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1 Introduction
Let $C$ be acurve on $\mathrm{P}^{2}=\mathrm{P}^{2}(\mathrm{C})$ . Asingular point of $C$ is said to be acusp
if it is alocally irreducible singular point. We say that $C$ is cuspidal if $C$ has
only cusps as its singular points. For acusp $P$ of $C$ , we denote the multiplicity
sequence of $(C, P)$ by $\overline{m}_{P}(C)$ , or simply $\overline{m}_{P}$ . We use the abbreviation $m_{k}$ for a
subsequence of $\overline{m}_{P}$ consisting of $k$ consecutive ra’s. For example, $(2_{k})$ means an
$A_{2k}$ singularity. We denote by $\overline{\kappa}(\mathrm{P}^{2}\backslash C)$ the logarithmic Kodaira dimension of
the complement $\mathrm{P}^{2}\backslash C$. Let $C’$ be the strict transform of arational unicuspidal
plane curve $C$ via the minimal embedded resolution of the cusp of $C$ . We define
$n(C):=-(C’)^{2}$ . By [Y], $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=-\infty$ if and only if $n(C)<2$ . By [Tsl,
Proposition 2], there exist no rational cuspidal plane curves with $\overline{\kappa}=0$ . Thus
$\overline{\kappa}(\mathrm{P}^{2} \langle C)\geq 1$ if and only if $n(C)\geq 2$ .

Theorem 1. If $C$ is a rational unicuspidal plane curve with $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=1$ , then
there exists a unique pencil Aon $\mathrm{P}^{2}$ satisfying the following four conditions.

(i) The cusp $P$ of $C$ is a unique base point of A.

(ii) The pencil Ahas a unique reducible member $C+n(C)B$ . Here $B$ is a line
or an irreducible conic such that $(CB)_{P}=(\deg B)(\deg C)-1$ .

(iii) The pencil Ahas exactly two multiple members $\mu_{A}A$ , $\mu_{G}G$ , where $\mu_{A}$ , $\mu c$

are integers with $\mu_{A},\mu c$ $\geq 2$ , $A\backslash \{P\}\cong \mathrm{C}^{*}$ , $G\backslash \{P\}\cong \mathrm{C}$ .

(iv) The complement of $\{P\}$ to every member other than $\mu_{A}A_{f}\mu cG$ and $C+$

$n(C)B$ is isomorphic to $\mathrm{C}^{*}$ .
Let $C$ be arational unicuspidal plane curve with $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=1$ . We say

that $C$ is of type $I$ (resp. type $II$ ) if the curve $B$ in Theorem 1(ii) is aline (resp.
an irreducible conic
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Theorem 2. Let $C$ be a rational unicuspidal plane curve with $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=1$ .
$\mathrm{D}utn:=n(C)$ . Let $P$ be the cusp of $C$ .

(i) Type I. There eists an integer $s$ with $s\geq 2$ such that $\deg C=(n+1)^{2}(s-$

$1)+1,\overline{m}_{P}=(n(n+1)(s-1), ((n+1)(s-1))_{2n+1}$ , $(n+1)_{2(s-1)})$ , $\mu_{A}=n+1$

and $\mu_{G}=(n+1)(s-1)+1$ . There exist $a_{2}$ , $\ldots$ , $a_{s}\in \mathrm{C}$ with $a_{s}\neq 0$ such
that $C$ is projectively equivalent to the curve:

$((f^{s-1}y+ \sum_{i=2}^{s}a_{i}f^{s-i}x^{(n+1)i-n})^{\mu A}-f^{\mu G})/x^{n}=0$,

where $f=x^{n}z+y^{n+1}$ . $Co$nversely, for arbitrary integers $n$ , $s$ with $n\geq 2$ ,
$s\geq 2$ and $a_{2}$ , $\ldots$ , $a_{s}\in \mathrm{C}$ with $a_{s}\neq 0$ , the above equation defines a rational
unicuspidal plane curve with $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=1$ . The multiplicity sequence of
the cusp is equal to $\overline{m}_{P}$ .

(ii) Type $II$ and $\deg C=((4n+1)^{2}+1)/2$ . We have $\overline{m}_{P}=((n(4n+1))_{4},$ $(4n+$

$1)_{2n}$ , $3n+1$ , $n_{3})$ , $\mu_{A}=4n+1$ and $\mu c=2n+1$ . The curve $C$ is projectively
equivalent to the curve:

$((g^{n}y+x^{2n+1})^{\mu A}-(g^{2n}z+2x^{2n}yg^{n}+x^{4n+1})^{\mu G})/g^{n}=0$,

where $g=xz-y^{2}$ . $Co$nversely, for an arbitrary integer $n$ with $n\geq 2$ , the
above equation defines a rational unicuspidal plane curve with $\kappa-(\mathrm{P}^{2}\backslash C)=$

1. The multiplicity sequence of the cusp is equal to $\overline{m}_{P}$ .

(iii) Type $II$ and $\deg C\neq((4n+1)^{2}+1)/2$ . There exists a positive integer $s$ such
that, by setting $m:=4n+1$ and $t:=4s-1$ , we have $\deg C=(m^{2}t+1)/2$ ,

$\overline{m}_{P}=\{$

$((3mn)_{4}, (3m)_{2n}$ , $(m)_{3},3n+1$ , $n_{3})$ if $s=1$ ,
$((tmn)_{4}, (\mathrm{t}\mathrm{m})2\mathrm{n}$ , $(sm)_{3}$ , $(s-1)m$, $m_{2(s-1)}$ , $3n+1$ , $n_{3})$ if $s>1$ ,

$\mu_{A}=m$ and $\mu c$ $=2(\mathrm{m}5-n)$ . There eist $a_{1}$ , $\ldots$ , $a_{s}\in \mathrm{C}$ with $a_{s}\neq 0$

such that $C$ is projectively equivalent to the cume:

$((h^{2s-1}(g^{n}y+x^{2n+1})+ \sum_{i=1}^{s}a_{i}h^{2(s-i)}g^{mi-n})^{\mu_{A}}-h^{\mu G})/g^{n}=0$,

where $h=g^{2n}z+2x^{2n}yg^{n}+x^{m}$ . Conversely, for an arbitrary integer $n$

with $n\geq 2$ , a positive integer $s$ and $a_{1}$ , $\ldots$ , $a_{s}\in \mathrm{C}$ with $a_{s}\neq 0$ , the above
equation defines a rational unicuspidal plane curve ettith $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=1$ .
The multiplicity sequence of the cusp is equal to $\overline{m}_{P}$ .
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Aplane curve $C$ is said to be of type $(d, \nu)$ if the degree of $C$ is $d$ and the
maximal multiplicity of $C$ is $\nu$ . If $C$ is arational cuspidal curve of type $(d, \nu)$ ,
then the inequality $d<3\nu$ holds true ([MS]). See also [0].

Corollary 1. Let $C$ be a rational unicuspidal plane curve of type $(d, \nu)$ with
$\overline{\kappa}(\mathrm{P}^{2}\backslash C)=1$ .

(i) Type I. We have $1<d/\nu\leq 5/3$ . The equality holds if and only if $C$ is
projectively equivalent to a curve in Theorem 2(i) with $n=s=2$ .

(ii) $Rpe$ $II$. We have $2<d/\nu\leq 41/18$ . The equality holds if and only if $C$ is
projectively equivalent to the curve in Theorem 2(ii) with $n=2$ .

Corollary 2. Let $C$ be a rational unicuspidal plane curve. Then $\overline{\kappa}(\mathrm{P}^{2\backslash }{}_{\backslash }C)=1$

if and only if the multiplicity sequence of the cusp is one of those in Thiorem 2.

Corollary 3. Let $C$ be a rational unicuspidal plane curve. Then $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=2$

if and only if $n(C)\geq 2$ and the multiplicity sequence of the cusp is none of those
in Theorem 2.

Remark 4. In [Tsl], Tsunoda claimed to have obtained the defining equations
of rational unicuspidal plane curves with $\overline{\kappa}=1$ . Comparing the degrees of his
with ours, it seems that the equations he obtained are those of type $\mathrm{I}$ , $s=2$ in
Theorem 2(i).

2Proof of Theorem 1
Let $C$ be arational unicuspidal curve on $\mathrm{P}^{2}$ with $\overline{\kappa}(\mathrm{P}^{2}\backslash C)=1$ . Let $\sigma$ : $Varrow \mathrm{P}^{2}$

be the composite of the shortest sequence of blowing-ups over $P$ such that the
reduced total transform $D$ of $C$ is anormal crossing divisor. Let $C’$ be the
strict transform of $C$ . Put $D’:=D-C’$ . We remark that every irreducible
components of $D’$ is asmooth rational curve, whose self-intersection number is
less thm -1. Let $D_{0}$ denote the exceptional curve of the last blowing-up of $\sigma$ .
The dual graph of $D$ has the following shape.

$C’$
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As aconvention, $A_{1}$ contains the exceptional curve of the first blowing-up. Let
$A_{i1}$ denote the leftmost component of $A_{i}$ in the above figure. In the course of
the contraction of $D’$ by $\sigma$ , $A_{g}+D_{0}+B_{g}$ is contracted a(-1)-curve $E$ and
$A_{g-1}+E+B_{g-1}$ to a(-1)-curve, and so on. Write $\sigma=\sigma_{1}\circ\cdots\circ\sigma_{g}$ , where $\sigma_{g}$

contracts $A_{g}+D_{0}+B_{g}$ to a(-1)-curve $E$ , $\sigma_{g-1}$ contracts $A_{g-1}+E+B_{g-1}$

to a(-1)-curve, and so on. Ablowing-up of $\sigma_{i}$ is called sprouting if it is done
at asmooth point of the exceptional curve of the preceding blowing-ups. As
aconvention, the first blowing-up of $\sigma_{1}$ is not sprouting. Let $s_{i}$ denote the
number of sprouting blowing-ups in $\sigma_{i}$ .

Following [FZ], we consider astrictly minimal model $(\tilde{V},\tilde{D})$ of $(V, D)$ . We
successively contract (-1)-curves $E$ such that $E\subset D$ and $(D-E)E\leq 2$ , or
$E\not\subset D$ and $DE\leq 1$ . After afinite number of contractions, we have no (-1)-
curves to contract. Let $\pi$ : $Varrow\tilde{V}$ denote the composite of the contractions.
For adivisor $\Delta\subset V$ , write $\tilde{\Delta}=\pi_{*}(\Delta)$ . It is clear that $\tilde{D}$ is adivisor with only
simple normal crossings and $\overline{\kappa}(\tilde{V}\backslash \tilde{D})=1$ . By [Ka, Theorem 2.3] and the fact
that $\tilde{V}\backslash \tilde{D}$ is affine, we have the following:

Lemma 5. There exists a fib ration $\tilde{p}$ : $\tilde{V}arrow \mathrm{P}^{1}$ whose general fiber $F$ is $\mathrm{P}^{1}$

and $\tilde{D}F=2$ .
It is known that a $\mathrm{P}^{1}$ fibration over $\mathrm{P}^{1}$ is obtained from a $\mathrm{P}^{1}$-bundle $p\wedge$ :

$\Sigmaarrow \mathrm{P}^{1}$ by successive blowing-ups $\tilde{\pi}$ : $\tilde{V}arrow\Sigma$ . Put $p=\tilde{p}\circ\pi$ . We have the
following commutative diagram.

Following [FZ], we use the following terminology: The triple $(\tilde{V},\tilde{D},\tilde{p})$ is
called a-triple. Acomponent of $\tilde{D}$ is called horizontal if the image of it
under $\tilde{p}$ is 1-dimensional. Let $\tilde{H}$ be the sum of the horizontal components of
$(\tilde{V},\tilde{D},\tilde{p})$ . The C’-triple $(\tilde{V},\tilde{D},\tilde{p})$ is called of trnisted type if $\tilde{H}$ is irreducible;
otherwise it is called of untwisted type. By [Kiz, Theorem 3], our C’-triple is
of untwisted type. (See also [M2, Theorem 4.7.1, Lemma 4.10.3].) Thus $\tilde{H}$

consists of two irreducible components Hi, $H_{2}$ . Suppose $\tilde{p}$ has asingular fiber.
The dual graph of the sum of the singular fiber and the horizontal components
has the following shape (cf. $[\mathrm{F}\mathrm{Z}$ , Lemma 5.5]).
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Here E is $\ovalbox{\tt\small REJECT}$ $(-1)$-curve, which is not contained in D. The curves F., $F_{2}$ are
connected components of D $-(H.+H_{2})$ . The fiber is contracted by $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ to afiber
of $7\ovalbox{\tt\small REJECT}$ . By using [FZ, Theorem 5.8 and 5.11], we have the following lemma. (The
case (B2) in [FZ, Theorem 5.8] does not occur.)

Lemma 6. The C’-triple $(\tilde{V},\tilde{D},\tilde{p})$ has the following properties.

(i) The fibration $\tilde{p}$ has exactly one smooth fiber (? contained in $\tilde{D}$ and two
singular fibers $\tilde{F}_{A}=\tilde{A}_{1}+\tilde{E}_{A}+\tilde{B}_{g},\tilde{F}_{B}=\tilde{B}_{1}+\tilde{E}_{B}+\tilde{C}’$, where $\tilde{E}_{A}$ (resp.
$\tilde{E}_{B})$ is the (-1)-curve in $\tilde{F}_{A}$ (resp. $\tilde{F}_{B}$ ).

(ii) The curves $\tilde{D}_{0}$ , A21 are the horizontal components.

We can verify that $\pi$ has the following properties.

Lemma 7. The following assertions hold true.

(i) $\pi$ first contracts a(-1) curve $E_{G}\not\subset\tilde{D}$ and every subsequent blowing-down
of $\pi$ is the contraction of a component of $\tilde{D}$ .

(ii) The curve $E_{G}$ is a component of $\mathrm{v}\mathrm{r}^{-1}(\tilde{G})$ . Every blowing-up of $\pi$ is per-
formed at a point on the total transform of $\tilde{G}$ .

Let $E_{A}$ , $E_{B}$ denote the strict transforms of $\tilde{E}_{A},\tilde{E}_{B}$ in $V$ , respectively.
Write $A=\sigma(E_{A})$ , $B=\sigma(E_{B})$ and $G=\sigma(E_{G})$ . Let $\mu_{A}$ , $\mu_{B}$ and $\mu c$ denote
the coefficients of $E_{A}$ , $E_{B}$ and $E_{G}$ in $p^{*}(p(E_{A}))$ , $p^{*}(p(E_{B}))$ and $p^{*}(p(E_{G}))$ ,
respectively. We have $\mu_{B}=n(C)$ by [$\mathrm{F}$ , Proposition 4.8]. Since $\pi$ does not
change $\tilde{F}_{B}$ , it follows that $B$ is smooth and rational with self-intersection number
$s_{1}$ . Thus $B$ is aline $(s_{1}=1)$ or an irreducible conic $(s_{1}=4)$ . Now it is clear that
the pencil spanned by $\mu_{A}A$ and $\mu_{G}G$ satisfies the whole condition in Theorem 1.
The uniqueness of the pencil follows from [$\mathrm{I}$ , Theorem 3].

3Proof of Theorem 2
In order to prove Theorem 2, we determine the weighted dual graph of $D+$

$E_{A}+E_{B}+E_{G}$ . By using the properties of $\sigma$ , $\pi$ and $\tilde{p}$ , we obtain the diagram
in Figure 1, where $n=n(C)$ md $*(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}. \bullet)$ means a(-1)-curve(resp. (-2)-
curve). In Theorem 2, we set $s=s_{3}$ . The curves in Theorem 2(ii) correspond
to those of type II with $g=2$ and the curves in (iii) to those of type II with
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-n

TypeITypeIj g $=2$

$D_{0}$ -n-1

Type $\mathrm{I}\mathrm{I}$ , $g=3$ , $s_{3}=1$ Type $\mathrm{I}\mathrm{I}$ , $g=3$ , $s_{3}>1$

Figure 1: The weighted dual graph of $D+E_{A}+E_{B}+E_{G}$
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Remark 8. Our fibration $p$ belongs to the class (D) in the sense of [Kiz]. The
last two graphs in [Kiz, Figure 54] coincide with those of type Iand type II with
$g=3$ , $s_{3}>1$ .

The multiplicity sequence of the cusp can be calculated from the weighted
dual graph of $D’$ (cf. $[\mathrm{B}\mathrm{K}$ , p.516, Theorem 12]). The degree of $C$ is calculated
from $\overline{m}_{P}$ . We calculate $\mu_{A}$ , $\mu_{G}$ by using [$\mathrm{F}$ , Proposition 4.8]. The proof of the
assertion for the defining equation of $C$ is based on the following fact. Let $f_{A}$ ,
$f_{B}$ and $fc$ be the defining polynomials of $A$ , $B$ and $G$ , respectively. Then, since
$C+\mu_{B}B$ is amember of the pencil Ain Theorem 1, there exists $t\in \mathrm{C}$

’ such
that $C$ is defined by the equation $(f_{A}^{\mu A}+tf_{G}^{\mu G})/f_{B}^{\mu B}=0$.
Acknowledgment. The author would like to express his thanks to Professor Fu-
mio Sakai for his valuable advice, guidance and encouragement.
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