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Abstract

Amethod of successive approximations is proposed for constructing asolution of the
ideal tw0-dimensional Boussinesq equations on the basis of those of Euler equations.
Numerical experiments on the iteration scheme suggest that the coupled Euler equa-
tions approximate the Boussinesq equations fairly well at the fifth iteration. The
fast convergence of the successive approximations is consistent with global regularity
of the Boussinesq equations, as long as the current numerical results are concerned.
This method will serve as asolid check in monitoring apossible singularity formation
numerically at much higher spatial resolutions.

1 Introduction
In 1964 Professor Tosio Kato published an elegant paper [1] on the global regularity
of the tw0-dimensional Euler equations subject to asmooth external forcing

$\frac{\partial u}{\partial t}+(u\cdot\nabla)u=-\nabla p+f$ , (1)

$\nabla\cdot f=0$ . (2)

Here $u$ and $p$ denote the velocity and the pressure and $f$ is an external forcing
which may depend on space and time. The incompressibility condition determines
the pressure and it has the following integral representation in $\mathbb{R}^{2}$

$p= \frac{-1}{2\pi}\int_{\mathrm{R}^{2}}\frac{\partial u_{i}(y)}{\partial y_{j}}\frac{\partial u_{j}(y)}{\partial y_{i}}\log|x-y|dy$ , (3)

which can be obtained by solving

$\triangle p=-\frac{\partial u_{i}}{\partial x_{j}}\frac{\partial u_{j}}{\partial x_{i}}$ . (4)

The vorticity $\omega$ $=\partial_{1}u_{2}-\partial_{2}u_{1}$ obeys

$\frac{\partial\omega}{\partial t}+(u\cdot\nabla)\omega=\partial_{1}f_{2}-\partial_{2}f_{1}$ . (5)

While the vorticity is not conserved because of the forcing term, it is nevertheless
well controlled if the forcing term is assumed to be sufficiently smooth. An account
of the papers on the tw0-dimensional Euler equations can be found in [2], wher$\mathrm{e}$
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[3], [4] are surveyed. See also the unpublished manuscript [5] contained in this vol-
ume. All the four papers have used successive approximations to construct classical
solutions of the tw0-dimensional Euler equations. To prove convergence of succes-
sive approximations, different methods have been employed, that is, Ascoli-Arzela’s
theorem was used in [3], amore direct proof by mathematical induction in [4] and
Schauder’s fixed point theorem in [1], [5].

In contrast to the case of Euler equations, the question whether solutions to the
ideal Boussinesq equations with neither viscosity nor thermal conductivity, develop
spontaneous singularity is an open problem, which has been controversial, not only
theoretically but also numerically. In this paper in order to shed some light on this
unsolved problem, we compare the ideal Boussinesq equations with the coupled tw0-
dimensional Euler equations, the latter of which are known to have global smooth
solutions.

The tw0-dimensional Boussinesq equations can be written as

$\frac{\partial u}{\partial t}+(u\cdot\nabla)u=-\nabla q+(\begin{array}{l}0\theta\end{array})$ , (6)

$\nabla\cdot u=0$ , (7)
and the temperature 0is conserved

$\frac{\partial\theta}{\partial t}+(u\cdot\nabla)\theta=0$ , (8)

where we have used anotation $q$ for the pressure. The initial data $\omega(0)$ and $\theta(0)$ are
assumed to be smooth. It should be noted that the second term on the right-hand
side of (6) is not divergence-free (see Section 4.2).

The tw0-dimensional Boussinesq equations can be written in vorticity form as

$\frac{\partial\omega}{\partial t}+(u\cdot\nabla)\omega=\frac{\partial\theta}{\partial x_{1}}$ . (9)

The vorticity is not conserved because of the presence of the temperature gradient
in atroublesome way. Needless to mention, it is not possible to regard this term as a
smooth external forcing because the temperature not only affects the flow field but
also it is influenced by the flow field. That is, there is aclosed loop of linkage in the
interaction between the variables $\omega$ and 0. Because of this feedback mechanism the
temperature gradient is out of control under time evolution. Other basic properties
of the tw0-dimensional Boussinesq equations are summarized in the Appendices.

Indeed, it has been proved in $[6],[7]$ that the maximum norm of $|\nabla\theta|$ controls
regularity of (9) in the same spirit of acerebrated theorem established for the three-
dimensional Euler equations [8]. Anumber of numerical simulations have been
conducted for (6) (or, for analogous three-dimensional axisymmetric Euler equa-
tions, see Appendix 6.3) $[9]-[14]$ . Some of them indicated blow-up in finite time.
But there is no proof that shows breakdown of smooth solutions for (9), that is, not
asingle analytic example is known that blows up in finite time.

2Successive approximations
We show how we can construct solutions of the Boussinesq equations on the basis
of the solutions of the Euler equations by successive approximations. That way we
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can assess clearly the similarity and difference between solutions of the Boussinesq
and Euler $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}.[]$

2.1 The kick-and-advect formalism
Suppose we compare (8) and (9) with

$\frac{\partial\omega^{0}}{\partial t}+(u^{0}\cdot\nabla)\omega^{0}=0$, (10)

$\frac{\partial\theta^{0}}{\partial t}+(u^{0}\cdot\nabla)\theta^{0}=0$ . (11)

The above set of equations is just atw0-dimensional Euler flow and apassive scalar
advected by it. If the initial conditions are regular, both $\omega^{0}$ and $\theta^{0}$ remain so for
all time. Therefore $\nabla\theta^{0}$ may grow in time but never becomes unbounded in finite
time. We thus expect that growth of $\nabla\theta^{0}$ is much weaker than that of $\nabla\theta$ .

Then, regard $\nabla\theta^{0}$ as aforcing term and consider yet another tw0-dimensional
Euler flow of the form (the kick stage)

$\frac{\partial\omega^{1}}{\partial t}+(u^{1}\cdot\nabla)\omega^{1}=\frac{\partial\theta^{0}}{\partial x_{1}}$ . (12)

Since $\theta^{0}$ is smooth all the time, we may apply the globally existence theorem of
forced tw0-dimensional Euler equations to deduce that $u^{1}$ is smooth all the time.
Then the passive scalar $\theta^{1}$ advected by it (the advect stage) as

$\frac{\partial\theta^{1}}{\partial t}+(u^{1}\cdot\nabla)\theta^{1}=0$ (13)

remain regular for all time. We may repeat this argument as many times as we wish.

2.2 Coupled Euler equations
The above argument suggests how we may construct ’less regular’ solutions of forced
Euler equations in an iterative manner. Thus, in general we are led to compare (7)-
(9) with acoupled system of tw0-dimensional Euler equations of the following form

$\frac{\partial\omega^{n}}{\partial t}+(u^{n}\cdot\nabla)\omega^{n}=\frac{\partial\theta^{n-1}}{\partial x_{1}}$ , (14)

$\frac{\partial\theta^{n}}{\partial t}+(u^{n}\cdot\nabla)\theta^{n}=0$ , (15)

$\nabla\cdot u^{0}=\nabla\cdot u^{n}=0$ , (16)

for $n=0,1,2$ , $\ldots$
$N$ with

$\theta^{-1}\equiv 0$ ,

1A comparison to tw0-dimensional Euler equations of another kind of active scalar equations
(surface quasigeostrophic equations) has been done in [15]. No successive approximations were not
introduced in that case
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where the superscript $n$ denotes the number of iterations. The initial data are taken
to be

$\omega^{0}(0)=\omega^{n}(0)$

and
$\theta^{0}(0)=\theta^{n}(0)$ ,

for $n=1,2$ , $\ldots$ , $N$ . As noted above, the zer0-th order solution $(\omega^{0}, \theta^{0})$ is aset of the
solutions of the conventional tw0-dimensional Euler equations and apassive scalar
advected by it.

While the system (14), (15) is big, i.e. made up of lots of equations, the interac-
tion among the variables $\omega^{n}$ and $\theta^{n}$ is one-way and there is no closed loop in their
linkage, in amarked contrast to (8), (9).

2.3 Some properties of the iteration scheme
It should be noted that there are two limiting processes involved in the problem:
one is the limit of taking large iteration number $Narrow\infty$ and the other one is the
extension of the time interval $[0, T]$ over which smooth solutions exist. We note the
following basic properties.

(i) For fixed $N$ , the system (14)-(16) has global solutions, that is, smooth solutions
persist on any time interval $[0, T]$ , no matter how large $T$ is ([1]).

(ii) For sufficiently large $N$ , (u, $\theta^{N}$ ) is agood approximation to the Boussinesq
equations, at least for short time development. If there is no blowup in finite
time, we expect that this is true for arbitrarily large $T$ .

(iii) If (u, $\theta^{N}$ ) has alimit in some sense as $Narrow\infty$ , that is, the system (14)-
(16) has akind of ’fixed-point property’, it solves the Boussinesq equations.
In this limit, the iteration scheme retrieves the closed interaction between the
vorticity and the temperature. Below, numerical results will be presented in
some detail regarding this issue.

3Numerical experiments

3.1 Numerical Method
We assume periodic boundary conditions in $[0, 2\pi]^{2}$ for numerical experiments. We
use astandard pseud0-spectral method for numerical solutions of (14)-(16) under
periodic boundary conditions. The 2/3-rule is used for dealiasing and the maximum
wavenumber retained is $M/3$ for calculations with $M^{2}$ grid points. We use $M=512$
and 1024 for solving (14)-(16) with the iteration number $N=10$. Time-marching
is performed by aforth-0rder Runge-Kutta method. Two kinds of initial conditions
are used.

3.2 Numerical results
The first initial condition IC1 is

IC1 $\omega(x, \mathrm{O})=\theta(x, 0)=\sin x\sin y+\cos y$ (15)
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Fig. 1: Contours of vorticity of IC1 in $[0, 2\pi]^{2}$ . Contour levels are
$\omega$ $=-1.4,$ -1.2, -1.0, $\ldots$ 1.4.

whose contours are depicted in Fig.1. This is the initial condition used in astudy
on another kind of active sealer equation $[16, 17]$ .

The time evolution of contours of 0for IC1 is shown in Fig.2(a)-(e) for the
iteration numbers $n=0,1,2,5$ and $\infty$ . In the Euler case $n=0$ (Fig.2(a)), there is
arotational symmetry around apoint $(\pi, \pi)$ which is preserved under the Eulerian
dynamics (Fig.2(a)). For $n=1$ such asymmetry is broken (Fig.2(b)) and the
pattern is markedly different from that of $n=0$ . The difference between $n=1$ and
$n=2$ (Fig.2(c)) is noticeable but not very large. The difference between $n=2$ and
$n=5$ (Fig.2(d)) is even smaller. It should be noted that the pattern for $n=5$ is
virtually indistinguishable from that of the Boussinesq case $n=\infty$ (Fig.2(e)).

To quantify the above similarity between the Boussinesq and Euler equations we
show in Fig.3(a) the normalized correlation coefficient $C(\theta^{n}, \theta^{\infty})$ between $\theta^{n}$ and 0”
for $n=0,1,2,3,4$ and 5. It is defined by

$C( \theta^{n}, \theta^{\infty})=\frac{\langle\theta^{n}\theta^{\infty}\rangle}{\sqrt{\langle(\theta^{n})^{2}\rangle\langle(\theta^{\infty})^{2}\rangle}}$.

The correlation coefficients is 1initially because the two fields are identical by defi-
nition. As expected, the correlation between $n=0$ (Euler) and $n=$ (Boussinesq)
decays quite quickly. Naturally, the time interval over which the correlation remains
close to unity extends as $n$ increases. However, it should be noted that at the itera-
tion $n=5$ the correlation survives fairly well, e.g., $C(\theta^{5}, \theta^{\infty})=0.99997$ at $t=4.0$ .
Note that $t=4$ is the maximal time when the flow is resolved accurately and is not
to be considered as ’short’. This substantiates the observation made in Fig.2(d) and
(e) that at the iteration number $n=5$ the contours are indistinguishable between
the coupled Euler and Boussinesq equations. Asimilar coefficient $C(\omega^{n}, \omega^{\infty})$ be-
tween $\omega^{n}$ and $\omega^{\infty}$ is plotted in Fig.3(b). Again, at $n=5$ the correlation coefficient
remains close to unity up to $t=5$ .

Next, we compare the growth of the passive scalar gradient with that of the
temperature gradient. In Fig.4(a) we show the time evolution of the spatial averages
of squared gradient of $\theta^{n}$

$P_{n}(t)= \frac{1}{2}\langle|\nabla\theta^{n}|^{2}\rangle$ ,
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Fig.2(a): Time evolution of contours of the temperature for $n=0$(the Euler case),
depicted as in Fig. 1

$\mathfrak{n}\dagger:\iota=1$ $\mathrm{t}=2$
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Fig.2(b): Time evolution of contours of the temperature for $n=1$ .
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Fig.2(c): Time evolution of contours of the temperature for $n=2$ .
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Fig.2(d): Time evolution of contours of the temperature for $n=5$ .

133



$\mathrm{i}\dagger \mathrm{I}:\mathrm{t}=1$ $’=2$

$\iota=\mathrm{s}$ $\mathrm{t}=4$

$\mathrm{t}\backslash$

$|\mathrm{V}$ ,

$\mathit{1},\grave,r_{;\cdot\backslash \backslash }-\prime\prime.\backslash \backslash \backslash \backslash ^{\backslash }\backslash \backslash \backslash \backslash \backslash \backslash \cdot.\cdot..’|-\cdot-\cdot\acute{j\prime}|.\cdot]_{\backslash }$

$\backslash \cdot\backslash \backslash \backslash \backslash ’.\prime j^{j’}\prime\prime$

Fig.2(e): Time evolution of contours of the temperature for $n=\infty$ (the Boussinesq case).

for $n=0,1,2,5$ and $\infty$ . All the norms show slightly exponential growth in time.
Needless to mention, apossibility cannot be ruled out that Poo(t) becomes singular
at atime later than what is covered by the present calculations. As expected,
the temperature gradient grows more intensely than the passive scalar gradient
does in $L^{2}$ , that is, $P_{1}(t)$ is larger than $P_{0}(t)$ . It should be noted that the curves
$P_{1}(t)$ , Po(t). $P_{3}(t)$ , $P_{\infty}(t)$ are close to each other. Actually, $P_{2}(t)$ is smaller than
$P_{1}(t)$ and it is Poo(t) that is the smallest of this group. This means that growth of
passive scalar gradient of the coupled Euler equations is not always intensified with
increasing iteration number. This suggests that the Boussinesq flows are no more
singular than the coupled Euler flows.

We know that it is the maximum norm $\mathrm{o}\mathrm{f}|\nabla\theta|$ that controls regularity or singu-
larity of solutions of the Boussinesq equations. The possibility that the above norm
$P_{\infty}(t)$ , which essentially corresponds to $H_{1}$-norm, remains finite at ablowup can-
not be ruled out mathematically. In this sense $P_{\infty}(t)$ , despite its physical meaning
(as arate of dissipation of $\langle\theta^{2}\rangle$ in slightly viscous cases), may not be particularly
suited for detecting singularity. Rather, it is $H_{3}$-norm that becomes unbounded at
aputative singularity. We are led to consider the following quantities which involve
higher spatial derivatives

$S_{n}(t)= \frac{1}{2}\langle|D^{3}\theta^{n}|^{2}\rangle$ ,

where $D\equiv(-\triangle)^{1/2}$ can be defined through Fourier $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{s}.2$ The Sobolev

$2\mathrm{I}\mathrm{n}$ practice, it is easier to monitor this norm than to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ astructure associated with the
maximum of $|\nabla\theta|$ .
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(a) (b)

Fig.3 (a) Time evolution of the correlation coefficient $C(\theta^{n}, \theta^{\infty})$ for $n=0(\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{d})$ ,

1 (dashed), 2(shortl(dashed), $3(\mathrm{d}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{d})$ , $4$ (dash5(d0tted) and 5(short-dash-dotted), from left

to right, (b) That of $C(\omega^{n}, \omega^{\infty})$ , depicted similarly.

Fig.4(a) Time evolution of Pn (t) for $n=0(\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{d})$ , 1 (dashed), 2(shortl(dashed), $5(\mathrm{d}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{d})$

and $\infty$ (dash-dotted). The Euler case $n=0$ is significantly smaller than others.

lemma
$\max_{X}|\nabla\theta(x, t)|\leq C\langle|D^{3}\theta(x, t)|^{2}\rangle^{1/2}$

ensures that $S_{\infty}(t)$ becomes unbounded simultaneously if the temperature gradient
does so.

The time evolution of $S_{n}(t)$ for $n=0,1,2,5$ and $\infty$ is shown in Fig.4(b). As in

the case of $P_{n}(t)$ , $S_{1}(t)$ is larger than $S_{0}(t)$ , but $S_{\infty}(t)$ is smaller than any of $S_{1}(t)$ ,
$S_{2}(t)$ , $\ldots$ , $S_{5}(t)$ . In particular we have

$\langle|D^{3}\theta^{\infty}(x, t)|^{2}\rangle<\langle|D^{3}\theta^{1}(x, t)|^{2}\rangle$ , (18)

as far as the numerical solutions are regarded as well resolved.
Because $S_{1}(t)$ never become unbounded in finite time, this result indicates that

the solution of the Boussinesq equations starting from IC1 shows no trend of tending

to finite time blowup. In other words, unless (18) is reversed at later time, finite

time blowup cannot occur. To make the point more clearly, we confider the following

ratio
$R_{n}(t)= \frac{\langle|D^{3}\theta^{n}|^{2}\rangle}{\langle|D^{3}\theta^{\infty}|^{2}\rangle}$ .
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If there is blowup at finite time, $R_{n}(t)$ must tend to 0, since the denominator be-
comes unbounded while the numerator remains finite. In Fig.4(c) we show the time
evolution of $Sn(t)$ for $n=0,1,2,5$ and 10. At late times only $R_{0}(t)$ converges to 0,
but Rn { $\mathrm{t})$ and $R_{2}(t)$ stay significantly above 1. It should be noted Rs(t) is close to
1. This confirms again that at $n=5$ , the coupled Euler equations approximates the
Boussinesq equations quite nicely.

In order to examine the convergence of the iteration scheme in more detail, in
Fig.5(a) we show the time evolution of the complement of the normalized correlation
coefficient, defined by

$1-C(\theta^{n}, \theta^{\infty})$ (19)
as a $\log$-linear plot for $n=0,1,2$ , $\ldots$ , 10. From this we see how correlation survives
longer with the increasing iteration numbers.

0

$\mathrm{o}\circ$. . $\mathrm{o}$

$\mathrm{o}$

$\mathrm{o}$

$o$
$\mathrm{o}$

$\mathrm{o}$

$\circ$

.,0
$\mathrm{o}$ . $\circ$

$.,\mathrm{s}$ , 2 $*$ $\cdot$ 6 . 7 . , ,0

(a) (b)
Fig.5 (a) Time evolution of $1-\mathrm{C}(0\mathrm{n}, \theta^{\infty})$ in a $\log$-linear plot, for $n=0,1,2$, $\ldots$ , 10 from
left to right, (b) ${\rm Log}$-linear plots of $1-\mathrm{C}(0\mathrm{n}, \theta^{\infty})$ against $n$ at times $t=4(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{s})$ ,
4.5(solid diamonds) and $5(\mathrm{s}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{s})$.

To check the functional dependence of $1-C(\theta^{n}$ , ?” $)$ on $n$ at fixed times, we show
$1-C(\theta^{n}, \theta^{\infty})$ in Fig.5(b) against $n$ at times $t=4.0,4.5$ and 5.0. This suggests that
convergence is exponential with respect to $n$ , that is,

$1-C(\theta^{n}, \theta^{\infty})\propto\exp(-a(t)n)$
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for some positive function $a(t)>0$ which decreases with t.

Fig.6 Time evolution of the Fourier spectra of the temperature for the Euler case
$n=0(\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{d})$ , 1(dashed), 2(short-dashed) and the Boussinesq case $n=\mathrm{o}\mathrm{o}(\mathrm{d}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{d})$ .

To monitor how the higher wave number components are resolved it is useful to
monitor the Fourier spectra of temperature defined by

$Q(k)= \sum_{k\leq|k|<k+1}|\tilde{\theta}^{n}(k)|^{2}$
,

where $\tilde{\theta}^{n}(k)$ is the Fourier transform of $\theta^{n}(x)$ . We show their time evolution for
$n=0,1,2,4$ and oo in Fig.6. We see that the Euler flow is the most regular of
all and that the coupled Euler flows and the Boussinesq flows are comparable in
excitation at higher wavenumber components. All in all, we have found that the
solution of the Boussinesq equations for IC1 shows no hint of going singular in finit $\mathrm{e}$
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Fig.7: Contours of vorticity of IC2 $[0, 2\pi]^{2}$ . The thresholds are
$\omega=$ $1.4$ . -1.2, Also, $\ldots$ 1.4.

Now we turn our attention to the second initial condition IC2 to see whether the
case of IC1 is accidental or not. The initial condition IC2 is given by

IC2 $0(\mathrm{x}, 0)=0(\mathrm{x}, 0)=\sin x+\cos y$, (20)

which is shown in Fig.7. It is astationary solution of the usual Euler equations but
is not astationary solution of the Boussinesq equation. Therefore we can see the
difference between the two equations by examining the solution starting from $\mathrm{I}\mathrm{C}2$ .

We show in Fig.8 the time evolution of $Pn\{t$) for $n=2,5,10$ and $\infty$ .

Fig.8: $Pn(t)$ for $\mathrm{I}\mathrm{C}2;n=2$ (solid), $5(\mathrm{d}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d})$, $10$ (short-dashed) and the Boussinesq case
$n=\infty(\mathrm{d}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{d})$ . The Euler case $(n=0)$ is omitted, because it is aconstant.

Because IC2 is astationary solution, $\omega^{0}$ and $\theta^{0}$ has non zero Fourier component
only at the smallest wavenumber, that is wavenumber 1. Also, $\omega^{1}$ has excitation
only at the smallest wavenumber. For $n\geq 2$ , it is remarkable that they virtually
collapse on each other. This suggests the iteration scheme converges quite rapidly
with $n$ for IC2 as well.

We show the time evolution of contour plots of passive scalar at $n=5$ in Fig.9(a).
For comparison, similar plots of the temperature $(n=\infty)$ are shown in Fig.9(b)
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Fig.9(a): Time evolution of contour of the temperature for $n=5(\mathrm{t}\mathrm{h}\mathrm{e}$ coupled Euler
case), depicted as in Fig.8

It is impossible to distinguish these contour plots at corresponding times, which
substantiates the rapid convergence of the iteration scheme. In the case of $\mathrm{I}\mathrm{C}2$ , the
coupled Euler equations at $n=5$ reproduce solutions of the Boussinesq equations
fairly well.

4Theoretical considerations

4.1 Difficulty in showing convergence of the iterations

At present, it is not possible to prove that apair of solutions $(\omega^{N}, \theta^{N})$ of (14)-(16)
has alimit as $Narrow\infty$ . It is nevertheless useful to point out the cause of the
difficulty more specifically. As mentioned above, for fixed $N$ the system $(\omega^{N}, \theta^{N})$

has aregular solution for all time. This means that their values together with their
higher derivatives of any order remain finite all the time. Therefore, for example,
$||\omega^{N}||_{\infty}||\nabla\theta^{N}||_{\infty}$ (or, with other suitable norms) are bounded from above on any
time interval $[0, T]$ . If these bounds are shown to be uniform in $N$ , then it is possible
to argue that there exists apair of convergent subsequences $(\omega^{\infty}, \theta^{\infty})$ on $[0, T]$ , to
obtain asolution to the Boussinesq equations (see for example [2] and references
cited therein). According to the numerical experiments the norms used appear to
be uniformly bounded in $N$ (see, Fig.4(a)&(b) and Fig.8). Unfortunately, so far
we have not been able to prove such uniform boundedness by working directly with
the equations of motion
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Fig.9(b): Time evolution of contour of the temperature for $n=\circ 0$ (the Boussinesq case),
depicted similarly.

4.2 Anote on aresult of Cordoba and Fefferman
The numerical results presented in the previous section suggests regularity of the
solutions of the Boussinesq equations rather than their singularity. As mentioned
in Introduction, global regularity of the Boussinesq has not yet been demonstrated.
Nevertheless there are some mathematical results that restrict possible formation
of singularity. One recent result [18] claims that if asingularity is formed in finite
time by coalescence of level sets of 0, then not only $\nabla\theta$ but also the velocity must
become unbounded at that time. Their result is valid for any active scalar equations.
Here we consider the what this result means in the particular case of the Boussinesq
equations.

Retaining the integral representation (3) we may rewrite (6) as

$\frac{\partial u}{\partial t}+(u\cdot\nabla)u=-\nabla p+$ $(\begin{array}{l}R_{1}R_{2}[\theta]R_{2}R_{2}[\theta]+\theta\end{array})$ , (21)

where $R_{\dot{\mathrm{e}}}=(-\triangle)^{-1/2}\partial_{i}$ is the Riesz transform. The second term on the right-hand
side of (21) is not bounded by aconstant, but it satisfies the following inequality
$[19, 20]$

$||R.R_{j}[ \theta]||_{\infty}\leq C||\theta||_{\infty}[1+\log_{+}(L\frac{||\nabla\theta||_{\infty}}{||\theta||_{\infty}})]$

where $i,j=1$ or 2, $\log_{+}x=\max(\log x, 0)$ and
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$C(>0)$ , L $=\sqrt{\frac{||\theta||_{1}}{||\theta||_{\infty}}}$

are constants.
Suppose that we attempt to reconstruct the velocity of the Boussinesq equations

by solving forced Euler equations with an appropriate external force

$\frac{\partial u}{\partial t}=-\{(u\cdot\nabla)u\}^{\mathrm{t}\mathrm{r}}+f$ , (22)

where we have put $\{(u\cdot\nabla)u\}^{\mathrm{t}\mathrm{r}}\equiv(u\cdot\nabla)u+\nabla p$ . Given $\theta(x, t)$ , we can choose the
forcing term a posteori as

$f=(\begin{array}{l}R_{1}R_{2}[\theta]R_{2}R_{2}[\theta]+\theta\end{array})$ .

If asingularity is formed by coalescence of level sets of 0, by atheorem [18] we
have $||u||_{\infty}=\mathcal{O}((t_{*}-t)^{-n})$ with $n\geq 1$ or

$|| \frac{\partial u}{\partial t}||_{\infty}=\mathcal{O}((t_{*}-t)^{-(n+1)})$ .

On the other hand we have by $[6, 7]$ $||\nabla\theta||_{\infty}$ must diverge at least as $(t_{*}-t)^{-2}$ for
apossible blowup. Assuming an algebraic $\mathrm{b}1\mathrm{o}\mathrm{w}- \mathrm{u}\mathrm{p}^{3}$

$||\nabla\theta||_{\infty}=\mathcal{O}((t_{*}-t)^{-m})$ , with $m\geq 2$ ,

the forcing term is bounded as follows

$||f||_{\infty} \leq C\log(\frac{1}{t_{*}-t})$ ,

with apositive constant $C$ . Then, $\frac{\partial u}{\partial t}$ must be balanced with $\{(u\cdot\nabla)u\}^{\mathrm{t}\mathrm{r}}$ . This
is acontradiction, since as $tarrow t_{*}$ , the forcing term becomes negligible and the
forced Euler equations become unforced in the limit $tarrow t_{*}$ . It is impossible for the
Boussinesq equations to go singular by the mechanism of coalescence of level sets of
0associated with algebraically singular $||\nabla\theta||_{\infty}$ .

5Summary and discussion
We have proposed asuccessive approximation scheme that generates asolution of
the Boussinesq equations on the basis of solutions tw0-dimensional Euler equations.

If $(u^{N}, \theta^{N})$ has alimit in some sense as $Narrow\infty$ , that is, the system (14)-(16)
has akind of ’fixed-point property’, it solves the Boussinesq equations. Whether the
Boussinesq equations remain regular for all time or not depends on the convergence
of the iteration scheme. Because such convergence is not obvious mathematically
we have performed some numerical experiments using apseud0-spectral method.

$3\mathrm{M}\mathrm{u}\mathrm{c}\mathrm{h}$ stronger singularities, e.g. $\exp(t_{*}-t)^{-n}(n>0)$ , cannot be ruled out. But such a
behavior has not been reported to occur in numerical experiments
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The iteration scheme turned out to converge rapidly as far as the current numerical
results are concerned, suggesting global regularity of the Boussinesq equations.

On the other hand, if asolution to the Boussinesq equations goes singular at some
later time which cannot be covered at the present resolutions, then convergence of
asolution of the coupled Euler equations to that of the Boussinesq equations must
be invalidated by the time of blowup. Therefore, numerical experiments supporting
blowup for the Boussinesq equations should observe abehavior in $\nabla\theta$ markedly
different from acorresponding quantity of the coupled Euler equations. In this
sense, the present method will serve as asolid criterion for monitoring singularity
formation in the Boussinesq equations.

In place of (14)-(16) we may consider yet another method of successive approxi-
mations

$\frac{\partial\omega^{n}}{\partial t}+(u^{n-1}\cdot\nabla)\omega^{n}=\frac{\partial\theta^{n-1}}{\partial x_{1}}$ , (23)

$\frac{\partial\theta^{n}}{\partial t}+(u^{n-1}\cdot\nabla)\theta^{n}=0$ , (24)

$\nabla\cdot u^{0}=\nabla\cdot u^{n}=0$ , (25)

which is astraightforward generalization of Kato’s idea [1]. Note that they are
linear with respect to $\omega^{n}$ and $\theta^{n}$ , respectively. We can prove local existence for the
Boussinesq equations by repeating the arguments used in [1]. However we do not
know if it is possible to extend the time interval of local existence, because of lack
of vorticity conservation, as pointed out to the author by Prof. H. Okamoto.
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6Appendices ([21],[22])

6.1 Conserved quantities
There are obvious conservation laws to (6)

$\int_{\mathrm{R}^{2}}$

or
$\mathrm{T}^{2}F_{1}(\theta(x))dxx$ , (26)

where the domain of integration extends over $\mathbb{R}^{2}$ (infinite plane) or in $\mathrm{T}^{2}$ (for periodic
boundary conditions). Moreover, (6) conserves

$\int_{\mathrm{R}^{2}}(\frac{|u|^{2}}{2}-y\theta)dx$ (27)

for the infinite plane case and

$\int_{\mathrm{T}^{2}}(\frac{|u|^{2}}{2}-(y-b)\theta)$ idea (24)

under periodic boundary conditions, where $(a, b)$ is aset of Lagrangian marker
variables such that $(a, b)=(x, y)$ at $t=0$ .
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6.2 Stationary solutions
It is well-known that stationary solutions of tw0-dimensional Euler equations are
characterized by afamily of one arbitrary function relating vorticity $\omega$ and stream
function $\psi$ . In contrast, it requires two arbitrary functions to specify stationary
solutions of tw0-dimensional Boussinesq equations, say $F$ and $G$ .

In $\mathbb{R}^{2}$ , stationary solutions of $(8,9)$ have the following representation

$\theta=F(\psi)$ , (29)

$\omega$ $+F’(\psi)y=G(\psi)$ . (30)

The second relation is derived as follows

$\frac{\partial(\omega,\psi)}{\partial(x,y)}=F’(\psi)\frac{\partial(\psi,y)}{\partial(x,y)}=\frac{\partial(\psi,F’(\psi)y)}{\partial(x,y)}$. (31)

In $\mathbb{T}^{2}$ such an representation is not valid.

6.3 Analogy with three-dimensional axisymmetric flows
In the axisymmetric case $\frac{\partial}{\partial\phi}=0$ , the th$\mathrm{r}\mathrm{e}\mathrm{e}$-dimensional Euler equations can be
written in cylindrical coordinates $(r, \phi, z)$ as

$( \frac{\partial}{\partial t}+u\cdot\nabla)u=\frac{1}{r^{3}}(ru_{\phi})^{2}e_{r}-\nabla p$,

$( \frac{\partial}{\partial t}+u\cdot\nabla)(ru_{\phi})=0$ ,

and
$( \frac{\partial}{\partial t}+u\cdot\nabla)\frac{\omega_{\phi}}{r}=\frac{1}{r^{4}}\frac{\partial}{\partial z}(ru_{\phi})^{2}$ ,

where $u=(u_{r}, u_{\phi}, u_{z})$ .
If we accept the following correspondence

$ru_{\phi}\Leftrightarrow\theta$ ,

$\frac{\omega_{\phi}}{r}\Leftrightarrow\omega$,

then the three-dimensional axisymmetric equations are similar to the tw0-dimensional
Boussinesq equations (except at $r=0$). The work [10] regarding the three-dimensional
axisymmetric Euler equations is based on this analogy.
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