Rational unicuspidal plane curves with $\bar{\kappa} = 1$

埼玉大学理学部数学科 戸野恵太(Keita Tono) Department of Mathematics, Faculty of Science, Saitama University

1 Introduction

Let C be a curve on $\mathbf{P}^2 = \mathbf{P}^2(\mathbf{C})$. A singular point of C is said to be a cusp if it is a locally irreducible singular point. We say that C is cuspidal if C has only cusps as its singular points. For a cusp P of C, we denote the multiplicity sequence of (C, P) by $\bar{m}_P(C)$, or simply \bar{m}_P . We use the abbreviation m_k for a subsequence of \bar{m}_P consisting of k consecutive m's. For example, (2_k) means an A_{2k} singularity. We denote by $\bar{\kappa}(\mathbf{P}^2 \setminus C)$ the logarithmic Kodaira dimension of the complement $\mathbf{P}^2 \setminus C$. Let C' be the strict transform of a rational unicuspidal plane curve C via the minimal embedded resolution of the cusp of C. We define $n(C) := -(C')^2$. By $[Y], \bar{\kappa}(\mathbf{P}^2 \setminus C) = -\infty$ if and only if n(C) < 2. By [Ts1, Proposition 2], there exist no rational cuspidal plane curves with $\bar{\kappa} = 0$. Thus $\bar{\kappa}(\mathbf{P}^2 \setminus C) \geq 1$ if and only if $n(C) \geq 2$.

Theorem 1. If C is a rational unicuspidal plane curve with $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 1$, then there exists a unique pencil Λ on \mathbf{P}^2 satisfying the following four conditions.

- (i) The cusp P of C is a unique base point of Λ .
- (ii) The pencil Λ has a unique reducible member C + n(C)B. Here B is a line or an irreducible conic such that $(CB)_P = (\deg B)(\deg C) - 1$.
- (iii) The pencil Λ has exactly two multiple members $\mu_A A$, $\mu_G G$, where μ_A , μ_G are integers with $\mu_A, \mu_G \geq 2$, $A \setminus \{P\} \cong \mathbb{C}^*$, $G \setminus \{P\} \cong \mathbb{C}$.
- (iv) The complement of $\{P\}$ to every member other than $\mu_A A$, $\mu_G G$ and C + n(C)B is isomorphic to \mathbb{C}^* .

Let C be a rational unicuspidal plane curve with $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 1$. We say that C is of type I (resp. type II) if the curve B in Theorem 1 (ii) is a line (resp. an irreducible conic).

Theorem 2. Let C be a rational unicuspidal plane curve with $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 1$. ^put n := n(C). Let P be the cusp of C.

(i) Type I. There exists an integer s with $s \ge 2$ such that $\deg C = (n+1)^2(s-1)+1$, $\overline{m}_P = (n(n+1)(s-1), ((n+1)(s-1))_{2n+1}, (n+1)_{2(s-1)})$, $\mu_A = n+1$ and $\mu_G = (n+1)(s-1)+1$. There exist $a_2, \ldots, a_s \in \mathbb{C}$ with $a_s \ne 0$ such that C is projectively equivalent to the curve:

$$((f^{s-1}y + \sum_{i=2}^{s} a_i f^{s-i} x^{(n+1)i-n})^{\mu_A} - f^{\mu_G})/x^n = 0,$$

where $f = x^n z + y^{n+1}$. Conversely, for arbitrary integers n, s with $n \ge 2$, $s \ge 2$ and $a_2, \ldots, a_s \in \mathbb{C}$ with $a_s \ne 0$, the above equation defines a rational unicuspidal plane curve with $\bar{\kappa}(\mathbb{P}^2 \setminus C) = 1$. The multiplicity sequence of the cusp is equal to \bar{m}_P .

(ii) Type II and deg $C = ((4n+1)^2+1)/2$. We have $\bar{m}_P = ((n(4n+1))_4, (4n+1)_{2n}, 3n+1, n_3), \mu_A = 4n+1 \text{ and } \mu_G = 2n+1$. The curve C is projectively equivalent to the curve:

$$((g^{n}y + x^{2n+1})^{\mu_{A}} - (g^{2n}z + 2x^{2n}yg^{n} + x^{4n+1})^{\mu_{G}})/g^{n} = 0,$$

where $g = xz - y^2$. Conversely, for an arbitrary integer n with $n \ge 2$, the above equation defines a rational unicuspidal plane curve with $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 1$. The multiplicity sequence of the cusp is equal to \bar{m}_P .

(iii) Type II and deg $C \neq ((4n+1)^2+1)/2$. There exists a positive integer s such that, by setting m := 4n+1 and t := 4s-1, we have deg $C = (m^2t+1)/2$,

$$ar{m}_P = egin{cases} ((3mn)_4, (3m)_{2n}, (m)_3, 3n+1, n_3) & ext{if } s = 1, \ ((tmn)_4, (tm)_{2n}, (sm)_3, (s-1)m, m_{2(s-1)}, 3n+1, n_3) & ext{if } s > 1, \end{cases}$$

 $\mu_A = m \text{ and } \mu_G = 2(ms - n).$ There exist $a_1, \ldots, a_s \in \mathbb{C}$ with $a_s \neq 0$ such that C is projectively equivalent to the curve:

$$((h^{2s-1}(g^ny+x^{2n+1})+\sum_{i=1}^s a_ih^{2(s-i)}g^{mi-n})^{\mu_A}-h^{\mu_G})/g^n=0,$$

where $h = g^{2n}z + 2x^{2n}yg^n + x^m$. Conversely, for an arbitrary integer n with $n \ge 2$, a positive integer s and $a_1, \ldots, a_s \in \mathbb{C}$ with $a_s \ne 0$, the above equation defines a rational unicuspidal plane curve with $\bar{\kappa}(\mathbb{P}^2 \setminus C) = 1$. The multiplicity sequence of the cusp is equal to \bar{m}_P .

A plane curve C is said to be of type (d, ν) if the degree of C is d and the maximal multiplicity of C is ν . If C is a rational cuspidal curve of type (d, ν) , then the inequality $d < 3\nu$ holds true ([MS]). See also [O].

Corollary 1. Let C be a rational unicuspidal plane curve of type (d, ν) with $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 1$.

- (i) Type I. We have $1 < d/\nu \le 5/3$. The equality holds if and only if C is projectively equivalent to a curve in Theorem 2 (i) with n = s = 2.
- (ii) Type II. We have $2 < d/\nu \le 41/18$. The equality holds if and only if C is projectively equivalent to the curve in Theorem 2 (ii) with n = 2.

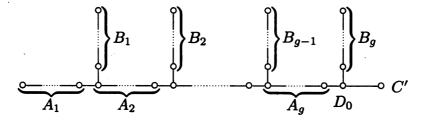
Corollary 2. Let C be a rational unicuspidal plane curve. Then $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 1$ if and only if the multiplicity sequence of the cusp is one of those in Theorem 2.

Corollary 3. Let C be a rational unicuspidal plane curve. Then $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 2$ if and only if $n(C) \geq 2$ and the multiplicity sequence of the cusp is none of those in Theorem 2.

Remark 4. In [Ts1], Tsunoda claimed to have obtained the defining equations of rational unicuspidal plane curves with $\bar{\kappa} = 1$. Comparing the degrees of his with ours, it seems that the equations he obtained are those of type I, s = 2 in Theorem 2 (i).

2 Proof of Theorem 1

Let C be a rational unicuspidal curve on \mathbf{P}^2 with $\bar{\kappa}(\mathbf{P}^2 \setminus C) = 1$. Let $\sigma : V \to \mathbf{P}^2$ be the composite of the shortest sequence of blowing-ups over P such that the reduced total transform D of C is a normal crossing divisor. Let C' be the strict transform of C. Put D' := D - C'. We remark that every irreducible components of D' is a smooth rational curve, whose self-intersection number is less than -1. Let D_0 denote the exceptional curve of the last blowing-up of σ . The dual graph of D has the following shape.

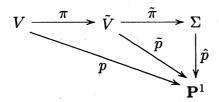


As a convention, A_1 contains the exceptional curve of the first blowing-up. Let A_{i1} denote the leftmost component of A_i in the above figure. In the course of the contraction of D' by σ , $A_g + D_0 + B_g$ is contracted a (-1)-curve E and $A_{g-1} + E + B_{g-1}$ to a (-1)-curve, and so on. Write $\sigma = \sigma_1 \circ \cdots \circ \sigma_g$, where σ_g contracts $A_g + D_0 + B_g$ to a (-1)-curve E, σ_{g-1} contracts $A_{g-1} + E + B_{g-1}$ to a (-1)-curve, and so on. A blowing-up of σ_i is called *sprouting* if it is done at a smooth point of the exceptional curve of the preceding blowing-ups. As a convention, the first blowing-up of σ_1 is not sprouting. Let s_i denote the number of sprouting blowing-ups in σ_i .

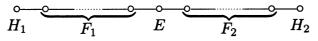
Following [FZ], we consider a strictly minimal model (\tilde{V}, \tilde{D}) of (V, D). We successively contract (-1)-curves E such that $E \subset D$ and $(D - E)E \leq 2$, or $E \not\subset D$ and $DE \leq 1$. After a finite number of contractions, we have no (-1)curves to contract. Let $\pi : V \to \tilde{V}$ denote the composite of the contractions. For a divisor $\Delta \subset V$, write $\tilde{\Delta} = \pi_*(\Delta)$. It is clear that \tilde{D} is a divisor with only simple normal crossings and $\bar{\kappa}(\tilde{V} \setminus \tilde{D}) = 1$. By [Ka, Theorem 2.3] and the fact that $\tilde{V} \setminus \tilde{D}$ is affine, we have the following:

Lemma 5. There exists a fibration $\tilde{p} : \tilde{V} \to \mathbf{P}^1$ whose general fiber F is \mathbf{P}^1 and $\tilde{D}F = 2$.

It is known that a \mathbf{P}^1 -fibration over \mathbf{P}^1 is obtained from a \mathbf{P}^1 -bundle \hat{p} : $\Sigma \to \mathbf{P}^1$ by successive blowing-ups $\tilde{\pi} : \tilde{V} \to \Sigma$. Put $p = \tilde{p} \circ \pi$. We have the following commutative diagram.



Following [FZ], we use the following terminology. The triple $(\tilde{V}, \tilde{D}, \tilde{p})$ is called a C*-triple. A component of \tilde{D} is called horizontal if the image of it under \tilde{p} is 1-dimensional. Let \tilde{H} be the sum of the horizontal components of $(\tilde{V}, \tilde{D}, \tilde{p})$. The C*-triple $(\tilde{V}, \tilde{D}, \tilde{p})$ is called of twisted type if \tilde{H} is irreducible; otherwise it is called of untwisted type. By [Kiz, Theorem 3], our C*-triple is of untwisted type. (See also [M2, Theorem 4.7.1, Lemma 4.10.3].) Thus \tilde{H} consists of two irreducible components H_1 , H_2 . Suppose \tilde{p} has a singular fiber. The dual graph of the sum of the singular fiber and the horizontal components has the following shape (cf. [FZ, Lemma 5.5]).



Here E is a (-1)-curve, which is not contained in \tilde{D} . The curves F_1 , F_2 are connected components of $\tilde{D} - (H_1 + H_2)$. The fiber is contracted by $\tilde{\pi}$ to a fiber of \hat{p} . By using [FZ, Theorem 5.8 and 5.11], we have the following lemma. (The case (B2) in [FZ, Theorem 5.8] does not occur.)

Lemma 6. The \mathbb{C}^* -triple $(\tilde{V}, \tilde{D}, \tilde{p})$ has the following properties.

- (i) The fibration \$\tilde{p}\$ has exactly one smooth fiber \$\tilde{G}\$ contained in \$\tilde{D}\$ and two singular fibers \$\tilde{F}_A = \tilde{A}_1 + \tilde{E}_A + \tilde{B}_g\$, \$\tilde{F}_B = \tilde{B}_1 + \tilde{E}_B + \tilde{C}'\$, where \$\tilde{E}_A\$ (resp. \$\tilde{E}_B\$) is the (-1)-curve in \$\tilde{F}_A\$ (resp. \$\tilde{F}_B\$).
- (ii) The curves D_0 , A_{21} are the horizontal components.

We can verify that π has the following properties.

Lemma 7. The following assertions hold true.

- (i) π first contracts a (-1)-curve $E_G \not\subset D$ and every subsequent blowing-down of π is the contraction of a component of \tilde{D} .
- (ii) The curve E_G is a component of $\pi^{-1}(\tilde{G})$. Every blowing-up of π is performed at a point on the total transform of \tilde{G} .

Let E_A , E_B denote the strict transforms of \tilde{E}_A , \tilde{E}_B in V, respectively. Write $A = \sigma(E_A)$, $B = \sigma(E_B)$ and $G = \sigma(E_G)$. Let μ_A , μ_B and μ_G denote the coefficients of E_A , E_B and E_G in $p^*(p(E_A))$, $p^*(p(E_B))$ and $p^*(p(E_G))$, respectively. We have $\mu_B = n(C)$ by [F, Proposition 4.8]. Since π does not change \tilde{F}_B , it follows that B is smooth and rational with self-intersection number s_1 . Thus B is a line $(s_1 = 1)$ or an irreducible conic $(s_1 = 4)$. Now it is clear that the pencil spanned by $\mu_A A$ and $\mu_G G$ satisfies the whole condition in Theorem 1. The uniqueness of the pencil follows from [I, Theorem 3].

3 Proof of Theorem 2

In order to prove Theorem 2, we determine the weighted dual graph of $D + E_A + E_B + E_G$. By using the properties of σ , π and \tilde{p} , we obtain the diagram in Figure 1, where n = n(C) and * (resp. •) means a (-1)-curve (resp. (-2)-curve). In Theorem 2, we set $s = s_3$. The curves in Theorem 2 (ii) correspond to those of type II with g = 2 and the curves in (iii) to those of type II with

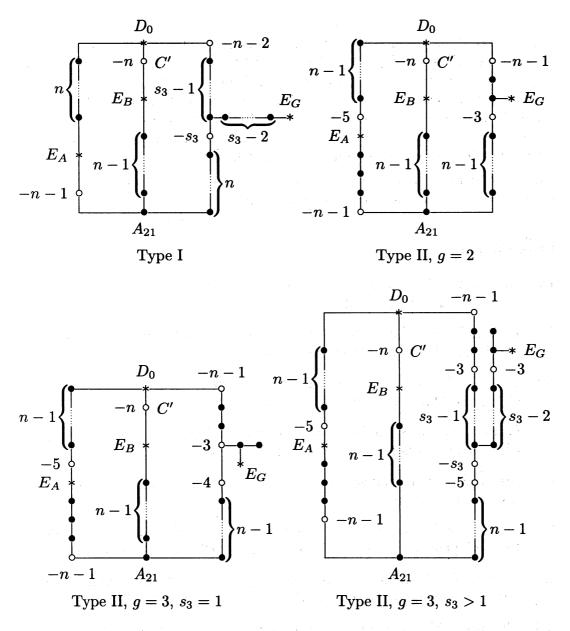


Figure 1: The weighted dual graph of $D + E_A + E_B + E_G$

Remark 8. Our fibration p belongs to the class (D) in the sense of [Kiz]. The last two graphs in [Kiz, Figure 54] coincide with those of type I and type II with $g = 3, s_3 > 1$.

The multiplicity sequence of the cusp can be calculated from the weighted dual graph of D' (cf. [BK, p.516, Theorem 12]). The degree of C is calculated from \bar{m}_P . We calculate μ_A , μ_G by using [F, Proposition 4.8]. The proof of the assertion for the defining equation of C is based on the following fact. Let f_A , f_B and f_G be the defining polynomials of A, B and G, respectively. Then, since $C + \mu_B B$ is a member of the pencil Λ in Theorem 1, there exists $t \in \mathbf{C}^*$ such that C is defined by the equation $(f_A^{\mu_A} + t f_G^{\mu_G})/f_B^{\mu_B} = 0$.

Acknowledgment. The author would like to express his thanks to Professor Fumio Sakai for his valuable advice, guidance and encouragement.

References

- [BK] Brieskorn, E., Knörrer, H.: Plane algebraic curves. Basel, Boston, Stuttgart: Birkhäuser 1986.
- [F] Fujita, T.: On the topology of non-complete algebraic surfaces, J. Fac.
 Sci. Univ. Tokyo 29, (1982), 503-566.
- [FZ] Flenner, H., Zaidenberg, M.: Q-acyclic surfaces and their deformations, Contemp. Math. 162, (1994), 143–208.
- [GM] Gurjar, R. V., Miyanishi, M.: On contractible curves in the complex affine plane, Tôhoku Math. J. 48, (1996), 459–469.
- [I] Iitaka, S.: On *D*-dimensions of algebraic varieties, J. Math. Soc. Japan 23, (1971), 356–373.
- [Ka] Kawamata, Y.: On the classification of non-complete algebraic surfaces, Proc. Copenhagen, Lecture Notes in Math. 732, (1979), 215–232.
- [Kiz] Kizuka, T.: Rational functions of C*-type on the two-dimensional complex projective space, Tôhoku Math. J. 38, (1986), 123–178.
- [M1] Miyanishi, M.: Non-complete algebraic surfaces, Lecture Notes in Math.
 857, Berlin-Heidelberg-New York, Springer 1981.
- [M2] Miyanishi, M.: Open algebraic surfaces, CRM Monograph Series, 12. American Mathematical Society, Providence, RI, 2001.

- [MS] Matsuoka, T., Sakai, F.: The degree of rational cuspidal curves, Math. Ann. 285, (1989), 233-247.
- [O] Orevkov, S. Yu.: On rational cuspidal curves I, sharp estimate for degree via multiplicities, Preprint.
- [To1] Tono, K.: Defining equations of certain rational cuspidal curves. I, Manuscripta Math. 103, (2000), 47–62.
- [To2] Tono, K.: On rational cuspidal plane curves of Lin-Zaidenberg type. I, Preprint.
- [To3] Tono, K.: On rational cuspidal plane curves of Lin-Zaidenberg type. II, Preprint.
- [Ts1] Tsunoda, S.: The complements of projective plane curves, RIMS-Kôkyûroku **446**, (1981), 48–56.
- [Ts2] Tsunoda, S.: The structure of open algebraic surfaces and its application to plane curves, Proc. Japan Acad. 57, Ser. A, (1981), 230–232.
- [Wak] Wakabayashi, I.: On the logarithmic Kodaira dimension of the complement of a curve in P², Proc. Japan Acad. 54, Ser. A, (1978), 157–162.
- [Y] Yoshihara, H.: Rational curves with one cusp (in Japanese), Sugaku 40, (1988), 269–271.