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Consider anonlinear evolution equation

(1) $\frac{du}{dt}=A(u)$

and an equilibrium solution $\phi$;that is, $0=A(\phi)$ . Aconcept of central importance in
science is the concept of stability.

Definition. The equilibrium $\phi$ is (nonlinearly) stable if: $\forall\epsilon>0$ , $\exists\delta>0$ such that if
$||u_{0}-\phi||_{1}<\delta$ , then there exists aunique solution $u$ of (1) with $u(0)=u_{0}$ defined for
$0\leq t<\infty$ such that

$0 \leq t<\infty\sup||u(t)-\phi||_{2}<\epsilon$
.

Remarks. (I) “Unstable” means “not stabl\"e.
(ii) The definition may be very sensitive to the norms $||\ldots||_{1}$ and $||\ldots||_{2}$ as well as to the

space in which $u(\cdot)$ exists! If $X$ is aBanach space, we define stability in $X$ to mean that
$X$ is chosen in all three places.

(iii) The definition must be modified for non-equilibrium solutions such as traveling
waves (orbital stability).

(iv) In case an orbit is unstable, adeep question is the following. What happens to it
as $tarrow+\infty$?Does it blow up? Does it converge to another equilibrium?

Linearization. Consider the linear equation

(2) $\frac{dv}{dt}=Lv$ where L $=A’(\phi)$ .
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Definition. The equilibrium $\phi$ is linearly stable if: $\forall\epsilon>0$ , $\exists\delta>0$ such that

$\mathrm{i}\mathrm{f}||v_{0}||_{1}<\delta$, then $\sup_{0\leq t<\infty}||v(t)||_{2}<\epsilon$
.

Again the definition depends on the norms.
The basic theme of this lecture is the question: Does linear instability imply (nonlinear)

instability? In what norms? We will mostly consider dispersive waves, which roughly
means that most of the spectrum of $L$ is imaginary.

As ababy example, consider the PDE $u_{t}=xu_{x}+u^{2}$ and its equilibrium solution $\phi=0$ .
Its linearized equation $v_{t}=xv_{x}$ satisfies $\int v^{2}dx=ce^{-t}$ . Hence it is linearly stable in the
$L^{2}$ norm. Nevertheless the solutions of the nonlinear PDE blow up (say at $x=0$). This
example shows how carefully the norms have to be chosen!

We introduce the notation $w=u-\phi$ for the difference between asolution and the
equilibrium. In terms of $w$ , equation (1) can be written as

(3) $\frac{dw}{dt}=Lw+N(w)$

where L $=A’(\phi)$ and $N(w)=O(|w|^{2})$ formally. Aprecise formulation of the main question
is as follows.

Assume that we have
(i) two Banach spaces $X\subset Z$ ,
(ii) astrongly continuous semigroup $e^{tL}$ on $Z$ , and
(iii) anonlinear operator $N$ : $Xarrow Z$ that satisfies $||N(w)||_{Z}\leq c||w||_{X}^{\alpha}||w||_{Z}^{\beta}$ for $||w||_{X}$

small, where $\beta>1$ and $\alpha\geq 0$ .

QUESTION: If $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}(e^{tL})$ meets the exterior of the closed unit disc, is $w=0$ (nonlin-
early) unstable in $X$?The next three theorems give an affirmative answer under three
conditions.

Theorem 1. Rue if there exists some point spectrum $e^{\lambda_{0}t}$ “near” the maximal growth
of $e^{tL}$ . More precisely,

$\Re\lambda_{0}>\underline{1}\lim\underline{1}\log||e^{tL}||_{Z}$ .
$\beta tarrow+\infty t$

Theorem 2. Rue if there exists aspectral gap outside the unit disk. This means there
exists an annulus outside the unit disk that is entirely within the resolvent set of $e^{L}$ .
Theorem 3. Rue ifX $=Z$ .

These theorems are found in $[6][4][10]$ , respectively. The following “spectral dangers”
occur in these theorems.

$1^{\mathrm{o}}$ . $\sigma(e^{tL})\supset e^{\sigma(tL)}$ but not necessarily $=$ .
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$2^{\mathrm{o}}$ . It is possible that $||e^{tL}||$ is greater than the spectral radius of $e^{tL}$ .
$3^{\mathrm{o}}$ . $e^{tL}$ could have continuous or residual spectrum.
It should be noted that for many interesting PDEs these theorems do not apply precisely

but their basic ideas do. There are also some theorems [10] for equations of Hamiltonian
type $\frac{du}{dt}=\mathrm{J}\mathrm{E}’\{\mathrm{u}$ ) in terms of the spectrum of $E’(\phi)$ . We shall now turn to aserious
example.

IDEAL PLANE FLOW
The incompressible Euler equation is

(4) $\partial_{t}u+(u\cdot\nabla)+\nabla p=0$, $\nabla\cdot u=0$

where $x\in\Omega\subset \mathbb{R}^{n}$ , $u\in \mathbb{R}^{n}$ . Here $\Omega$ is asmooth, bounded, simply connected domain and
the boundary condition is $u\cdot$ $\nu=0$ on an. Alternatively, $\Omega$ could be the $n$-torus. Now let
$\phi(x)$ be asmooth equilibrium flow (of which there are many possibilities).

Linearization #1. The straightforward linearization is

(5) $(\partial_{t}+\phi\cdot\nabla)v+(v\cdot\nabla)\phi+\nabla q=0$, $\nabla\cdot v=0$ .

It generates asemigroup in $L^{2}(\Omega)$ with agenerator $A_{1}$ . Its essential spectrum is governed
by asystem of ODEs, as follows.

(6) $\{\begin{array}{l}x=\phi(x)\xi=-(\partial_{x}\phi)^{T}\xi\dot{b}=-(\partial_{x}\phi)b+2(\xi\cdot\partial_{x}\phi)b\xi/|\xi|^{2}\end{array}$

Indeed, Friedlander and Vishik [3] proved the following theorem.

Theorem 4. Tie essential spectral radius of $e^{tA_{1}}$ equals the maximum grow th rate of
(6).

In particular, if the solutions of (6) grow exponentially, then $e^{tL}$ has some essential
spectrum in the exterior of the closed unit disk. The fluid is stretched along streamlines.

Now we specialize to two dimensions. The following nonlinear stability and instability
theorems are known for $n=2$ .

(a) There exist certain flows that are stable in $H^{1}$ . [1]
(b) There are certain flows that are unstable in $H^{s}$ for $s>2$ , by making use of the

point spectrum of (5). [4]
(c) There are certain flows that are unstable in $L^{2}$ . [5]

Linearization #2. Consider the vorticity for $n=2$ :

$\omega$
$=\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}$ $u=\partial_{1}u_{2}-\partial_{2}u_{1}$ .
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Prom (4) it satisfies
$(\partial_{t}+u\cdot\nabla)\omega=0$

because $n$ $=2$ . Linearizing this equation, and using the notation $\eta=\delta\omega$ , $v=\delta u$ , we have

(7) $(\partial_{t}+\phi\cdot\nabla)\eta+\nabla(\nabla\cross\phi)\cdot v=0$, $\nabla\cdot v=0$ .
Acting on $\eta$ , the linearized generator therefore is $A_{2}=-\phi\cdot\nabla--\nabla(\nabla\cross\phi)$ . $($curl$)^{-1}$ .
Considering A2 acting on $L^{2}(\Omega)$ is roughly equivalent to considering $A_{1}$ acting on $H^{1}(\Omega)$ ,
because $n=2$ and $\nabla\cdot v=0$ .

However in contrast to $e^{tA_{1}}$ , the essential spectrum of $e^{tA_{2}}$ has no growth because the
second term in A2 is acompact operator. That is, if $\mathrm{A}\in \mathrm{e}\mathrm{s}\mathrm{s}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}(A_{2})$ , then $\Re\lambda=0$ . So
instability in the sense of the second linearization can only occur in the discrete spectrum.
The following theorem [2] relates this kind of linear instability to nonlinear instability.
Theorem 5. $IfA_{2}$ has point spectrum $\Re\lambda>\sigma$ (with $\sigma$ given below), then $\phi$ is unstable
in the space $H^{1}(\Omega)$ . (That is, the space u $\in H^{1}$ , $\omega$ $\in L^{2}.$)

This is the space in which Arnold’s stability theorem is valid. Here $\sigma$ is the classical
growth rate for the ODE i $=\phi(x)$ . That is, if $X(t,$x) denotes the flow for this ODE, then

(8) $\sigma=\sup_{x}\lim_{tarrow+\infty}\frac{1}{t}\log|\frac{\partial X}{\partial x}|$ .

In Theorem 5there is no further restriction on the domain. For shear flows and for simple
rotating flows, it is easy to see that $\sigma=0$ .

Recently Zhiwu Lin [9] has proven that many flows in two dimensions are linearly
unstable.

COLLISIONLESS PLASMA
The Vlasov-Maxwell equations describe aplasma in the absence of collisions. The

unknowns are the density of particles, which we will call $u(t, x, v)$ , and the electric and
magnetic fields $(E(t,x)$ , $B(t,x))$ . The momentum $v\in \mathrm{F}$ is an independent variable, in
addition to the time $t$ and space $x\in \mathrm{R}^{3}$ . The Vlasov equation is

(9) $(\partial_{t}+v\cdot\nabla_{x})u+(E+v\mathrm{x}B)\cdot\nabla_{v}u=0$ .
It is coupled to Maxwell’s equations via the charge $\rho=\int udv$ and the current $j= \int vu$ $dv$ .
This system has many kinds of equilibria. Some are stable and some are unstable in the
$L^{1}$ norm. See [7] [8].

KURAMOTO-SIVASHINSKY EQUATION
This is not adispersive equation but it will illustrate our general techniques; in fact, we

will be able to use aslightly modified version of Theorem 3. The equation is

(10) $u_{t}+u_{xxxx}+u_{xx}+uu_{x}=0$.

176



It is aone-dimensional model in the theory of flame propagation. There are many numerical
and some theoretical results showing that some of its solutions engage in very complicated
dynamical behavior. It has many traveling wave solutions $u=\phi(x-ct)$ for which the two
limits

$b_{\pm}= \lim_{tarrow\pm\infty}\phi(\xi)$

exist [12]. These $\phi(\xi)$ have multiple maxima and minima. The following theorem [11]
asserts their instability.

Theorem 6. Any such traveling wave is unstable under $H^{1}(\mathrm{R})$ perturbations. That is,
there exists an $\epsilon_{0}>0$ and solutions $u^{\delta}(t, x)$ of (10) such that

$||u^{\delta}(0, \cdot)-\phi(\cdot)||_{H^{1}}<\delta$ $(0<\delta\leq\delta_{0})$

but
$\sup_{0\leq t\leq C|\log\delta|}||u^{\delta}(t, \cdot)-\phi(\cdot)||_{H^{1}}>\epsilon_{0}$ .

In fact, we write the linearized generator as

$L=-\partial^{4}-\partial^{2}-b_{+}\partial-(\phi-b_{+})\partial-\phi_{x}$ .

By Fourier transformation the first three terms have unstable essential spectrum while the
last two define arelatively compact operator. In this way we prove that $e^{tL}$ has essential
spectrum outside the closed unit disk. Then we apply avariant of Theorem 3to deduce
the nonlinear instability.
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