). Clearly,
U~1(0,0) = V,,, and so ¥ is a two-parameter deformation of V,,. Next, we shall
compute the discriminant of ¥. Since

ov

— =mz(zy + )™ ! ?—\g—m(z +1

)m—l’

we have 0¥ /9z = 0¥ /dy = 0 if and only if either (1) z =y =0.0r (2) zy +t = 0.
We note that t™ — s = 0 for (1), and s = 0 for (2).

Lemma 5.1.1 The discriminant of U consists of curves s = t™ and s = 0 in C>.
To be explicit, for t # 0,

(1) ©~Y(t™,t) is a disjoint union of m — 1 annuli and a node,

(2) ¥~1(0,t) is a multiple of an annulus of multiplicity m.
! | —1
=7 + (oe) (=9 0= - 1

s=0 s=t" -

Figure 2:

Proof. The fiber ¥~1(t™,t) (t # 0) is defined by

2y (zy)™ ! + mCa(ey)™t + -+ + mCilzy)™ M 4 -+ mCrt™ ] = 0.
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This equation factorizes as zy Hi':l(a:y+a,-t) =0, wherea; € C(: =1,2,...,m—1)
are the solutions of X™1 4+, C X™ 24 ... 4 C,X™ 1 4...4 C; =0. Hence
¥=1(t™,t) (¢t # 0) is a disjoint union of a node zy = 0 and m — 1 annuli zy + o; = 0
(¢=1,2,...,m —1). On the other hand, ¥=!(0,¢) = {(zy + )™ = 0} is a multiple
annulus of multiplicity m. O

Now we can show the following.

Criterion 5.1.2 Let 7 : M — A be normally minimal such that the singular fiber
X has a multiple node p of multiplicity at least 2. Then there exists a splitting
deformation of 7 : M — A, which splits X into X; and X,, where X; is a reduced
curve with one node and X, is obtained from X by replacing the multiple node p by
a multiple annulus (see Figure 4 for example).

Proof. Take an open covering M = M, U M;, such that (1) M, is an open ball
around p (hence Mo N X is the multiple node), and (2) M; N X is ‘outside’ the
multiple node (see Figure 3). We take local coordinates (zg,(s) € Mo around p,

4 T~

()
(2)

| (3)
e« e (s )@

Figure 3:

then we have 7(z3, (3) = 25'(5*. Next, we take local coordinates (z4,{s) € M; near
p. Then 7(z4,Ca) = (7 fo(2a, (a), Where f, is a non-vanishing holomorphic function.
As 7(za, (a) = 7(2p,(p), We have

(P folZar o) = 23CR.

Note that the holomorphic function z3'(7* on the right has an m-th root z5{s, which
is a single-valued function. Thus (7*f, also has a single valued m-th root function

Ca fy ™ such that ¢, fi/ ™ = z5(s. Rewriting ¢, f;l ™ by (., the gliing map of M, and
M, is of the form

2y = ¢aﬁ(zﬁ,<ﬁ)a 'Ca = Zﬁ(ﬁ around b,

where ¢,3 is holomorphic.-
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Now we consider a smooth hypersurface My in My x A x A given by
{(28,¢, 5,t) € Mo x A x Al = (23(3 + )™ — s = 0}.
We also define a smooth hypersurface M; in M; x A x At by
{(z,s,t) € My x Ax A : 7(z) — s = 0}.

Let ¥; : M; — A x A (i = 0,1) be the natural prOJectlon From Lemma 5.1.1, for
t£0,

“disjoint union of m — 1 annuli and a node, s=1t",
a multiple annulus of multiplicity m, s=0.

(5.1.1) T l(s,t) = {
On the other hand, we have

Xn =
(5.1.2) \I/;l(s,t)z{, My, =0,

smooth, otherwise.
Now we glue M6 with .Ml by

Zo = Pap(2s,Cp), (o = 28(s + 1.

Note that this map transforms the defining equation of My near p to that of M,.
Then we obtain a complex 3-manifold M. Letting ¥ : M — A x At be the natural
projection, we consider two fibers:

_Xl = \I}—l(tm,;i), X2 =‘ \I;_I(O,tj.

(X and X, are fibers of 7, : M; — A;.) From (5.1.1) and (5.1.2), X; is a reduced
curve with one node, and X, is obtained from X by replacing the multiple node
by a multiple annulus, and no other singular fibers. As both of X; and X, are
normally minimal, it follows from Lemma 1.0.1 that ¥ : M — A x Al is a splitting
deformation, which splits X into X; and Xj. O

The above construction of ¥ : M — A x Al also works for the case where p is a
multiple node of multiplicity 1. But ¥ : M — A x Al is not necessarily a splitting
deformation of # : M — A. This is exactly the case when X \ {p} is smooth, i.e.
X is a reduced curve with one node. In which case, X; = ¥~1(0,¢) is a smooth
fiber (in fact, 7 is atomic by Theorem 2.0.2). Except this case, ¥ : M — A x Al
is a splitting deformation of 7 : M — A, which splits X into X; and X,, where
X, is a reduced curve with one node, and X is obtained from X by replacing the
reduced node by an annulus. Combmed this result Wlth Criterion 5.1.2, we have the
following crlterlon A

Crlterlon 5.1. 3 Let 7 1/! — A s normally minimal such that the smgular fiber
X contains a multzple node (of multzplzczty m > 1). Then T : .M‘ — A is atomic if
and only if X is a reduced curve with one node. :
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Figure 4: An example for Criterion 5.1.2

We digress to give a topological remark. Taking a real number € (0 < ¢ < 1), we
consider a germ {(z,y) € C? : |z™y™| < €} of the multiple node of multiplicity
m. Its boundary is a real 3-manifold, which is a disjoint union of two solid tori
T,:={lz| =1, ly| < e¥/™} and T, := {|y| = 1, |z| < /™}. In Figure 5, T, and T,
are respectively described by the gray and black bold lines (in the real 2-dimensional
figure, two gray lines are disconnected, but they are in fact connected; the same for
two black lines).

lyl =1
lzmy™| < €
4 _ '
z
2l =1 o] = 1
ly| =1
Figure 5:

Remark 5.1.4 In the construction of ¥ in Criterion 5.1.3, we only used one multi-
ple node. When X has n multiple nodes p; (i = 1, 2,...,n) of multiplicity m;, we can
generalize the construction in Criterion 5.1.3 to construct a splitting deformation of
m: M — A, such that 7, : M, — A, contains singular fibers X; (i = 1,2,...,n),
which is obtained from X by replacing the multiple node p; by the multiple annulus
of multiplicity m;.
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5.2 Criterion in terms of plane curve singularities -

In this subsection, we always suppose that = : M — A is relatively minimal (not
necessarily normally minimal). We will exhibit a splitting criterion in terms of plane
curve singularities on X. We begin by introducing some terminology. Assume that
the origin of V := {(z,y) € C? : F(z,y) = 0} is a plane curve singularity. (In this
paper, a plane curve singularity always means a reduced one.) For a positive integer
m, setting o o
 Va={(z,y) € C* : F(z,y)" =0}, N

we say that V,, is a multiple plane curve singularity of multiplicity m. (We also use
the notation mV for V,,.)

Proposition 5.2.1 Suppose that there ezists a point p € X such that a germ of p
in X is a multiple of a plane curve singularity and the multiplicity m is at least 2.
Then 7 : M — A admits a splitting deformation.

Proof. We choose an open covering M = My U M;, where (1) Mo N X is a germ
of the multiple plane curve singularity mV and (2) M; N X is ‘outside’ mV. (See
Figure 6.) We take local coordinates (zg,(s) € Mo. Then 7(25,(s) = F(z5,{s)™,

M, 0 M,

—] 3 | M

P T—n

L.\

Figure 6:

where F(zp,(3) = O defines the plane curve singularity V. Next, we take local
coordinates (z4,(x) € M) near p, then T(2ayCa) = (Pa(2a,(a)™ for some non-
vanishing holomorphic function u,. Rewriting {,u, by (4, we have (2o Ca) = Ca-
Since m(zq,(s) = T(2,(s), we have {J* = F(z,{s)™. Asin the proof of Criterion
5.1.2, possibly after coordinate change, we have {, = F(2p,(g)- So the gluing map
of My and M is of the form

2o = bap(28,(p); (o = F(25,(p) near p,
where @qp is holomorphic. Next, we take a non-equisingular deformation of V:
V,: F(z5,(s) + G(28,(s,t) =0, where G is holomorphic and G(zg, (s,0) =0.

For example, if V is a node (A;-singularity), take G(z,(s,?) = t, and otherwise
take a Morsification!® of V, i.e. V; (t # 0) has only nodes (A;-singularities). Next,
we define a smooth hypersurface Mg in My X A X Al by

{(28,Ca,5,) € Mo x A x At ¢ (F(2g,(p) + Gl2p, (g, t))™ — 5 =0}

19 Ay isolated hypersurface singularity always admits a Morsification. See, for example Dimca

39



Similarly, we define a smooth hypersurface M; in M; x A x At by
{(z,s,t) € My x A x A! : 7(z) — s = 0}.
We glue M, with M, by

Za = ¢aﬁ(zﬂ, Cﬁ)v Ca = F(Zp, Cﬂ) + G(zﬁ, Cﬁat) near p,

which yields a complex 3-manifold M. Letting ¥ : M — A x Al be the natu-
ral projection, the fiber X; := ¥=1(0,¢) is a singular fiber, which is obtained from
X by replacing the multiple plane curve singularity mV with mV,. (To describe
other singular fibers, it is necessary to compute the discriminant of (F(zg, (s) +
G(2p,(,t))™ —s=0.) Since 7 : M — A is relatively minimal, ¥ : M — A x At is
a splitting deformation. O

In the assumption of the above proposition, if we replace m > 2 by m = 1, what
can we say about the splittability of 7 : M — A? Also in this case, the above
construction works, and we obtain a splitting deformation, except the case where p
is a node and X \ p is smooth (this is an atomic case). Combined with Proposition
5.2.1, we have the following results.

Criterion 5.2.2 Let 7 : M — A be relatively minimal. Suppose that the singular
fiber X has a point p, such that a germ of p in X is either

(1) a multiple of a plane curve singularity of multiplicity at least 2, or
(2) a plane curve singularity such that if it is a node, then X \ p is not smooth.

Then w : M — A admits a splitting deformation.

6. Splitting criteria via configurations, II

In this section, we shall present another type of splitting criteria in terms of existence
of an irreducible component of multiplicity 1 satisfying a certain property.

6.1 Criterion in terms of connected components

Criterion 6.1.1 Let 7 : M — A be normally minimal. Suppose that the singular
fiber X contains an irreducible component ©, of multiplicity 1 such that X \ ©q is
(topologically) disconnected. Denote by'Yy,Ys,...,Y: (I > 2) all connected compo-
nents of X \ ©g. Then 7 : M — A admits a splitting deformation which splits X
nto X1,X,...,X1, where X; (i = 1,2,...,1) is obtained from X by ‘smoothing’
,Y,..., f’.-,. Y (see Figure 7 for exa.mple) Here Yy is the omission of Y.

Prooﬁ To avoid complicated notation, we only show the statement for the case
where Y; and O, intersects only at one point p;. (The construction below works for
the general case.) We take an open covering M = Mo U M; U - -- U M;, such that
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Figure 7: An example for Criterion 6.1.1

(1) M;NnX =Y;U D;, where D; C Oy is a disk around p;,

(2) MonX = Oy~ {D{UD;,U---UD;}, where D; is a disk satisfying p; € D} C D;.

(See Figure 8.)

Here, we choose M; so that D; (and so D;) are sufficiently small. For simplicity, we

' M, M,
(2)

00 8o (T

(W)

M,

Figure 8:

set Y;* :=Y;UD; and Oy := Og~ {D;UD,U---U Dj}. See Figure 9.

Now we shall construct a splitting deformation of 7 in the following steps: First,
construct complex 3-manifolds M; (i = 0,1,...,I) with proper holomorphic maps
U; on M;. Secondly, glue M; together to construct a complex 3-manifold M so
that ¥; (: = 0,1,...,0) determine a holomorphic map ¥ on M. Finally, we show

that ¥ : M — A x Al is a splitting deformation of 7.

Step 1.  Construction of complex 3-manifolds M, M;; ...
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We put p := e?™/! and consider a smooth hypersurface M; in M; x A x Al
(:=1,2,...,1) defined by

(6.1.1) {(z,s,t) € M; x A x A : 7(z) - s+ p't = 0}.
Let ¥; : M; —» A x A be the natural projection. Then for ¢ # 0, we have

Yr, s = p't,
smooth, otherwise.

(6.1.2) Ul(s,t) = {

Next, we consider a smooth hypersurface My in My x A x At defined by
{(z,s,t) € My x A x Al : 7(z) — s = 0}.

Let ¥o: My — A x Al be the natural projection. Then for ¢ # 0, we have

@6 ’ s=0,
smooth, otherwise.

(6.1.3) Tyl(s,t) = {

(Note that Oy is also smooth!)

Step 2. Gluing Mo, M;,..., M, together

Now we take local coordinates of M around p;. Let (24, {s) € M, and (25,(3) €
M; be local coordinates around p;. Denote by m; the multiplicity of the irreducible
component intersecting ©¢ at p;. Then we have

T(2as (o) = (o fa(Zas Ca)y - 7(28,(8) = 25" (5 95(28, (s),

where f, and g are non-vanishing holomorphic functions. We shall change coor-
dinates. Rewriting (,fo by (s, We have 7(24,{s) = {4 Likewise, rewriting (zg5
by (g, we have 7(23,(3) = 25"(s. Since 7(2a,{s) = 7(2,(p), We obtain a relation
(o = 25"(p. Hence the gluing map of M, and M; around p; is of the form

2o = ¢aﬁ(zﬁa Cﬁ), (o = z;iCﬁ7
where 1,4 is holomorphic. Next, we glue Mg with M; (1 =1,2,...,1) around p; by

Za = $ap(26,(s);  Cu=25°(s+p't around p;,
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which yields a complex 3-manifold M. Note that the above map transforms the
defining equation of M; near p; to that of My. Let ¥ : M — A x Al, (z,s,1) —
(s,t), be the natural projection. From (6.1.2) and (6.1.3), for t # 0,

\I/_l(s,t)={ ‘Xia 3:/‘ta

smooth, otherwise,

where X; is obtained from X by smoothing Y1+,Y2+,...,Y,~+,...,Y,+. As X; is
normally minimal, it follows from Lemma 1.0.1 that ¥ : M — A x Al is a splitting
deformation which splits X into Xi, X, ..., X;. This verifies our assertion.

(Note: the discriminant of ¥ : M — A x Al is [Ji_, (s — ut) = 0.) a

From the above construction, we can deduce some property of topological mon-
odromies. Let v be the topological monodromy of # : M — A, and +; be the
topological monodromy around X; in 7, : M; — A;. Then we have a relation
v = 7172 - - - 1. Moreover, the following holds.

Proposition 6.1.2 The topological monodromies 1,72, ..., commute.

Proof. We slightly modify the above construction of ¥ : M — Ax Al; let o be an ar-
bitrary permutation of the set {1,2,...,{}. Instead of M;, we define M&,i as follows
(cf. (6.1.1)): My, :={(z,s,t) € M; x Ax A : 7(z) — s+ p’()t = 0}, while we take
M, as in the above construction: {(z,s,t) € Mo x Ax Al : n(z)—s = 0}. Then we
glue Mg with M,; (1 =1,2,...,1) by 2o = Pap(2s,{p) and (x = 25" (s + p’ D¢, and
obtain a complex 3-manifold M,. The natural projection ¥, : M, — Ax Al is also
splitting deformation which splits X into X3, Xa, ..., X;. But X;, X5, ..., X; appears
in the order X,a), Xo(2), - - - » Xo(1), hence we have a relation v = v,1)%s(2) - - - Yo (1)
Since o is an arbitrary permutation, it follows that v;,7s, ...,y commute. O

Remark 6.1.3 In the construction of ¥ in Criterion 6.1.1, we used only one ir-
reducible component of multiplicity 1. As is clear from the construction, we can
similarly construct a splitting deformation by using several irreducible component
@‘()1), (9(()2), ey eg") of multiplicity 1 simultaneously, provided that X ~ {@5,1) U @((,2) U
U 6((,")} is disconnected. More generally, in some cases, we can construct a split-
ting deformation, by ‘mixing up’ all constructions in this paper.

6.2 Inductive criterion

Let # : M — A be normally minimal, such that its singular fiber X contains an
irreducible component ©g of multiplicity 1. We suppose that X \ ©¢ is connected.
Also in this case, we have some splitting criterion. To state our results, we need to
introduce some notation. Let Y := X \ O, and p,,p.,...,p, be the intersection
points of @ with other irreducible components of X. Take an open covering M =

My U M, such that
(1) MinX=YUDUDyU---UD,, where D; C O is a disk around p;,
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(2) MoNX = O\ {D{UD,U---UD.}, where D! is a disk satisfying p; € D! C D;.
(See Figure 10.)

Figure 10:

Here, we choose M so that D; (and so D{) are sufficiently small. For simplicity, we
set

Y*:=YUDiUD,U---UD,, ©5:=0~{DjuDju---uD,} (Figure1l).

Y+ 9
&+ e

Figure 11:

Criterion 6.2.1 Letw : M — A be normally minimal such that the singular fiber X
contains an irreducible component ©, of multiplicity 1. Let w1 : My — A be the re-
striction of w to a tubular neighborhood Mj of X\ O¢ in M. Suppose that 7, : M; —
A admits a splitting deformation W, which splits Y+ into Y, Y;',...,Y*. Then
T : M — A admits a splitting deformation U which splits X into Xl,Az, ., X,
where X; is obtained from Y.* by gluing ©g along the boundary

Note: We note that T M = Alis a degenera,tlon of curves with boundary, for
which we may also define the notion of sphttlng deformations in the same Wway as
for degenerations of compact curves. ' '



Proof. As in the proof of Criterion 6.1.1, we take local coordinates (z4, (») € Mo near
p; with T(24,(sx) = (a, and local coordinates (zg,{g) € M; near p; with #(zg, () =
25" (p such that the gluing map of My and M; around p; is of the form

za = dap(28, (), (a = z[TJn‘Cﬁa

where ¢,p is holomorphic. Now, letting ¥; : M; — A X At be the splitting
deformation of 7, in the assumption, we consider a map 7 := pr; o ¥ : M — A,
and then realize M, as the graph of 7;:

My = {(z,s,t) € My x A x A : Ty(z,t) — s = 0}.

Notice that 7;(z,0) = m1(z), hence we may express 71 (z,t) = m1(z)+ hi(z,t), where
h, is a holomorphic function satisfying h;(z,0) = 0.  Next, we'define a smooth
hypersurface Mg in My x A x Al by

Mg = {((L‘,S,t) € My x AX Al - 7F(SC) — 8 =0}.
Finally, we glue My with M; around p; by |
Zo = apl25,Cs);  Ca = 257 Cp + Pa(25, Cp),

and we obtain a complex 3-manifold M. Then the natural projection ¥ : M —
A x Al is a splitting deformation of 7. In fact, assuming that the fiber Y} of ¥,
over the point z; € A, is singular, by construction, ¥~*(z;) is obtained by gluing
Yt with ©7 along the boundary. ‘ o -0

From m; : M; — A in Criterion 6.2.1, we shall construct a degeneration 7’ :
M' — A of compact curves, whose singular fiber X’ is obtained by replacing the
disk D; (i = 1,2,...,n) by a projective line (see Figure 12), after that, we will
restate Criterion 6.2.1 in terms of this degeneration. First, we glue My with D; x A
by

¢a,3(zﬁ7cﬂ)a COI = zﬁ Cﬁ7
where (zq,(a) € M1 is coordmates near p;, and (Zp,Cp) € D; x A. Then we ob-
tain a complex surface M’. Define a map = : M’ — A by 7’|y, = 7, and
7'|p;xa(28,(s) = (g By construction, the singula.r fiber of 7’ is obtained by re-
placing D; (1 = 1,2,...,n) by a projective line. : ' :
Then Criterion 6.2.1 is restated as follows:

Criterion 6.2.1' Ifr': M' — A admits a splitting deformation, then © : M — A
also admits a splitting deformation. (Note: By construction, the converse is true.)

Let g (resp. ¢') be the genus of a smooth fiber of 7 : M — A (resp. 7' : M’ —
A). Except. the case where Qg is a prOJectlve line and intersects other irreducible
components at only one point, we have ¢’ < g, and so 7’ : M’ "> Aisa degenelatlon
of curves of lower genus. Indeed, let ©p intersect other irreducible components at n
points. By a topologlcal con51derat10n it is easy to see that

(6.2.1) : o g= g +(n=1)+ genus(©p).

Hence we have ¢’ < g, unless O is a p}‘OJectlve hng and’ n = 1.
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XI

6.3 Consequence of splitting criteria

As before, in this subsection, we assume that any degeneration is normally minimal.
The splitting criteria obtained in this paper altogether imply that-if the singular
fiber X is not star-shaped, then in many cases, 7 : M — A admits a splitting
deformation. Taking into account Theorem 2.0.2, it is interesting to know whether
the following conjecture®® is true or not (cf. Conjecture 6.3.1' below):

Conjecture 6.3.1 A degeneration is atomic if and only if its singular fiber is either
a reduced curve with one node, or a multiple of a smooth curve.

See [Ta,IlI], [Ta] for results on this conjecture. Next, we deduce a useful theorem
from our splitting criteria. Let A, be a set of degeneratlons 7 : M — A of curves of
genus g such that

(1) the singular fiber X has a multiple node (here we exclude the case where X
is a reduced curve with only one node), or

(2) X contains an irreducible component ©¢ of multiplicity 1 satisfying the fol-
lowing condition®': if X \ ©q is connected, then either genus(©q) > 1, or 9,
is a projective line intersecting other irreducible components at at least two
points.

As a consequence of our splitting criteria, we obtain the following.

Theorem 6.3.2 Suppose that Conjecture 6.3.1 is valid for genus < g — 1. If 7 :
M — A is a degeneration in Ay, then 7 is not atomic.

Proof. First, by Criterion 5.1.3, if the singular fiber contains a multiple node, then
7 admits a splitting deformation. Next, suppose that X contains an irreducible
component @ of multiplicity 1. if X \ ©g is not connected, then 7 : M — A has a
splitting deformation (Criterion 6.1.1). On the other hand, if X \ O is connected,
then under the assumption of this theorem, we can apply Criterion 6.2.1/, and see
that 7 : M — A admits a splitting deformation, except the case where Qg is a

20This conjecture is valid for the genus 1 and 2 cases: for the genus 1 case, any atomic fiber is
either a rational curve with one node, or a multiple of a smooth elliptic curves by [Mo], and for
the genus 2 case, any atomic fiber is a reduced curve with one node by [Ho).

21f X \ ©g is not connected, we pose no condition.
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projective line, and @, intersects other irreducible components at only one point
(cf. (6.2.1)). Hence the assertion follows. - . , . O

Thus if the assumption of this theorem is fulfilled (for example, ¢ = 3), to
determine atomic degenerations of curves of genus g, it is enough to investigate the
splittability for degenerations 7 : M — A such that either

(A) X = 7~1(0) is star-shaped, or

(B) X is not star-shaped and (B.1) X has no multiple node and (B.2) if X has an
irreducible component ©¢ of multiplicity 1, then ©q is a projective line, and
intersects other irreducible components of X only at one point.

In the terminology of [Ta,lII], the singular fibers of a degeneration in (B) is obtained
by ‘bonding’ star-shaped singular fibers such that any bonding of two branches is
either (—1)-bonding, or 0-bonding of two branches with the same multiplicity at
least 2. See [Ta,lI] and also [MM2]. For these cases, we can apply another method
(construction of splitting deformations via barkable sub-divisors), which is developed

in [Ta,III].

Discussion and open problems

For higher genus cases, Conjecture 6.3.1 seems too optimistic. It is more reasonable
to replace ‘atomic’ with ‘absolutely atomic’, where a degeneration = : M — A
is called absolutely atomic if all degenerations with the same topological type as
7 : M — A are atomic (for example, when X is a reduced curve with one node or
a multiple of a smooth curve. See Theorem 2.0.2).

Conjecture 6.3.1' A degeneration is absolutely atomic if and only if its singular
fiber is either a reduced curve with one node, or a multiple of a smooth curve.

Accordingly, we can show an analogous statement to Theorem 6.3.2 by the same
argument.

Theorem 6.3.2' Suppose that Conjecture 6.3.1' is valid for genus < g — 1. If
7 : M — A is a degeneration in A,, then w is not absolutely atomic.

It is plausible that for higher genus cases, there may be an atomic degeneration
which is not absolutely atomic. However, no examples are known, and so we ask

Problem 6.3.3 Do there exist two degenerations my : My — A and 73 : My — A
with the same topological type such that my is atomic while 3 is not?

Note that for the genus > 2 case, there are degenerations with the same singular
fiber, but with different topological types [MM2]. Taking this into account, it is
natural ask the following problem analogous to Problem 6.3.3.
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Problem 6.3.4 Do there exist two degenerations m; : My — A and 7y : My, — A

with the same singular fiber but with different topological types such that 7, is atomic
while w9 is not?
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