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1 Introduction, Theorems

In this talk we are concerned with Strichartz inequality and the local smooth-
ing property for Schrodinger equations $i\partial_{t}u---(1/2)\triangle u+V(x)u$ on $\mathbb{R}^{\iota}$ when
the potential $V(x)$ grows at infinity super-quadratically, $V(x)\geq C\langle x\rangle^{2+\epsilon}$ ,
$\epsilon$ $>0$ .

1.1 Free Schr\"odinger equations

We begin with briefly reviewing the results for the free Schr\"odinger equations

$\dot{i}\frac{\partial u}{\partial t}=-(1/2)\triangle u$, $x\in \mathbb{R}^{n}$ , $t\in \mathbb{R}$
. $u(0, x)=u_{0}(x)$ , $x\in \mathbb{R}^{n}$ . (1.1)

It has been long known that, although the solution of (1.1) is given by
$u(t, x)=U(t)u_{0}$ in terms of the unitary group $U(t)=e^{-itH_{\mathrm{O}}}$ and $U(t)$ is
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an isomorphism of $L^{2}(\mathbb{R}^{n})\mathrm{f}\mathrm{o}\mathrm{r}$ every $t$ , any solution $u(t, x)$ , or the trajectory
$u(t, \cdot)=U(t)u_{0}$ of the group, belongs to aproper subspace $X\cap L^{2}(\mathbb{R}^{n})$

of $L^{2}(\mathbb{R}^{n})$ for almost all $t$ . We call this remarkable property the smooth-
ing property of the equation. The property is specifically represented by the
following two kinds of inequalities which have many applications, e.g. to non-
linear Schr\"odinger equations ([K3], [KPV]) and to the convergence problem
([V]).

(1) Strichartz ineqaulity: Let $2\leq p$ , $\theta$ be such that $\frac{2}{\theta}=n(\frac{1}{2}-\frac{1}{p})$ and
$p\neq\infty$ if $n=2$ . Then, there exists aconstant $C>0$ such that

$( \int_{0}^{\infty}||e^{-itH_{0}}u_{0}||_{p}^{\theta}dt)^{1}\sigma\leq C||u_{0}||_{2}$ , $u\in L^{2}(\mathbb{R}^{n})$ . (1.2)

(2) Local smoothing property: For any $T>0$ and $\Psi$ $\in C_{0}^{\infty}(\mathbb{R}^{n})$ , there exists
aconstant $C>0$ such that

$( \int_{0}^{T}||\Psi(x)\langle D\rangle^{\frac{1}{2}}e^{-:tH_{0}}u_{0}||_{2}^{2}dt)^{\frac{1}{2}}\leq C||u_{0}||$ , $u\in L^{2}(\mathbb{R}^{n})$ , (1.3)

where $T$ can be set $T=\infty$ if $n\geq 3$ . Here and hereafter, $\langle A\rangle=(1+|A|^{2})^{\frac{1}{2}}$

for aself-adjoint operator $A$ and $D=$ $(D_{1}, \ldots, D_{n})$ , $D_{j}=-i\partial/\partial x_{j}$ .
The smoothing property of Schr\"odinger equations was first observed by

Kato [K1] in aform slightly different from (1.2): If $n\geq 3$ and $A\in L^{n-\epsilon}\cap$

$L^{n+\epsilon}(\mathbb{P})$ , $\epsilon>0$ , then

$\int_{0}^{\infty}||Ae^{-itH_{0}}u_{0}||_{2}^{2}dt\leq C||u_{0}||_{2}^{2}$ , $u_{0}\in L^{2}(\mathbb{R}^{n})$ .

The estimate (1.2) was subsequently obtained by Strichartz [St] for special $p$

and 0and generalized to the form as it is by several authors, we mention [GV],
[Y1] among earlier works, and [KT] who recently proved the “end-point”
cases. The estimate (1.3) can be considered as astatement of scattering
theory that $\Psi(x)\langle D\rangle^{1/2}$ is $H_{0}$-smooth in the sense of Kato [K1] and it can
be safely said that it had been long known at least implicitly before it was
rediscovered by Sj\"olin [Sj], however, (1.3) had not been considered as an
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inequality which had expressed asmoothing property of Schr\"odinger equation
before [Sj]. These inequalities are subsequently generalized to the case with
potentials which decay at inifinity(see e.g. [CS], [KY], [BAD] and [Y1]).

Before proceeding further, we present here the outlines of the “standard”
proof of (1.2) for non-end point cases and the proof of (1.3) which expresses
the “physical content” of the estimate. For $1\leq p\leq\infty$ , $p’$ denotes its dual
exponent $1/p+1/p’=1$ .
Proof of (1.2): Since $e^{-itH_{0}}$ is unitary, we have $||e^{-:tH_{0}}u||_{2}=||u||_{2}$ and, since
$|e^{-itH_{0}}(x, y)|\leq C|t|^{-n/2}$ , we have $||e^{-itH}u||_{\infty}\leq C|t|^{-n/2}||u||_{1}$ . It follows by
interpolation that, for $p\geq 2$ ,

$||e^{-itH_{0}}u||_{p}\leq C|t|^{-n(1/2-1/p)}||u||_{p’}$ . (1.4)

Then, for $p$ and 0as above, Hardy-Littlewood-Sobolev inequality implies,

$|| \int_{\mathbb{R}}e^{-itH_{0}}f(t)dt||_{2}^{2}=\int_{\mathbb{R}}\int_{\mathbb{R}}(e^{-i(t-s)H_{0}}f(t), f(s))dsdt$

$\leq C\int_{\mathbb{R}}\int_{\mathbb{R}}|t-s|^{-n(1/2-1/p)}||f(t)||_{p’}||f(s)||_{p’}dsdt\leq C||f||_{L^{\theta}(\mathbb{R},L^{\mathrm{p}’}(\mathbb{R}^{n}))}^{2},$ ,

which implies (1.2) by duality.
Proof of (1.3): We have

$I_{0}^{\infty}|| \langle D\rangle^{1/2}\Phi(x)e^{-itH_{0}}u||_{2}^{2}dt=\int_{0}^{\infty}(e^{itH_{0}}\Phi(x)\langle D\rangle\Phi(x)e^{-itH_{0}}u, u)dt$

$\sim\int^{\infty}(\langle D\rangle e^{itH_{0}}\Phi^{2}(x)e^{-itH_{0}}u, u)dt$ (1.3)

$=( \langle D\rangle\cdot\{\int_{0}^{\infty}\Phi^{2}(x+tD)dt\}u$, $u$),
where we used the formula $e^{itH_{0}}xe^{-itH_{0}}=x+tD$ . Here we have

$\int_{0}^{\infty}\Phi^{2}(x+t\xi)dt\sim|\xi|^{-1}$ (1.6)

and $\int_{0}^{\infty}\Phi^{2}(x+tD)dt$ is apseudodifferential operator of order -1. Hence

the right hand side of (1.5) is bounded by $C||u||^{2}$ . We note that (1.6) is a
results of the obvious fact that the free particle of velocity $v$ can stay in a
compact set for the time $\sim v^{-1}$ and we may consider (1.3) its mathematical
expression
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1.2 The case $|V(x)|\leq C\langle x\rangle^{2}$

We are still reviewing known results. The Strichartz inequality (1.2) and the
local smoothing property (1.3) have been subsequently generalized by [K3]
and [Y2] to Schr\"odinger equations

$\{$

$\dot{\iota}\frac{\partial u}{\partial t}=-(1/2)\triangle u+V(x)u$, $x\in \mathbb{R}^{n}$ , $t\in \mathbb{R}$

$u(0, x)=u_{0}(x)$ , $x\in \mathbb{R}^{n}$ ,
(1.7)

with potentials $V(x)$ which grow at most quadratically at infinity in the sense
$|\partial_{x}^{\alpha}V(x)|\leq C_{\alpha}$ , $2\leq|\alpha|\leq C_{n}$ , (1.8)

$C_{n}$ being acertain constant determined by $n$ . Under the condition (1.8), it
is well known that $L:u\mapsto-(1/2)\triangle u+V(x)u$ defined on $C_{0}^{\infty}(\mathbb{R}^{n})$ is essen-
tially selfadjoint in $L^{2}(\mathbb{R}^{n})$ and the problem (1.7) has aunique solution given
by $u(t, x)=e^{-:tH}u_{0}(x)$ , where $H$ is the unique selfadjoint extension of $L$ .
The critical issue here is that Fujiwara [F] has proven that the fundamental
solution, i.e. the distribution kernel $E(t, x, y)$ of the propagator $e^{-itH}$ has
the following structure at least for small $0<|t|<\delta$:Let $(x(t, y, k),p(t, y, k))$

be the solution of Newton’s equations corresponding to (1.7):

$\dot{x}(t)=p(t)$ , $\dot{p}(t)=-\nabla_{x}V(x)$ ,
(1.9)$x(0)=y$, $p(0)=k$ .

Then, the map $\mathbb{R}^{n}\ni k$ $arrow x(t, y, k)$ $\in \mathbb{R}^{n}$ is aglobal diffeo for every $0<|t|<\delta$

and $y\in \mathbb{R}^{n}$ and, for any given pair $(x, y)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}$ and $0<t<\delta$ , there
exists aunique solution of (1.9) such that $x(t)=x$ and $x(0)=y$ . Let

$S(t,x, y)= \int_{0}^{t}\{(1/2)\dot{x}(s)^{2}-V(x(s))\}ds$ (1.10)

be the action integral of this trajectory. Then, $S(t, x, y)$ satisfies

$| \partial_{x}^{\alpha}\partial_{y}^{\beta}(S(t, x, y)-\frac{(x-y)^{2}}{2t})|\leq C_{\alpha\beta}|t|$ , $|\alpha+\beta|\geq 2$ , (1.11)

and the fundamental solution may be written in the form

$E(t,x, y)= \frac{1}{(2\pi it)^{n/2}}e^{:S(t,x,y)}a(t,x,y)$ (1. 2)
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where $a(t, x, y)$ satisfies

$|\partial_{x}^{\alpha}\partial_{y}^{\beta}(a(t, x, y)-1)|\leq C_{\alpha\beta}|t|$ , $|\alpha+\beta|\geq 0$ . (1.13)

The fact that $S(t, x, y)$ in (1.12) is given as the action integral is particularly
important as it connects classical mechanics (1.9) and the Schr\"odinger equa-
tion (1.7). It will become important in the next section that that $\delta$ and the
constants $C_{\alpha\beta}$ of (1.11) and (1.13) depend only on $C_{\alpha}$ in (1.8) and not on
the specific form of $V$ .

In particular, $E(t, x, y)$ satisfies $|E(t, x, y)|\leq C|t|^{-n/2}$ for $|t|\leq\delta$ . It
follows that the unitary group $e^{-itH}$ satisfies also the $L^{1}-L^{\infty}$ estimate:
$||e^{-itH}u_{0}||_{\infty}\leq C|t|^{-n/2}||u||_{1}$ and hence (1.4) for $|t|\leq\delta$ . Then, the same
argument used for the free Schr\"odinger equation and the unitarity of the
propagator $e^{-itH}$ yield the time local Strichartz inequality: For any $T>0$ ,

$( \int^{T}|\}e^{-itH}u_{0}||_{p}^{\theta}dt)\frac{1}{\theta}\leq C_{T}||u_{0}||_{2}$ . (1.14)

Of course, the time global estimate like (1.2) cannot hold in general because
of the existence of the bound states of $H$ .

The proof of the local smoothing property for the free Schr\"odinger equa-
tion can also be generalized to the case that $V$ satisfies (1.8). We note that
the classical particle of the large velocity in the potential fields as in (1.8)
behaves like afree particle in any compact set $K$ and the $\mathrm{r}\mathrm{e}$-entrance to
$K$ is permitted only after certain time $T$ which is independent of the en-
ergy of the particle. Guided by this observation, we have shown in [Y2] by

using the structure formula (1.12) that $\int_{0}^{\delta}e^{itH}\Phi(x)e^{-itH}dt$ is again apsued0-

differential operator of $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-1$ and (1.3) holds for finite $T$ with $H$ in place
of $H_{0}$ .

1.3 Theorems

We now turn to our problem here and assume that $V$ grows faster than any
quadratic functions at infinity:

Assumption 1.1 The potential $V(x)>0$ is real valued and of $C^{\infty}$ -class.
There exists R $>0$ such that V satisfies the following properties $for|x|\geq R$ :
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(1) For m $>2$ , $D_{1}\langle x\rangle^{m}\leq V(x)\leq D_{2}\langle x\rangle^{m}$, where $0<D_{1}\leq D_{2}<\infty$ .

(2) For $|\alpha|\geq 2$ , $|P_{x}V(x)|\leq C_{\alpha}\langle x\rangle^{m-|\alpha|}$ for some constants $C_{\alpha}$ .

The operator $L$ : $u\mapsto-(1/2)\triangle u+V(x)u$ on $C_{0}^{\infty}(\mathbb{R}^{n})$ is again essentially
selfadjoint in $L^{2}(\mathbb{R}^{n})$ and the solution of (1.7) is given by $u(t, \cdot)=e^{-itH}u_{0}$

via the unitary group generated by the unique selfadjoint extension $H$ of $L$ .
The operator $H$ has only pure point spectrum $\lambda_{1}<\lambda_{2}\leq\ldotsarrow\infty$ .

The behavior of the fundamental solution of (1.7) with superquadratic p0-

tentials is very different from that with potentials growing at most quadrat-
ically at infinity: $E(t, x, y)$ is nowhere $C^{1}$ and is not in general bounded at
infinity [Y4], [MY]. Actually, the motivation to this work was to understand
how this property of $E(t, x, y)$ is reflected in the local smoothing property of
(1.7). We prove the following theorems.

Theorem 1.2 Let V satisfy Assumption 1.1. Let T $>0$ and $\Psi\in C_{0}^{\infty}(\mathbb{R}^{n})$ .
Then, there exists a constant C $>0$ such that

$( \int_{-T}^{T}||\Psi(x)\langle H\rangle^{\frac{1}{2m}}e^{-:tH}u_{0}||_{2}^{2}dt)^{\frac{1}{2}}\leq C||u_{0}||$ , $u_{0}\in L^{2}(\mathbb{R}^{n})$ . (1.15)

We remark that Theorem 1.2 can also be explained in terms of the sojourn
time in compact sets of aclassical particle of large velocity. Suppose $n=1$ .
Then, the particle is subject to periodic motion. Let $K\subset \mathbb{R}$ be compact
and let $v$ be its velocity in $K$ . Then the energy A $\mathrm{i}\mathrm{s}\sim v^{2}$ and the period is
roughly

$\int_{-v^{2/m}}^{v^{2/m}}\frac{dx}{\sqrt{v^{2}-|x|^{m}}}\sim Cv^{-1+2/m}$ .

Since the particle of velocity $v$ can stay in $K$ for $\sim 1/v$ , the fraction of time
to find it in $K\mathrm{i}\mathrm{s}\sim v^{-2/m}$ and we expect $e^{-:tH}$ improves the differentiablity
by the $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-1/m$ at almost all $t$ . Notice that we can find the fraction $v^{-2/m}$

by observing the motion only for one period which $\mathrm{i}\mathrm{s}\sim v^{-1+2/m}\sim\lambda^{-(\frac{1}{2}-\frac{1}{m})}$

if the energy is A. The proof of Theorem 1.2 and Theorem 1.3 given below
is actually guided by this observation.

As for the Strichartz ineqaulity, we show the following theorem
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Theorem 1.3 Let $V$ satisfy Assumption 1.1. Let $T>0$ and let $2\leq p$ , $\theta$ be

such that $\frac{2}{\theta}=n(\frac{1}{2}-\frac{1}{p})$ and $p\neq\infty$ if $n=2$ . Then, there exists a constant

$C>0$ such that

$( \int_{-T}^{T}||e^{-\dot{|}tH}u_{0}||_{p}^{\theta}dt)\sigma 1$ $\leq C||\langle H\rangle^{\eta}(\frac{1}{2}-\frac{1}{m})+u_{0}||1$ , $u_{0}\in L^{2}(\mathbb{R}^{n})$ , (1.16)

where $a_{+}$ denotes any number $>a$ .

Theorem 1.2 is sharp as the following one dimensional result shows, how-
ever, we believe that Theorem 1.3 is much weaker than best possible. In one
dimension, we have the following sharp result which, however, is of aform
slightly different from (1.16).

Assumption 1.4 $V(x)$ is real valued and of $C^{3}$ -class on $\mathbb{R}^{1}$ . There exists $a$

constant R $>0$ such that the following conditions are satisfied for $|x|\geq R$ :

(1) $V(x)$ is convex.

(2) For $j=1,2,3$, $|V^{(j)}(x)|\leq C_{j}\langle x\rangle^{-1}|V^{(j-1)}(x)|$ for some constants $C_{j}$ .

(3) For $m>2$ , $D_{1}\langle x\rangle^{m}\leq V(x)\leq D_{2}\langle x\rangle^{m}$ , where $0<D_{1}\leq D_{2}<\infty$ .

We define $\theta(m,p)$ as follows, for $2\leq p\leq\infty$ and $2<m<\infty$ :

$\mathrm{O}(m,p)=\{$

$\frac{1}{m}(\frac{1}{2}-\frac{1}{p})$ , if $2\leq p<4$ ;

$( \frac{1}{4m})_{-}$ , if $p=4$ ;

$\frac{1}{4}-\frac{1}{3}(1-\frac{1}{p})(1-\frac{1}{m})$ , if $4<p\leq\infty$ ,

where $a_{-}$ denotes any number $<a$ .

Theorem 1.5 Let $V$ satisfy Assumption 1.4 and let $2\leq p\leq\infty$ . Let $T>0$

and $K\subset \mathbb{R}$ be compact. Then, there exists a constant $C>0$ such that

$||\langle H\rangle^{\theta(m,p)}e^{-itH}u_{0}(x)||_{L^{p}(\mathbb{R}_{x},L^{2}([-T,T]_{t}))}\leq C_{T}||u_{0}||_{L^{2}(\mathbb{R}_{x})}$, (1.16)

$\sup_{x\in K}||\langle H\rangle^{\frac{1}{2m}}e^{-itH}u_{0}(x)||_{L^{2}([-T,T])}\leq C_{T}||u_{0}||_{L^{2}(\mathbb{R}_{x})}$ (1.16)
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We have the following sharp estimate of the normalized eigenfunction of
the one dimensional Schrodinger operator and we see that (1.17) and (1.18)
are sharp in the sense that $\mathrm{O}(m,$ p and $1/2\mathrm{m}$ cannot be replaced by any
larger numbers by inserting $\mathrm{u}_{0}(\mathrm{r})\ovalbox{\tt\small REJECT}$ $\mathrm{e}(\mathrm{r},$ E and letting E $\ovalbox{\tt\small REJECT}$ oo.

Theorem 1.6 Let Assumption 1.4 be satisfied. Let $\psi(x, E)$ be the normal-
ized eigenfunction of $H=-(1/2)\triangle+V(x)$ with the eigenvalue E. Then:
(1) For $1\leq p\leq\infty$ , we have

$||\psi(x, E)||_{L^{p}}\sim\{$

$C_{p}E^{-\theta(m,p)}$ , if $p\neq 4$ ;
$CE^{-\frac{1}{4m}}(\log E)^{\frac{1}{4}}$ , if $p=4$ ,

(1.19)

for large $E$ , where $C_{p}$ can be taken independent of $p$ , $p\not\in(4-\epsilon, 4+\epsilon)$ , $\epsilon>0$ .
(2) For compact interval $K\subset \mathbb{R}$ $\sup_{x\in K}|\psi(x, E)|\sim E^{-\frac{1}{2m}}$ for large $E$ .

2Outline of Proofs

We outline the proof of Theorem 1.2 and Theorem 1.3. We refer the reader
to [Y5] for the proof of one dimensional results Theorem 1.5 and Theorem
1.6, which heavily depends upon the spectral property of $H$ . Hinted by the
observation stated after Theorem 1.2, we decompose the solution $u(t)=$
$e^{-:tH}u_{0}$ into the sum of components $u_{j}(t)$ which are spectrally concentrated
in $(2^{j-1},2^{j+1})$ with respect to $H$ :

$u(t)= \sum_{j=0}^{\infty}u_{j}(t)=\sum_{j=0}^{\infty}e^{-:tH}u_{0j}$ , (2.20)

and analyse each component $u_{j}(t)$ separately by splitting the time interval
$[0, T]$ into subintervals of $1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}\sim 2^{-j(\frac{1}{2}-\frac{1}{m})}$ . Thus, we choose $\psi_{0}\in C_{0}^{\infty}(\mathbb{R})$

and $\psi$ $\in C_{0}^{\infty}(\mathbb{R}^{+})$ such that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\psi$ $\subset(2^{-1},2)$ and

$\psi_{0}(x)+\sum_{j=1}^{\infty}\psi(x/2^{j})=1$ for $x\in[0, \infty)$ ,

and define $uOj=\psi_{j}(H)u_{0}$ and $u_{j}(t)=\psi_{j}(H)u(t)=e^{-:tH}u_{0j}$ , $j=0,1$ , $\ldots$ ,
where $\psi_{j}(x)=\psi(x/2^{j})$ , $j=1,2$ , $\ldots$ .
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2.1 Lemmas

We denote $a(x, \xi)=(1/2)\xi^{2}+V(x)$ . The first lemma states that the energy
cut off can be approximated by acertain pseud0-differential operator which
is easier to handle.

Lemma 2.1 Let $\psi\in C_{0}^{\infty}([0, \infty))$ and $\phi$ $\in C_{0}^{\infty}(\mathbb{R})$ be such that

$\psi(t)=\{$
1, $2^{-1}<t<2^{1}$ ,
0, $t\not\in[2^{-2},2^{2}]$

’
$\phi(t)=\{$

1, $2^{-4}<t<2^{4}$ ,
0, $t\not\in[2^{-5},2^{5}]$

Define $\Phi_{\lambda}(x, \xi)=\phi(a/\lambda)$ . Then for any $N$ , there exists $C_{N}$ such that

$||\langle H\rangle^{N}(1-\Phi_{\lambda}(x, D))\psi(H/\lambda)\langle H\rangle^{N}||\leq C_{N}\lambda^{-N}$, (2.21)

where the constant $C_{N}$ is independent of A $\geq 1$ .

To prove Lemma 2.1, we write $\psi(H/\lambda)$ in the form

$\psi(H/\lambda)=\frac{1}{2\pi i}\int_{\mathbb{C}}\frac{\partial\tilde{\psi}_{\lambda}}{\partial\overline{z}}(z)(H-z)^{-1}dz\wedge d\overline{z}$ , (2.22)

where $\tilde{\psi}_{\lambda}(z)=\tilde{\psi}(z/\lambda)$ and $\tilde{\psi}(z)$ is an almost analytic extension of $\psi(t)$ such
that $\tilde{\psi}(z)=0$ outside $2^{-2}<|z|<2^{2}$ . We construct the parametrix via the
standard pseud0-differential calculus to find

$(1- \Phi_{\lambda}(x, D))(H-z)^{-1}=\sum_{j=0}^{N}Q_{j}(z, x, D)+R_{\lambda N}(z, x, D)(H-z)^{-1}$ . (2.23)

Here the symbols $Q_{j}(z, x, \xi)$ are of the form $\sum_{k=j+1}^{2j+1}a_{jk}(x, \xi)(a(x, \xi)-z)^{-k}$

and { $R_{\lambda N}(z,$ $x,$ $\xi)$ : $z\in\Omega_{\lambda}$ , A $\geq 1$ } is bounded in $S(\langle x\rangle^{-(N+1)}\langle\xi\rangle^{-(N+1)}, g)$ ,
where $g=|x|^{-2}dx^{2}+|\xi|^{-2}d\xi^{2}$ and $S(m, g)$ is H\"ormander’s symbol class {Ho}.
We multiply (2.22) by $(1-\Phi_{\lambda}(x, D))$ from the left and insert (2.23) in the
right of the resulting equation. Then, the contributions from $Q_{j}$ vanish by
Cauchy’s formula and that of the reaminder $R_{\lambda N}(z, x, D)(H-z)^{-1}$ is of order
$O(\lambda^{-N})$ .

Lemma 2.1 allows us to study $e^{-itH}\psi(H/\lambda)u_{0}$ via $e^{-itH}\Phi_{\lambda}(x, D)$ . We
next approximate the propagator $e^{-itH}\Phi_{\lambda}(x, D)$ by amore tractable one
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Observe that classical particles of energy Acannot not enter the domain
where $V(x)>\lambda$ . As $\Phi_{\lambda}(x, D)$ projects $u_{0}$ into states with energy $\sim\lambda$ , the
dynamics $e^{-itH}\Phi_{\lambda}(x, D)u_{0}$ should be well approximated by $e^{-:t\tilde{H}}\Phi_{\lambda}(x, D)u_{0}$

generated by the Hamiltonian $\tilde{H}=-(1/2)\triangle+\tilde{V}(x)$ , where $\tilde{V}(x)$ is the part
of $V$ where $V(x)<C\lambda$ . We show this is indeed the case in the next lemma
for $|t|\leq\epsilon\lambda^{-(\frac{1}{2}-\frac{1}{m})}$ , $\epsilon>0$ being asmall number, which is afraction of the
period of the classical particle of $\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{y}\sim\lambda$ . To state and prove this fact,
we find it convenient to change the scale of time and convert the equations
into the semi-classical form. We introduce the following notation. If we set

$v(t, x)=u(ht,x)$ , $h=\lambda^{-(\frac{1}{2}-\frac{1}{m})}$ ,

then $v(t, x)$ satisfies the semi-classical Schr\"odinger equation

$ih \frac{\partial v}{\partial t}=\frac{-h^{2}}{2}\triangle v+V_{h}v$ , $V_{h}(x)=\lambda^{-2(\frac{1}{2}-\frac{1}{m})}V(x)$ . (2.24)

We take $\chi\in C_{0}^{\infty}(\mathbb{R}^{n})$ such that $\chi(x)=1$ for $|x|\leq 1$ and $\chi(x)=0$ for $|x|\geq 2$

and define
$\tilde{V}_{h}(x)=V_{h}(x)\chi(x/C_{1}\lambda^{\frac{1}{m}})$ ,

where $C_{1}>>1$ is taken such that $V(x)\geq 2^{5}\lambda$ when $|x|\geq C_{1}\lambda^{\frac{1}{m}}$ . We then
define the approximation to (2.24) by

$ih \frac{\partial v}{\partial t}=\frac{-h^{2}}{2}\triangle v+\tilde{V}_{h}v=\tilde{H}^{h}v$ . (2.25)

The point is that $\tilde{V}_{h}$ satisfies the estimate

$|\partial_{x}^{\alpha}\tilde{V}_{h}(x)|\leq C_{\alpha}$ , $|\alpha|\geq 2$ , (2.26)

where $C_{\alpha}$ is independent of $\lambda>1$ . Hence, as was remarked after (1.13), the
fundamental solution $E^{h}(t,$x, y) of (2.25) has the following structure:

$E^{h}(t,$x,$y)= \frac{1}{(2\pi ith)^{n/2}}e^{:S^{h}(t,x,y)/h}a^{h}(t,$x, y) (2.24)

for $|t|\leq\delta$ and 6and the constants appeared in the estimates (1.11) and
(1.13) for $S^{h}$ and $a^{h}$ can be chosen independently of A $\geq 1$ .
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Lemma 2.2 Let $\mathrm{f}\#$ 6 $C*([0, \mathrm{o}\mathrm{o}))$ and wECru) be as in Lemma 2.1.
Then, for any N, l $\ovalbox{\tt\small REJECT}$ 0,1, \ldots , there exists c. and g $>0$ such that

$\sup||H^{\ell}(e^{-\dot{*}tH^{h}/h}-e^{-:t\tilde{H}^{h}/h})\Phi_{\lambda}(x, D)|||t|\leq\epsilon\leq C_{N\ell}\lambda^{-N}$ (2.28)

for a positive constant $C_{N\ell}$ independent of $\ell\geq 1$ .

Lemma 2.2 can be proved as follows. We may write via the Duhamel formula:

$H^{\ell}(e^{-itH^{h}/h}-e^{-:t\tilde{H}^{h}/h})\Phi_{\lambda}(x, D)u$

$=ih^{-1} \int_{0}^{t}H^{\ell}e^{-i(t-s)H}(V_{h}-\tilde{V}_{h})e^{-it\tilde{H}^{h}/h}\Phi_{\lambda}(x, D)udt$.

By using (2.27) and the stationary phase method, we estimate $H^{\ell}(V_{h}$ -

$\tilde{V}_{h})e^{-it\tilde{H}^{h}/h}\Phi_{\lambda}(x, D)$ . We find it is $O(h^{N})$ for any $N$ as there are no stationary
phase point for $x$ in the support of $(V_{h}-\tilde{V}_{h})$ . This follows because classical
particles of energy Acannot enter the support of $V_{h}-\tilde{V}_{h}$ .

2.2 Proof of Strichartz inequlity

We take $\phi$ $\in C_{0}^{\infty}((2^{-3},2^{3}))$ such that $\psi(x)=1$ for $2^{-2}\leq x\leq 2^{2}$ and set
$\mathrm{x}\{\mathrm{x},$ $\xi$ ) $=\phi(a(x,\xi)/2^{j})$ . Define $h_{j}=2^{-j(\frac{1}{2}-\frac{1}{m})}$ and

$U_{j}(t)=e^{-:(t/h_{\mathrm{j}})H_{j}/h_{j}}$ , $H_{j}=\tilde{H}^{h_{j}}$

By virtue of (2.27), the integral kernel $E_{j}(t, x, y)$ of $U_{j}(t)$ satisfies

$|E_{j}(t, x, y)|\leq C|t|^{-n/2}$ , $|t|\leq\epsilon h_{j}$

with $C$ independent of $j$ and the argument of the proof of (1.2) implies

$( \int_{|t|\leq\epsilon h_{\mathrm{j}}}||U_{j}(t)\Phi_{j}(x, D)u||_{p}^{\theta}dt)^{1/\theta}\leq C||u||_{2}$. (2.29)

By virtue of Lemma 2.2 and obvious Sobolev embedding, we have

$| \sup_{t|\leq\epsilon h_{j}}||(e^{-itH}-U_{j}(t))\Phi_{j}(x, D)u||_{p}\leq C_{Np}2^{-Nj}||u||_{2}$
. (2.30)
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Combining (2.29) and (2.30), we obtain for p and $\theta$ of Theorem 1.3

$( \int_{|t|\leq\epsilon h_{j}}||e^{-itH}u||_{p}^{\theta}dt)^{1/\theta}\leq C||u||_{2}$ . (2.31)

with the contants $\epsilon>0$ and $C>0$ independent of $j=0,1$ , $\ldots$ .
We let $uoj$ be as in the begining of this section. Minkowski’s inequlity

then implies that for any small $\delta>0$

$( \int_{0}^{T}||e^{-:tH}u_{0}||_{p}^{\theta}dt)^{1/\theta}\leq\sum_{j=0}^{\infty}(\int_{0}^{T}||e^{-:tH}u_{0j}||_{p}^{\theta}dt)^{1/\theta}$ (2.32)

We then break up the interval $[0, T]$ as

$0=t_{0}<t_{1}<\ldots<t_{L_{j}}=T$, $\tau_{k}=t_{k}-t_{k-1}<\mathrm{e}\mathrm{h}_{\mathrm{j}}$ , $L_{j}\sim T/\epsilon h_{j}$ (2.33)

and write the integral on the right of (2.32) in the following form, where
$v_{jk}=e^{-:t_{k-1}H}u_{0j}$ :

$\int_{0}^{T}||e^{-itH}u_{0j}||_{p}^{\theta}dt=\sum_{k=1}^{L_{j}}\int_{t_{k-1}}^{t_{k}}||e^{-:tH}u_{0j}||_{p}^{\theta}dt=\sum_{k=1}^{L_{j}}\int_{0}^{\tau_{k}}||e^{-:tH}v_{jk}||_{p}^{\theta}dt$ .

Then, (2.31) and the unitarity of $e^{-itH}$ imply that the right hand side is
bounded by

$\sum_{k=1}^{L_{j}}C||u_{0j}||_{2}^{\theta}\leq C(T/\epsilon h_{j})||u_{0j}||_{2}^{\theta}\leq C_{T\epsilon}||\langle H\rangle^{\sigma}(\frac{1}{2}-\frac{1}{m})u_{0j}||_{p}^{\theta}1$.

Summing up the right hand side with respect to $j$ and combining the result
with (2.32), we obtain Theorem 1.3.

2.3 Proof of local smoothing property

Using Lemma 2.1 and the pseud0-differential calculus, we estimate

$\int_{0}^{T}||\Psi(x)e^{-:tH}\langle H\rangle^{\frac{1}{2m}}u_{0}||^{2}dt=\int_{0}^{T}||\sum_{j=0}^{\infty}\Psi(x)e^{-\dot{|}tH}\langle H\rangle^{\frac{1}{2m}}u_{0j}||^{2}dt$

(2.34)
$\leq\sum_{j=0}^{\infty}\int_{0}^{T}||\Psi(x)\Phi_{j}(x, D)e^{-\dot{\iota}tH}\langle H\rangle^{\frac{1}{2m}}u_{0j}||^{2}dt+C_{T}||\langle H\rangle^{-\frac{1}{2}}u_{0}||^{2}$ .
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Breaking up $[0, T]$ as in (2.33), we write the integral on the right as

$\sum_{k=1}^{L_{j}}\int_{0}^{\tau_{k}}||\Psi(x)\Phi_{j}(x, D)e^{-itH}u_{0j}^{(k)}||^{2}dt$ , $u_{0j}^{(k)}=e^{-:t_{k-1}H}\langle H\rangle^{\frac{1}{2m}}u_{0j}$ . (2.35)

We approximate $e^{-itH}$ by $U_{j}(t)$ using the dual statement of Lemma 2.2.
Changing the variable $tarrow th_{j}$ , we estimate, with negligible error, the integral
on the right of (2.35) by

$h_{j} \int_{0}^{\tau_{k}/h_{j}}||\Psi(x)\Phi_{j}(x, D)e^{-itH_{j}/h_{j}}u_{0j}^{(k)}||^{2}dt$. (2.36)

Define $K_{j}(x, \xi)=\Psi(x)^{2}\phi(a(x, h_{j}^{-1}\xi)/2^{j})^{2}$ . Then, the integral (2.36) is equal
to

$h_{j} \int_{0}^{\tau_{k}/h_{j}}$ $(e^{itH_{j}/h_{j}}K_{j}(x, h_{j}D)e^{-itH_{j}/h_{\mathrm{j}}}u_{0j}^{(k)}$ , $u_{0j}^{(k)})$ (2.37)

modulo errors whose sum over $j$ , $k$ is bounded by $C||\langle H\rangle^{-\frac{1}{4}}u_{0}||^{2}$ . We then
construct the parametrix $K_{j}(t, x, h_{j}D)$ of $e^{itH_{j}/h_{j}}K_{j}(x, h_{j}D)e^{-itH_{j}/h_{j}}$ by a
procedure standard for proving Egorov’s theorem, requiring

$(d/dt)e^{-itH_{j}/h_{j}}K_{j}(t, x, h_{j}D)e^{itH_{j}/h_{j}}$

$=e^{-itH_{j}/h_{j}}(\partial K_{j}/\partial t-i[H_{j}, K_{j}])e^{itH_{j}/h_{j}}\sim 0$.

This produces pseud0-differential operators $K_{j}^{N}(t, x, h_{j}D)$ such that

$||e^{itH_{j}/h_{j}}K_{j}(x, h_{j}D)e^{-itH_{j}/h_{j}}-K_{j}^{N}(t, x, h_{j}D)||\leq C_{N}h_{j}^{N+1}$ (2.35)

with constant $C_{N}$ independent of $j=1,2$ , $\ldots$ . The symbols of $K_{j}^{N}(t, x, h_{j}D)$

are computable by using trajectories of (1.9). In particular, they are sup-
ported by $\Gamma(-t)(\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}K_{j})$ , where $\Gamma(t)$ : $(y, k)arrow(x(t, y, k),p(t, y, k))$ and
the remark after Theorem 1.2 about the sojourn time of the particle of large
velocity implies

$| \int_{0}^{\tau_{k}/h_{j}}K_{j}^{N}(t, x, \xi)dt|\leq C_{\alpha\beta N}2^{-[perp]}m$ . (2.39)

Here again the constant $C_{\alpha\beta N}$ independent of $j=1,2$ , $\ldots$ .
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Completion of the proof. The integral (2.37) is equal to

$h_{j} \int_{0}^{\tau_{k}/h_{j}}(K_{j}^{N}(t,x,h_{j}D)u_{0j}^{(k)}, u_{0j}^{(k)})dt+O(2^{-Nj})$

by virtue of (2.38), and (2.39) implies that the integral is bounded by

$Ch_{j}2^{-[perp]}m$

.
$||u_{0j}^{(k)}||^{2}=Ch_{j}2^{-[perp]}m$

.
$||\langle H\rangle^{\frac{1}{2m}}u_{0j}||^{2}\leq Ch_{j}||u_{0j}||^{2}$

Summing up over $L_{j}\sim\epsilon h_{j}^{-1}$ number of fc’s, we obtain

$\int_{0}^{T}||\Psi(x)\Phi j(x, D)e^{-:tH}\langle H\rangle^{\frac{1}{2m}}u_{0j}||^{2}dt\leq C||u_{0j}||^{2}$

and therefore,

$\sum_{j=0}^{\infty}\int_{0}^{T}||\Psi(x)\Phi_{j}(x, D)e^{-:tH}\langle H\rangle^{\frac{1}{2m}}u_{0j}||^{2}dt\leq C||u_{0}||^{2}$ ,

which implies Theorem 1.2. 1
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