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1. Introduction

The present paper is a shortened version of a forthcoming paper by Yoshihiro Shibata of
Waseda University and the author. Let @ C R™ (n > 2) be a domain bounded by two
parallel planes, i.e.,

Q={z=(z",2,) €ER* |2’ e R, 0< 2, <1},

and we consider the following initial boundary value problem of the nonstationary Stokes
equation:

w—Au+Vp=0, V:-u=0 in (0,00) x Q,
(11) lllxn=0 = 0, ulznzl = 0,
u(0,z) = a(z) in Q.

Here, u = u(t,z) = (u1(t,z), -+ ,un(t,z)) and p = p(t,z) denote the unknown velocity
vector and the unknown pressure at point (¢,z) € [0, 00) X Q, respectively, while a = a(z) =
(a1(z),-- - ,an(z)) denotes a given initial velocity at point z € Q. In order to prove that
the nonstationary problem (1.1) generates an analytic semigroup in

P(Q)={uel?(Q)"|V-u=0, v-u|sq =0},
where v is the unit outer normal to 02, we investigate the corresponding resolvent problem:

A=Aju+Vp=f V.-u=0 inQ,
(1.2) _
ulg,—0 =0, ulg,=1 =0,

where the resolvent parameter A is contained in the union of the sector

Se={z€C\{0}||argz|<m—¢}, O<e< g

and the sufficiently small neighborhood of zero.
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So many results of the mathematical analysis for the imcompressible viscous fluid in the
whole space and in the exterior domain have been obtained. However, the case where the
domain is bounded by two parallel planes has been less studied. Nazarov and Pileckas [5]
and [6] treated the boundary value problem of the stationary Stokes equation between two
parallel planes in the weighted L2-framework. On the other hand, we analyze the problem
(1.2) by employing the Farwig and Sohr’s idea in [2]. Our main result is the following
theorem.

Theorem 1.1. Let1 < p < oo and 0 < € < m/2. Then there ezists a sufficiently small
number o > 0 such that for any A € ., U{z € C| |z| < o} and any £ = (f1,---, fa) €
LP(Q)" there ezists a unique u € W2(Q)" which together with some p € W,}(Q) solve
(1.2); p is unique up to an additive constant. Moreover, there holds the following resolvent
estimate:

L |
13)  |Allullzeey + A2V ulle@) + lallwz) + IVPllLr@) < Cpnellflloie)-

Here, W,}(Q) ={r € LF (Q) | Vr € LP(Q)}.

loc
Remark. Generally, A = 0 does not belong to the resolvent set of the Stokes operator on
an unbounded domain. Although § is also the unbounded domain, using the boundedness
of Q with respect to z, we can prove that A = 0 is also in the resolvent set. This is one of
the outstanding features of Theorem 1.1.

Now, applying the Helmholtz projection P, : LP(2)" — LE(R2) to (1.2), we see that
(1.2) is equivalent to
(A+ Apu =, u € D(4,).

Here, A, is the Stokes operator defined by
Apu=—-P,Au, ue€ D(4,)={ueWX(Q"NLL(NQ) |ulsn=0}.

Since by (1.3) we see that
C

ma
the Stokes operator on {2 generates an analytic semigroup {e *4r};>¢ and by employing the
Sobolev’s embedding and interpolation argument we obtain the following theorem.

(A + Ap)7! ez iy <

Theorem 1.2. The Stokes operator on ) with Dirichlet zero boundary condition generates
an analytic semigroup {e~*4r},>¢ in L2(Q) and there holds the following LP — L9 estimate:

(14)  ||[VEera|| o) < Cpope et 3670 la|| ), 1<p<g<oo

for any a € L2(R2). Here, k > 0 is an integer.

2. Basic lemmas
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Farwig and Sohr [2] analyzed the Stokes resolvent problem in the half space R? by the
Fourier multiplier method. We employ their idea in the proof of Theorem 1.1. To be
more precise, by applying the Fourier transform with respect to 2’ = (21, ,z,_;) we
obtain the boundary value problems of the ordinary differential equations, and we apply
the Fourier multiplier theorem (cf. [3]) and the Agmon-Douglis-Nirenberg lemma (cf. [1])
to the representations of the solutions to these problems, consequently we obtain the LP-
estimates of the solutions. The Fourier multiplier theorem is the following proposition:

Proposition 2.1. Let 1 < p < oco. Let k : R* \ {0} — R be a C™-function which satisfies
the multiplier condition:

[9gk(©)| < Calel™, Ve, |o] <n, Ve € R"\ {0}

with some constant C,. Then there exists a constant C, independent of C, such that

|7 (B(©)a(e)]

LP(R") <Gy (llgllagca) lull Lrn), Vu € LP(R™).

The basic estimates to show the above multiplier condition are as follows:

Lemma 2.1. Letl € R and let a > 0 be a constant. Then the following estimates are
valid:

(2.1) |A + I€[?| > sin g(m +EP),  VYrez., VEeR
1 % 1> 1
. 2> (= in — 2 n
(2.2) Rey/A+1eP 2 (5) smS(NE+16),  WAex, VeeR,
(2.3) |6 11'| < Cale ™, Va, |al <n, VE €K™\ {0},
(2.4) [0ge2l| < Cale|Mle 2], Va, |a <n, V¢ € R™\ {0}.

Combining the Agmon-Douglis-Nirenberg lemma with Proposition 2.1, we obtain the
following lemma:

Lemma 2.2. Let 1 <p < oo and 6 >0 andu € Wy(R}). Letk: R*!\ {0} - R be a
C™ !-function which satisfies the multiplier condition:

|08 k(€] < Cul€l ™), Vo, |o/| <n—1, VE € R\ {0}
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with some constant Cy. Then there exists a constant C, ., s independent of u such that

|[vFe? [k(€)e ¥ a(e, 0)]

LP(]Rn _<.. Cp,n,allvu”Lp(Ri)

Moreover, if we assume u € W2(R%), then there holds

|27 [k(€)e =g, 0)]

LP(R?Y) < Cp,n,6||v2u”LP(R1)~

The above lemma is the basic tool which often used to estimate the first and second
derivatives of the solutions to (1.2).

3. Outline of the proof of Theorem 1.1

(I) The case where A € ¥, [A\| > A >0
As the first case, we consider the case where A € ., |A| > A¢ > 0. Here, )¢ is an arbitrary
fixed positive number.

Step 1. We neglect the boundary condition and we shall construct (U, ®) satisfying
(3.1) A-AU+Ve=F, V-U=0 inR"

Here, F' denotes an extension of f, which is defined as follows: First, we shall define an
even and odd extension of f : 2 — R Let ¢ € C*(R) be a cut-off function such that
¢(zy,) =1 for z, < 1/3 and p(z,) = 0 for z,, > 2/3. Using this cut-off function ¢ we put
9o(x) = p(xn) f(2',2n), g1(z) = (1 — @(z))f(z',zn). Then for each of gg and g; we define
the even extension g§, gf and the odd extension gg, g7 as follows:

e _ <P($n)f($',:l:n) T, >0,
9(z) = { (o) f(tr—2) Ty <0,
ge(x) - { (1 - (p(xﬂ))f(z”xn) Tn < ]-a
! (1 -2 -z))f(2,2 - 2,) zn>1,
0 _ (p(zn)f(z’, xn) zn >0,
94(z) = { —p(=2n) f(&' ~Tn)  Tn <O,
0(.’12) — { (1 - ‘p(zn))f(x’axn) Tn <1,
91 (1= 2= 2))f(@,2 = 2)  zn> 1.

Then we put.f¢ = g§ + gf and f° = g§ + ¢7. Each of f¢ and f° is an extention of f. Using
this notation we define F = (f£,---, f¢_,, f2).
Now, if we put

U(:L') — ff_l P(&) t(fi,;l.f,léfe_l, n)] (:E),
_ = 26] e 7’€ﬂ [
®(z) = - Zl I£I2f &)+ |§|2f (E)] (z),
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where P(&) = (Pjr(&))1<jk<n, Pix(€) = bjx — &€k /|€|?, then U and @ solve (3.1) and by
the Fourier multiplier theorem we obtain the estimate

1
(3.2) |M|U|oey + A2 I VU || zogny + IV2U || 1o@ny + I VR Lo®n) < Comellfll o).

Now, setting u = U + v and p = ® + 7 the problem (1.2) is reduced to the following
problem for v and 7:

(3.3) { A=AWv+Vr=0, V-v=0 in Q,
. Vlzn:O - —U|zn=0, vla:,,:l = "U'znzl-
Remark. To adopt F = (ff,---, f5_1, f3) as an extension of f enable us to obtain the

following estimates when |A| is large enough:
C
(3.4) |Un(:, )|l Logn-1) < W”ﬂlmm’ a=0,1.

This estimate will be needed when we estimate the LP-norm of v,. If we use the zero
extension of f instead of F, we can construct (U, ®) satisfying (3.1) and the estimate (3.2),
but we can only obtain

”Un(‘v a)”LP(R"-l) < C“f”LP(Q), a=0,1.

This is the reason why we use F as an extension of fin (3.1).

Step 2. We shall construct v, satisfying (3.3) and estimate the LP-norms of v,, Vv, and

V2u,. First, let us eliminate the pressure 7 and v’ = (vq,--+ ,v5-1) from (3.3). Since v
satisfies the divergence free condition, applying the divergence to the first equation of (3.3)
we have ‘
(3.5) Am = 0.

Therefore, applying the Laplacian to the n-th component of the first equation of (3.3)
we have (A — A)Av, = 0. Applying the Fourier transform with respect to =’ we have
A+ €2 — 82)(82 — |€'Y)0n(N,€,z,) = 0. On the other hand, applying the Fourier
transform to V - v = 0 with respect to =’ we have ' ‘ ~

O, ., . ombo
or (’\’f ’:L"ﬂ) - Z 'l,gj’l]j()\, 5 7$n)‘
n ]=1

Hence, we obtain the following boundary value problem of the ordinary differential equation
of fourth order: o

(82 — A%)(32 — BY)o, (M, €,2,) =0, O<an<l,
(3,6) '&n|zn=0 = gl, i}nl:cnzl = 92,

0y, A 0Dy, A
= h27

= hl’

Oz, Tn=0 Oz, Tn=1
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n—1

A=g), B=yA+|¢P, 4 =Unlen=ims (=1,2), hj=2 i€Uklo,=j-1 (1 =1,2).
k=1

The fundamental solutions of the equation are e A4(1=%) e=A%n =B(1=Zn) gnd ¢ Bon

we look for the solution to (3.6) in the form of 9,()\, &, z,) = ae” A1) 4 gpe=4on 4

aze~B(-2) 4 g,e~B2n By the boundary condition, the constants a1, az, a3, a4 satisfy the

following simultaneous linear equations: :

a 0 e~ A 1 e B 1

as G 1 e4 1 e B
L = A h L =

as hy ’ where Ae~4 —-A Be B -B

a4 ho A —Ae 4 B —Be B

By the simple argument we can show that if A € C\ (—o00,0] and £’ # O then det L # 0.
Therefore 9,(), &', z5) is represented as

2 (F. o—AQl- oA ~B(1- P
Lje~40=2n)  L,e7A%n  [e~B(-2a) [ e~Bon
> ' — J1 2 43 34 ~
B4, 2n) = ?::1{ detD | detL detL | detl } ’
+22: Loy j e~ A0-n) Lyyjoe~A%n Loyjze~BU-2) [y, .45 i
ot det L det L det L det L 7

Now, we calculate the determinant of the Lopatinski matrix L and its cbfactors, and by
the behavior of the denominator we classify the problem into some cases. Moreover, we
estimate the coefficients of g, izj by using Lemma 2.1, to estimate v, itself we apply the
Proposition 2.1 and (3.4), to estimate the first and the second derivatives of v, we apply
the Lemma 2.2 and the estimate (3.2). After those tasks we obtain the estimate

1
(3.7) |Allvnll o) + A2 1 VVallzo@) + 1V 0nl| o) < CpmepollfllLoe)-

Step 3. We shall construct the pressure 7 satisfying (3.3) and estimate the LP-norm of V.
By (3.5) and the n-th component of the first equation of (3.3), we construct m satisfying
the following problem:

Ar =0 in §,
on

537_7; = —(A = A)alzp=a; @=0,1.

Tn=0a

Applying the Fourier transform with respect to ' we obtain the following boundary value
problem of the ordinary differential equation:

(0% — ADr(\,€,1,) =0 0<z, <1,
(38) aﬂ' - (672‘ _ B2)ﬁn|zn=a, a = 0, 1.

axn In=0a
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Solving (3.8) we obtain

A i/ .le‘A(l_l'n) E '26_‘43"
A ! _ _= J 2 ~
#(A&ham) = -7 Z{ det L detL [ ¥
A
A

_ 22: LyyjaeA0720) Ly ge A% i
det L det L 7

Therefore, by an argument similar to those in Step 2, we obtain the estimate

(3.9) IV|lLr@) < Comenollfllz,()-

Step 4. We shall construct v (k =1,--- ,n—1) satisfying (3.3) and estimate the LP-norms
of v, Vg and V2ui. By the k-th component of the first equation of (3.3), we construct vy
satisfying the following problem:

{ A=Ay +G%mr=0 inQ,

vklzn:a = _Uklznza, a=0,1.

Applying the Fourier transform with respect to ' we obtain the following boundary value
problem of the ordinary differential equation:
{ (6121 - B2)’Dk(€lv .’En) = iék'fr(fl, xn) 0< Ty < 1)

3.10 .
( ) Uk |en=a = —Uklzn=a a=0,1.

It is easier than the case where Step 2 and Step 3 to solve the above equation and obtain
the estimate

1
(3.11) IMlvkllzoe) + A2 Vel o) + [V 0kl|o@) < Cpmieollfll Loe)-

(IT) The case where ) € Cis close to zero

When A = 0, because of the singularity of |[¢/|™ at & = 0, the solution U which is
constructed in Case 1 is not in L?(R"), and VU is not in LP(R"), either. Therefore, A =0
is not in the resolvent set of the Stokes operator in the whole space. However, since (2 is
bounded in z,-direction, by using the Poincaré’s inequality we can prove that A = 0 is in
the resolvent set of the Stokes operator on 2 in the L2-framework. So, from now on we
shall consider the case where the resolvent parameter A € Cis close to zero. If we prove
that A = 0 is in the resolvent set, then by the perturbation method we can easily prove
that the sufficiently small neighborhood of zero is also in the resolvent set. Therefore, we
consider only the case where A = 0.

Step 1. Disregarding the boundary condition, we shall construct (v, q) satisfying

(3.12) -Av+Vq=f, V.v=0 in
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Applying the divergence to the first equation we obtain Aq = V - f. Hence, applying the
Laplacian to the n-th component of the first equation of (3.12) we have A%y, = —A'f, +
V' . 0pf. Then, applying the Fourier transform with respect to z’ we obtain

(3.13) (672; - |£I|2)2ﬁn(€’v1‘n) = Ifllzfn(f’axn) + 3¢’ anf’(fl, Tn), 0<z, <1

Now, we solve this ordinary differential equation by the variation of constants. Then, for
example, 7, is represented as

"N ren el pl MmN .
@n(fl,xn) = Lgl[) _/OA aelf [(zn-t)(1 20”0")(:::"—t)zfn(ﬁ',t)dndet
'] ot I€'[(2n —t){1—20—2n(1-6)} 2F gt
> L[ a-oe (50 = 1) Fal€, t)ddods
€] ot e —t)1—20) 25 Byt
+= /0 /0 e (2n — )2 - P(€', t)dbat,

where £ = £'/|¢'|. Since this representaion does not have an inverse power of |£'|, we
can use this representation for the analysis of the case where |¢’| is small. Similarly, the
representation of 0,9,(¢',,) and of the 929,(¢’,z,) does not have the reciprocal of |¢].
Therefore, applying Proposition 2.1 we obtain

|76 loo(€)on (€', z))]

where @ € C§°(R*™!) is a cut-off function such that ¢o(¢') = 1 for |¢'| < 1 and o(¢') = 0
for |¢'] > 2.

On the other hand, in the case where |¢’| is large we obtain the following estimate
by applying Proposition 2.1 to the representation of 9, which is obtained by applying the
Fourier transform to (3.13) with respect to z,:

|7 1@ = o(€))in(€’, z)]|

W,?(Q) S Cp,n ”ﬂlLP(ﬂ),

So, we obtain

(3.14) llonllwz@) < Cpnllfllzo(e)-
By the same argument we also obtain the following estimates:
(3.15) Imllwz@) < Conllfll o),
(3.16) lokllwz@) < Conllfllze(e)-

Step 2. Setting u=v +wand p=q+7in (1.2) with A = 0, it is reduced to the problem
for w and

(3.17) { ~-Aw+Vr=0, V-w=0 in Q,

w|$n=0 = _vlzn=07 le,,:l = ”Vlzn=1-
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By repeating an argument similar to those in Case 2, Case 3 and Case 4 of (I) we obtain

(3.18) Iwllwz@) + IV7llzo@) < Cpnllflizo@)-

4. Application

As a simple application, we shall consider the LP-stability of the Couette flow and of the
Poiseuille flow. First, we consider the following initial boundary value problem of the
Navier-Stokes equation:

—Au+(u-VYu+Vp=0, V-u=0 1in (0,00)x €,
(4.1) Ulz,=0 = £(1,0,...,0), ulg,=1 =0,
u(0, z) = a(x) in .

The pair of functions v(z) = k(1 —z,,0,---,0), q(z) = qo (const.), which is called Couette
flow, is a solution to the corresponding stationary problem. Now, Setting u(t,z) = v(z) +
w(t,z) and p(t,z) = q(z) +7(t, z) in (4.1), the problem on the stability for (4.1) is reduced
to the following problem for w and '

4

wt—Aw+k(1-—xn)@+wn-al+(w-V)w+V7r:0 in (0,00) x Q,
0z, oz,
(4.2) < V-w=0 in (0,00) x €,
Wlz,=0 =0, W|z,=1 =0,
w(0,z) = a(z) — v(z) = b(z) in Q.

\

To solve this problem we transform (4.2) into the integral equation:

(4.3) w(t,z)=e b - / ~(t=)Ap {k(l - xn) + wnaa: + (w- V)W} (s)ds

where P is the projection from L?(2) onto L2(2). Taking into consideration the bounded-
ness of €} with respect to z,, and the exponential decay property of the analytic semigroup
{e"*4};>0 obtained in Theorem 1.2, and employing the similar argument to [4] we can ob-
tain the unique time global solution to (4.3) under an assumption on smallness of |k| and
Ib||zn(q). To be more precise, there holds the following theorem.

Theorem 4.1. There is a sufficiently small number e > 0 such that if |k| + ||bl| @) <€,
then there exists a unique time-global solution

w(t,-) € BC([0, 00); Lg(£2))
to (4.2) and for any p > n there holds the estimate

1_n 1
|\ W(t)|| ey + t27 ™| W(t) || o) + 2 [VW(E) |y < C, VE> 0.
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The stability of the Poiseuille flow v(z) = k(zn(1 — z,)/2,0,--,0), q(z) = kz, for

w—-Au+(u-V)u+Vp=0, V-u=0 in (0,00) x Q,
(44) u|xn=0 = 0, ulz,.:l = 0,
u(0, z) = a(x) in Q

is also proved similarly. Setting u(t,z) = v(z) + w(t,z) and p(t,z) = q(z) + 7(¢,z) in
(4.4), the problem on the stability of (4.4) is reduced to the following problem for w and
m

(4.5)
wt—Aw+§x,,(mn—1)%+wn%+(w-V)w+V'ﬁ=0 in (0,00) x Q,
$ V.-w=0 in (0,00) x Q,
Weo=0 =0, Wlg,=1 =0,
w(0,z) = a(z) — v(z) = b(z) in Q.

Solving the corresponding integral equation we obtain the following theorem.

Theorem 4.2. There is a sufficiently small number € > 0 such that if |k| + ||b||r) < ¢,
then there ezists a unique time-global solution

W(t, ) € BC([O, OO); L:(Q))
to (4.5) and for any p > n there holds the estimate

l_=n 1
W ()l|Ln) + 1277 e [W(t)ll o) + 2| VW ()|l niy < C,  VE> 0.
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