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1Introduction

The Price surgery has been defined in [P, KSTY, Y3] as acut and paste of a
4-manifold $N_{2}$ in the 4-sphere $S^{4}$ and also in general 4-manifolds, where $N_{2}$

is defined as atotal space of anon-0rient $D^{2}$-bundle over aprojective
plane with normal Euler number 2(see [Ml, M2, LI, Yl]). It may be
expected to make afake pair of 4-manifolds, which means apair that are
homotopy equivalent but non-diffeomorphic to each other, but such atrial
seems not to be succeeded yet except the non-0rient example [Al, A2]
(see also [KSTY]: Gluck surgery ([G1]) is realized by Price surgery).

The 4-manifold $N_{2}$ is represented by the framed link (see [Ki, GoS]) in
Figure $1(1)$ . The boundary $\partial N_{2}$ is homeomorphic to the quaternion space
$Q$ , which is the quotient space of the unit sphere $S^{3}$ of the quaternion
field $\mathrm{H}\cong \mathrm{R}^{4}$ by the quaternion group of order 8. This space $Q$ is also
homeomorphic to the linking 3-manifold of $D_{4}$-singularity: $S^{5}\cap\{f^{-1}(0)\}$ ,
where

f : $\mathrm{C}^{3}$

$arrow$ $\mathrm{C}$

(x, y, z) $\mapsto$ $x^{2}+y^{3}+z^{3}$ ,

and we regard $S^{5}$ as the unit sphere (the boundary of the unit disk $D^{6}$ )
in $\mathrm{C}^{3}\cong \mathrm{R}^{6}$ . Throughout the paper, by the notation $D_{4}$ we denote the
compact 4-manifold obtained ffom $D^{6}\cap\{f^{-1}(0)\}$ by resolve the singularity
minimally, which is represented by the ffamed link in Figure $1(2)$ .
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Figure 1(1) : $N_{2}$ Figure 1(2) : $D_{4}$

The boundaries of the two 4-manifolds $N_{2}$ and $D_{4}$ are homeomorphic to
each other and also to Q, thus we can define

Operation :“Cut $D_{4}$ off and paste $N_{2}$ on” a4-manif0ld,

but the resulting 4-manifold is not well-defined because of the ambiguity
of the gluing map (self-homeomorphisms on $Q$ ). Thus, for agiven $D_{4}$ in
an original 4-manifold $M$ , we study the set $\Omega_{M}(D_{4})$ (consisting of at most
three elements, see Section 2) of diffeomorphic class of resulting 4-manif0lds.

This operation changes some topological invariants of the ambient 4-
manifold: it decreases the Euler characteristic number $\chi$ by 4, the negative
second Betti number $\beta_{2}^{-}$ by 4 and do not change the positive second Betti
number $\beta_{2}^{+}$ , thus increases the signature aof the 4-manifold by 4.

In this paper, we will report two lemmas related to the operation. One
is Lemma 3.1 in \S 3, which says that acertain operation consisting of four
blowing up’s and the operation above is reduced to Price surgery. The other
is Lemma 4.1 in \S 4 on the resulting manifolds of the operation on the simple
elliptic surfaces. Before stating the results, in the next section, we will recall
some facts on Price surgery in general 4-manifolds. In \S 5, we will show some
key lemmas by “relative Kirby calculus” (see Section 5.5 in $[\mathrm{G}\mathrm{o}\mathrm{S}]$ )

$)$ but we
do not give the complete proof.
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d) Price surgery

Ve recall notations and facts on Price surgery from [KSTY, Y3].

(1) We denote by $N_{2}$ the total space of anon-0rientable $D^{2}$ bundle over
aprojective plane with normal Euler number 2, which is acompact
oriented 4-manifold with aboundary, and which is described by the
Kirby diagram in Figure 1(1). Note that $N_{2}$ has ahandlebody decom-
position with one 0-handle, one 1-handle and one 2-handle.

(2) The boundary $\partial N_{2}$ is diffeomorphic to the quaternion space $Q$ , which
admits aSeifert fibered structure whose Seifert invariants in the sense
of $[\mathrm{O},$ \S 5.2 $]$ are given by $\{-1; (0_{1},0);(2,1), (2,1), (2,1)\}$ . We call the
three singular fibers $c_{-1}$ , $c_{0}$ , $c_{1}$ .

(3) In [P], Price has investigated the self-diffeomorphisms of the quater-
nion space $Q$ and has shown that the mapping class group $\mathrm{M}(Q)$ (the
group of isotopy classes of orientation preserving self-diffeomorphisms)
is isomorphic to $\mathrm{S}_{3}$ , the symmetric group on three letters {-1, 0, 1}.
For each element $\sigma$ in @3, there is aself-diffeomorphism $f_{\sigma}$ of $Q$ which
preserves the Seifert fibered structure and satisfies $f_{\sigma}(c_{i})=c_{\sigma(i)}$ . Each
map $f_{\sigma}$ represents the class of $\mathrm{M}(Q)$ .

(4) Price has also shown that there is aself-diffeomorphism $g(g_{1}$ in $[\mathrm{P}$ ,
p.116]) of $Q=\partial N_{2}$ whose order is two in $\mathrm{M}(Q)$ and that can extend
over $N_{2}$ as aself-diffeomorphism. (In fact, $g$ is abundle isomorphism
“-,, : $N_{2}arrow N_{2}$ which maps each vector $\vec{v}$ to $-\vec{v}.$ ) Thus, for agiven
oriented 4-manifold $E$ whose boundary $\mathrm{i}\mathrm{s}-Q$ , we have at most only
three 4-manifolds up to diffeomorphism $E \bigcup_{i\mathrm{o}\varphi}N_{2}$ obtained by gluing
$N_{2}$ to $E$ along the boundary, where we use the compositions of a
fixed orientation reversing map $i$ from $\partial N_{2}$ to $\partial E$ and an orientation
preserving self-diffeomorphism $\varphi$ on $Q$ as the gluing map. The three 4-
manifolds correspond to the classes of $\varphi$ in the right coset $\mathrm{M}(Q)/\{1, g\}$ ,
which consists of three elements
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3Equivalence of two operations

Let $M$ be aclosed oriented 4-manifold and $K$ asmoothly embedded 2-sphere
in $M$ whose normal bundle is trivial. We define two operations Aand $\mathrm{B}$ on
$M$ along $K$ .

Operation $\mathrm{A}$ :Taking apairwise connected sum of $(M, K)$ with the (pos-
itive) standard projective plane $(S^{4}, P_{0})$ (see [PR], [LI], [Y1]), we have an
embedded projective plane $(M, K\# P\circ)$ in $M$ whose normal Euler number 2.
The tubular neighborhood $N(K\# P_{0})$ is diffeomorphic to $N_{2}$ . Let $\Gamma \mathrm{I}_{M}(K\# P_{0})$

be the set of diffeomorphic class of 4-manifolds obtained by pasting $N_{2}$ to the
exterior $M\backslash \mathrm{i}\mathrm{n}\mathrm{t}N(K\beta P_{0})$ along the boundary. The original manifold $M$ itself
and the Gluck surgery $\Sigma_{M}(K)$ of $M$ along $K$ , by Theorem 4.1 in [KSTY],
are contained in the set $\square _{M}(K\# P_{0})$ . By (4) in Section 2, $\Pi_{M}(K\# P_{0})$ consists
of at most three elements.

Operation $\mathrm{B}$ :This operation consists of five steps, see Figure 2: (1) Blow
up at apoint in K. (2) Blow up at the intersection point of the proper
lift of $K$ and the exceptional curve. (3) Blow up at apoint on the newest
exceptional curves. (4) Blow up at apoint on the newest exceptional curves
again. After this step, we have a $D_{4}$ in the ambient 4-manifold $M\# 4\overline{\mathrm{C}P^{2}}$ .
(5) Do the operation “Cut $D_{4}$ off and paste $N_{2}$ on” the 4-manifold By
$\Omega_{M}(D_{4}(K))$ , we denote the set of the of diffeomorphic class of the resulting
4-manif0lds.

$01\mathrm{C}|\prec$

$|..’.\cdot\circ 0$

Figure 2

Lemma 3.1 Two operations Aand $\mathrm{B}$ along $K$ on $M$ are equivalent, $i.e.$ ,
it holds that $\Pi_{M}(K\# P_{0})=\Omega_{M}(D_{4}(K))$ as sets
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4Operation on elliptic surfaces

Let $E(n)$ be the simply connected elliptic surface (with section) whose Euler
characteristic is $12n$ , ( $E(1)\cong \mathrm{C}P^{2}\# 9\overline{\mathrm{C}P^{2}}$ . $E(n)$ is the fiber sum of $n$ copies
of $E(1)$ . $E(2)\cong$ “the $K3$ surface”, .. .). In [BGo], using amethod “relative
Kirby diagram” (see Section 5.5 in $[\mathrm{G}\mathrm{o}\mathrm{S}]$ ), adecomposition of $E(n)$ as a
union of $n+1$ pieces $N_{n}\cup W_{n}\cup W_{n-1}\cup\cdots W_{1}$ has been shown, where $N_{n}$ is
the nuclei of $E(n)$ ([Go]) and $W_{1}$ is the $E_{8}$-plumbing. Each $Wj(j\geq 2)$ is a
cobordism represented by the relative Kirby diagram in Figure 3(modified
from Figure 27 in [BGo] $)$ , which clearly contains one $E_{8}$-plumbing. An $E_{8^{-}}$

plumbing contains an obvious $D_{4}$ . Thus we can do the operation “Cut $D_{4}$ off
and paste $N_{2}$ on” $E(n)$ at most $n$ times. To study the resulting 4-manif0lds,
we do the operation on $W_{j}$ . For $W_{1}$ , see Lemma 5.2.

Lemma 4.1 The resulting 4-manifold of the operation “Cut $D_{4}$ off and
paste $N_{2}$ on” $W_{j}(j\geq 2)$ does not depend on the gluing map of $\partial N_{2}$ and is
diffeomorphic to $\gamma \mathrm{V}j\# 4\overline{\mathrm{C}P^{2}}$, where $\mathrm{W}_{j}$ is the 4-manifold represented by the
relative Kirby diagram in Figure 4.

Figure 3: $W_{j}$ Figure 4: $\mathrm{W}_{j}$

Note that $W_{j}$ is, thus $\gamma\eta_{j}$ is also acobordism ffom the Seifert homology 3-
$\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}-\Sigma(2,3,6(j-1)-1)$ to $\Sigma(2,3,6j-1)$ for $j\geq 2$ . We conjecture that all
the resulting 4-manifolds, the (non-trivial) union of possible Wj’s and Wj’s
capped by $N_{n}$ and their “logarithmic transformation” (as a4-manifold, not
as acomplex surface) in $N_{n}$ are all diffeomorphic to $\beta_{2}^{+}(\mathrm{C}P^{2})\#\beta_{2}^{-}(\overline{\mathrm{C}P^{2}})$ .

5Key of the proof

We show some key lemmas for Lemma 3.1 and give aproof of Lemma 4.1.
They are shown by (ordinary) Kirby calculus and relative Kirby calculus
(see Section 5.5 in $[\mathrm{G}\mathrm{o}\mathrm{S}]$ ).
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Lemma 5.1 See the Kirby calculus from the diagram (A) to (B) of 3-
manifolds in Figure 5. It corresponds to ahomeomorphism $\varphi kom$ the
boundary $\partial D_{4}$ of $D_{4}$ to $\partial N_{2}$ . Calculating the curves $c_{i}’ s$ with 0-framing in
(A) during the process of the Kirby calculus, we get the curves $c_{i}$ ’s with
framings ( $\cdot$ ) in (B). They are $\varphi(c_{i})$ ’s in $\partial N_{2}$ . Thus (under some conditions)
the local change $kom(A)$ to (B) in aKirby diagram of a4-manifold $M$

corresponds to (one of) the operation “Cut $D_{4}$ off and paste $N_{2}$ on” $M$ .

$c_{-1}$

Figure 5

Of course, another Kirby calculus from the diagram (A) to (B) corre-
sponds to another homeomorphism from $\partial D_{4}$ to $\partial N_{2}$ . To prove Lemma 4.1
completely, we need every (six or three) calculus from the diagram (A) to
(B) for each element of the mapping class group $\mathrm{M}(Q)$ of order six, but in
this paper, we omit the other calculus.

Now we use Lemma 5.1 to study the resulting 4-manifold of the operation
“Cut $D_{4}$ off and paste $N_{2}$ on” the obvious $D_{4}$ in the $E_{8}$-plumbing $W_{1}$ .

Lemma 5.2 The resulting 4-manifold is diffeomorphic to $\mathrm{W}_{1}\# 3\overline{\mathrm{C}P^{2}}$, where
$\mathrm{W}_{1}$ is the 4-manifold represented by the final Kirby diagram (-l-framed
left-hand trefoil) in Figure 6.
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Proof. See the Kirby calculus in Figure 6. $\square$

$\overline{\mathrm{O}}\overline{\mathrm{c}}\backslash (\hat{y_{\vee}\sim\overline{\mathrm{o}}^{2}}\cap(_{J}\backslash ^{\gamma}\backslash \mathrm{c}^{\overline{\gamma}^{2}}\overline{\mathrm{O}}^{\mathit{2}}22^{-}2- 2-\mathit{2}$

Figure 6

Lemma 4.1 is shown by application of such method.
Note that the action of $\mathrm{M}(Q)(\cong@_{3})$ on $\partial D_{4}$ is obvious. Thus we can cal-

culate every resulting 4-manifold of the operation on $D_{4}$ in the $E_{8}$-plumbing
for each choice of the gluing map in $\mathrm{M}(Q)$ . For asmoothly embedded 2-
sphere $K$ in $S^{4}$ , we can also study the resulting 4-manifold of the operation
cut the $D_{4}$ and paste an $\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{r}-X(P\circ\# K)$ of aprojective plane $P_{0}\# K$ in
$S^{4}$ instead of $N_{2}$ ( $N_{2}\cong-X(P_{0})$ , see [PR, $\mathrm{P}$ , $\mathrm{L}\mathrm{I}$ , L2, Yl, Y2]) by the method
“circle with adot and with asymbol $K$” in Kirby diagrams introduced in
Appendix of [KSTY]. They are all diffeomorphic to $\mathrm{W}_{1}\# 3\overline{\mathrm{C}P^{2}}$ . Note that
the Gluck surgery $\Sigma(K)$ along any $K$ in $S^{4}$ satisfies that $\Sigma(K)\#\overline{\mathrm{C}P^{2}}\cong\overline{\mathrm{C}P^{2}}$ .

Outline of the proof of Lemma S. $\mathrm{I}$ :See the Kirby calculus in Figure 2
again. It describes the process of operation $\mathrm{B}$ near the 2-sphere $K$ , but
we have not done the final step yet. Doing the change in Lemma 5.1 to
the final diagram, we finish the operation $\mathrm{B}$ and get the first diagram in
Figure 7(The dotted circle corresponds to ameridian to $K$ in M. The thin
circle corresponds to the boundary of a $\mathrm{c}\mathrm{o}$-core of the 2-handle $h$ . Once
ignore them). The diagram describes a4-manifold obtained by attaching a
2-handle $h$ to $N_{2}$ . All we have to do is to verify that $(M\backslash \mathrm{i}\mathrm{n}\mathrm{t}N(K))\cup h^{[perp]}\cong$

$M\backslash \mathrm{i}\mathrm{n}\mathrm{t}N(K\# P_{0})$ , where we use the notation $h^{[perp]}$ for the piece $h$ since we switch
the core and the $\mathrm{c}\mathrm{o}$-core. See Figure $4(1)$ and the proof of Theorem 4.1 in
[KSTY] for the goal
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Figure 7

By the calculus in Figure 7, we have the attachinig circle of $h^{[perp]}$ in $\partial(M\backslash \mathrm{i}\mathrm{n}\mathrm{t}N(K))\cong$

$S^{1}\cross S^{2}$ and the ffaming: it is the thin circle in the diagram. (If one care
orientation of the diagram, it would be better take the mirror image.) We
have the lemma. Cl
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