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Rational unicuspidal plane curves with kK =1

BERFEBZHEER FHEX (Keita Tono)

Department of Mathematics, Faculty of Science, Saitama University

1 Introduction

Let C be a curve on P? = P2(C). A singular point of C is said to be a cusp
if it is a locally irreducible singular point. We say that C is cuspidal if C has
only cusps as its singular points. For a cusp P of C, we denote the multiplicity
sequence of (C, P) by mp(C), or simply mp. We use the abbreviation my, for a
subsequence of mp consisting of k consecutive m’s. For example, (2;) means an
Aoy, singularity. We denote by k(P2 \ C) the logarithmic Kodaira dimension of
the complement P2\ C. Let C’ be the strict transform of a rational unicuspidal
plane curve C via the minimal embedded resolution of the cusp of C. We define
n(C) := —(C")2. By [Y], #(P?\ C) = —oo if and only if n(C) < 2. By [Tsl,
Proposition 2], there exist no rational cuspidal plane curves with & = 0. Thus
#&(P%\ C) > 1 if and only if n(C) > 2.

Theorem 1. IfC is a rational unicuspidal plane curve with R(P2\C) = 1, then
there exists a unique pencil A on P? satisfying the following four conditions.

(i) The cusp P of C is a unique base point of A.

(ii) The pencil A has a unique reducible member C +n(C)B. Here B is a line
or an irreducible conic such that (CB)p = (deg B)(degC) — 1.

(iii) The pencil A has ezactly two multiple members paA, pcG, where p4, pc
are integers with pa,pc > 2, A\{P} =2 C*, G\ {P} =C.

(iv) The complement of { P} to every member other than puasA, pcG and C +
n(C)B is isomorphic to C*.

Let C be a rational unicuspidal plane curve with #(P2\ C) = 1. We say
that C is of type I (resp. type II) if the curve B in Theorem 1 (ii) is a line (resp.
an irreducible conic).
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Cheorem 2. Let C be a rational unicuspidal plane curve with k(P2 \ C) = 1.
Put n :=n(C). Let P be the cusp of C.

(i)

(iii)

Type 1. There exists an integei‘ s with s > 2 such that deg C = (n+1)%(s—
1)+1: mp = (n(n+1)('s_1), ((n+1)(s_l))2n+17 (n+1)2(s—1)); pa =n+1
and pg = (n+1)(s—1) + 1. There exist ag,... ,as € C with as # 0 such
that C is projectively equivalent to the curve:

(f* 7ty + Y auf*~iamHDiznyea  pre) o = g,
=2 )

where f = x"z+y"T1. Conversely, for arbitrary integers n, s with n > 2,

s>2andas,...,as € C withag # 0, the above equation defines a rational
unicuspidal plane curve with K(P2\ C) = 1. The multiplicity sequence of
the cusp is equal to mp.

Type II and deg C = ((4n+1)2+1)/2. We have mp = ((n(4n+1))4, (4dn+
1Dan,3n+1,n3), pa = 4n+1 and pg = 2n+1. The curve C is projectively
equivalent to the curve:

((g"y + 2™ Fh)a — (g°"z + 22®"yg™ + 2" H1)He) /g™ = 0,

where g = xz — y%. Conversely, for an arbitrary integer n with n > 2, the
above equation defines a rational unicuspidal plane curve with K(P2\C) =
1. The multiplicity sequence of the cusp is equal to mp.

Type II and deg C # ((4n+1)%2+1)/2. There exists a positive integer s such
that, by settingm := 4n+1 and t := 4s—1, we have deg C = (m?t+1)/2,

_ [(@mn)s, (3m)an, (m)s, 3n -+ 1,m5) Y
((tmn)a, (tm)an, (sm)3, (s — 1)m, my(s_1),3n + 1,n3) ifs>1,

pa = m and pg = 2(ms — n). There exist a1,... ,a; € C with a; # 0
such that C is projectively equivalent to the curve:

((h2s—1(gny + x2n+1) + Zaih2(s—i)gmi—n)yA _ hyc)/gn =0,

=1

where h = g?"z + 22*™jg"™ + ™. Conversely, for an arbitrary integer n
with n > 2, a positive integer s and a,, ... ,as € C with as # 0, the above
equation defines a rational unicuspidal plane curve with k(P2 \ C) = 1.
The multiplicity sequence of the cusp ts equal to mp.
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A plane curve C is said to be of type (d,v) if the degree of C is d and the
maximal multiplicity of C is v. If C is a rational cuspidal curve of type (d,v),
then the inequality d < 3v holds true ([MS]). See also [O].

Corollary 1. Let C be a rational unicuspidal plane curve of type (d,v) with
k(P2\C) =1.

(i) Type I. We have 1 < d/v < 5/3. The equality holds if and only if C is
projectively equivalent to a curve in Theorem 2 (i) withn = s = 2.

(ii) Type II. We have 2 < d/v < 41/18. The equality holds if and only if C is
projectively equivalent to the curve in Theorem 2 (ii) with n = 2.

Corollary 2. Let C be a rational unicuspidal plane curve. Then k(P2\C) =1
if and only if the multiplicity sequence of the cusp is one of those in Thzorem 2.

Corollary 3. Let C be a rational unicuspidal plane curve. Then i(P?\C) = 2
if and only if n(C) > 2 and the multiplicity sequence of the cusp is none of those
in Theorem 2.

Remark 4. In [Tsl], Tsunoda claimed to have obtained the defining equations
of rational unicuspidal plane curves with ¥ = 1. Comparing the degrees of his
with ours, it seems that the equations he obtained are those of type I, s =2 in
Theorem 2 (i).

2 Proof of Theorem 1

Let C be a rational unicuspidal curve on P? with &(P2\C) = 1. Let 0 : V — P2
be the composite of the shortest sequence of blowing-ups over P such that the
reduced total transform D of C is a normal crossing divisor. Let C’ be the
strict transform of C. Put D’ := D — C’. We remark that every irreducible
components of D’ is a smooth rational curve, whose self-intersection number is
less than —1. Let Dy denote the exceptional curve of the last blowing-up of o.
The dual graph of D has the following shape.

N, | N, T
s ¢ B :

B, 2 : pBg—1 By
oO— ‘?_i' ...... —O—L ............ _o_if ...... ‘o_i—o C’
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As a convention, A; contains the exceptional curve of the first blowing-up. Let
A;1 denote the leftmost component of A; in the above figure. In the course of
the contraction of D' by o, Ay + Do + B, is contracted a (—1)-curve E and
Ay 1+ E+ By_; to a (—1)-curve, and so on. Write 0 = 03 0--- 00y, where g,
contracts Ay + Do + By to a (—1)-curve E, 04_; contracts Ag_; + E + By_;
to a (—1)-curve, and so on. A blowing-up of o; is called sprouting if it is done
at a smooth point of the exceptional curve of the preceding blowing-ups. As
a convention, the first blowing-up of o7 is not sprouting. Let s; denote the
number of sprouting blowing-ups in o;. o

Following [FZ], we consider a strictly minimal model (V, D) of (V, D). We
successively contract (—1)-curves E such that £ C D and (D — E)E < 2, or
E ¢ D and DE < 1. After a finite number of contractions, we have no (—1)-
curves to contract. Let m : V — V denote the composite of the contractions.
For a divisor A C V, write A = ., (A). Itis clear that D is a divisor with only
simple normal crossings and %(V \ D) = 1. By [Ka, Theorem 2.3] and the fact
that V \ D is affine, we have the following:

Lemma 5. There ezists a fibration p : V — P! whose general fiber F is P!
and DF = 2.

It is known that a P!-fibration over P! is obtained from a P!-bundle 5 :
¥ — P! by successive blowing-ups 7 : V — X. Put p = pow. We have the
following commutative diagram.

Pl

Following [FZ], we use the following terminology. The triple (V,D, ) is
called a C*-triple. A component of D is called horizontal if the image of it
under p is 1-dimensional. Let H be the sum of the horizontal components of
(V,D,$). The C*-triple (V,D,p) is called of twisted type if H is irreducible;
otherwise it is called of untwisted type. By [Kiz, Theorem 3], our C*-triple is
of untwisted type. (See also [M2, Theorem 4.7.1, Lemma 4.10.3].) Thus H
consists of two irreducible components Hy, Ha. Suppose § has a singular fiber.
The dual graph of the sum of the singular fiber and the horizontal components
has the following shape (cf. [FZ, Lemma 5.5)).

[ O e O O O O o)

H1 Fl E F2 H2
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Here E is a (—1)-curve, which is not contained in D. The curves Fy, F, are
connected components of D — (Hy+ H2). The fiber is contracted by 7 to a fiber
of p. By using [FZ, Theorem 5.8 and 5.11], we have the following lemma. (The
case (B2) in [FZ, Theorem 5.8] does not occur.)

Lemma 6. The C*-triple (V,D ,P) has the following properties.

(i) The fibration D_has ezactly one smooth fiber G contained in D and two
szngular fibers Fy = A, +EA + Bg, Fg =B+ FEg+C', where E4 (resp.
Ep) is the (—1)-curve in Fy (resp. Fg).

(ii) The curves Dy, Asy are the horizontal components.
We can verify that 7 has the following properties.
Lemma 7. The following assertions hold true.

(i) = first contracts a (—1)-curve Eg ¢ D and every subsequent blowing-down
of 7 is the contraction of a component of D.

(ii) The curve Eg is a component of 7=1(G). Every blowing-up of 7 is per-
formed at a point on the total transform of G.

Let E4, Ep denote the strict transforms of E4, Eg in V, respectively.
Write A = 0(E4), B = 0(Eg) and G = o(Eg). Let pa, pp and ug denote
the coefficients of E4, Eg and Eg in p*(p(E4)), p*(»(EB)) and p*(p(Eg)),
respectively. We have up = n(C) by [F, Proposition 4.8]. Since m does not
change FB, it follows that B is smooth and rational with self-intersection number
s1. Thus B is aline (s; = 1) or an irreducible conic (s; = 4). Now it is clear that
the pencil spanned by x4 A and pgG satisfies the whole condition in Theorem 1.
The uniqueness of the pencil follows from [I, Theorem 3].

3 Proof of Theorem 2

In order to prove Theorem 2, we determine the weighted dual graph of D +
Es+ Ep + Eg. By using the properties of o, 7 and p, we obtain the diagram
in Figure 1, where n = n(C) and * (resp. o) means a (—1)-curve (resp. (—2)-
curve). In Theorem 2, we set s = s3. The curves in Theorem 2 (ii) correspond
to those of type II with g = 2 and the curves in (iii) to those of type II with
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Do Do
* -n—2 ( * .
+ -7 > i| n—1 T -n o C' f—n—-l
" Ept 37 1 Eg Ep *x Eg
) — - 3K -5 -3
—S3 s3 —2 E\
Ea n—1¢: n—1¢: n—1
Cme1 | n } ¢
| : l n—14 i
A21 A21
Type I Typell, g =2

-n—1 A A
Typell,g=3,s3=1 : Typell, g=3,s3>1

Figure 1: The weighted dual graph of D+ E4 + E + Eg
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Remark 8. Our fibration p belongs to the class (D) in the sense of [Kiz]. The
last two graphs in [Kiz, Figure 54] coincide with those of type I and type II with
g=3,83>1.

The multiplicity sequence of the cusp can be calculated from the weighted
dual graph of D' (cf. [BK, p.516, Theorem 12]). The degree of C is calculated
from mp. We calculate p4, g by using [F, Proposition 4.8]. The proof of the
assertion for the defining equation of C is based on the following fact. Let f4,
fB and fg be the defining polynomials of A, B and G, respectively. Then, since
C + ppB is a member of the pencil A in Theorem 1, there exists ¢ € C* such
that C is defined by the equation (f/4* + tf4°)/f4% = 0.
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