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Abstract

Model equations are derived from what we call the strain-vorticity dynamics
of the incompressible viscous fluid motion. The global existence and blow-up
are examined for them and we see that the $L^{\infty}$ norm of the vorticity plays an
important role. Blow-up solutions are obtained as self-similar solutions.

1Introduction
One of the open questions about the Navier-Stokes equations is the problem on the
existence global-in-time or blow-up in-finite-time of the solutions in three dimensions.
Since this is anotoriously difficult problem, many attempts have been made to extract
the essence of the $3\mathrm{D}$ mechanism and simplify the problem. The present paper is one
of those which consider the problem by means of models.

Special solutions of the Navier-Stokes equations for incompressible viscous fluid are
obtained by the following ansatz:

$\mathrm{u}=($ $-\gamma_{1}(t)x+u(t,x,y)$ , $-\gamma_{2}.(t)y+v(t, x, y)$ , $(\gamma_{1}(t)+\gamma_{2}(t))z$),
where $\mathrm{u}$ is the velocity field, $t$ denotes time, and $(x, y, z)$ denotes apoint in three
dimensional space $\mathrm{R}^{3}$ . The $x$ and $y$ components of the vorticity $\omega$

$=\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}$
$\mathrm{u}$ turns out

to vanish and the 2component is $v_{x}-u_{y}$ , which is denoted by $\omega$ . Then $\omega$ , after being
substituted into the Navier-Stokes equations, satisfies

$\}\omega_{t}+(-\gamma_{1}x+u)\omega_{x}+(-\gamma_{2}y+v)\omega_{y}-(\gamma_{1}+\gamma_{2})\omega=\nu\triangle\omega$, (1)

where the subscripts $t,x$ , $y$ imply the differentiation. Since $u$ and $v$ satisfy $u_{x}+v_{y}=0$ ,
they are given as

$u(t,x, y)= \frac{-1}{2\pi}\int_{\mathrm{R}^{2}}\frac{y-\eta}{(x-\xi)^{2}+(y-\eta)^{2}}\omega(t, \xi, \eta)d\xi d\eta$ ,

$v(t,x, y)= \frac{1}{2\pi}\int_{\mathrm{R}^{2}}\frac{x-\xi}{(x-\xi)^{2}+(y-\eta)^{2}}\omega(t,\xi, \eta)d\xi d\eta$ .
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Therefore, the equation (1) can be viewed as an equation of $\omega$ only. This is anonlinear,
nonlocal equation of $\omega$ , and can be solved once $\gamma_{1}$ and $\gamma_{2}$ are prescribed. It is customary
to call the scalar function $\omega$ vorticity. The parameters $\gamma_{1}$ and $\gamma_{2}$ are called the strain-
rates.

If $\gamma_{1}\equiv\gamma_{2}$ , then there exist axisymmetric solutions, where $\omega$ $=\omega(t, r)$ with $r=$
$\sqrt{x^{2}+y^{2}}$ . The velocity and the vorticity are related indirectly by

$u=-f(t, r)\sin\theta$ , $v=f(t, r)\cos\theta$ , $\omega$ $= \frac{1}{r}(rf)_{r}$ .

With $\gamma(t)=\gamma_{1}(t)=\gamma_{2}(t)$ , the vorticity satisfies the following equation:

$\omega_{t}-\gamma(t)(r\omega_{r}+2\omega)=\nu\frac{1}{r}(r\omega_{r})_{r}$ $(0\leq r<\infty)$ . (2)

Equations (1) and (2) are known for many decades, originally due to Burgers, see
[4, 6, 7, 8].

The equations above are derived above by modeling what is called Burgers’ vortex
tube. We can consider the vortex sheet as well; in that case, we start with the following
ansatz:

$\mathrm{u}=(-\gamma(t)x, v(t, x), \gamma(t)z)$ .
The vorticity $\omega=v_{x}$ satisfies

$\omega_{t}-\gamma(t)(x\omega_{x}+\omega)=\nu\omega_{xx}$ $(-\infty<x<\infty)$ . (3)

Equations (2) and (3) can be solved with respect to $\omega$ once we know the strain-rate
$\gamma$ . There is no way of specifying $\gamma(t)$ without resorting to akind of hypothesis. There
are many papers in which $\gamma$ is regarded as aspecified constant ([4, 6, 7, 8]). Moffatt
[8] considered the case where $\gamma(t)$ is given as asingular function $c/(T-t)$ , where $c$ and
$T$ are positive constants, and he concluded the same blow-up asymptotics for $\omega$ as the
one for $\gamma(t)$ . This choice of $\gamma(t)$ makes the equation (2) non-autonomous. In general
we may assume that $\gamma$ is determined by $\omega$ through afunctional relation $\gamma=F(\omega)$ and
make (2) autonomous.

We introduce two specific examples of $F(\omega)$ in the next section. For those models,
steady-states are found in section 3, and some blow-up solutions of similarity form is
obtained in section 4. Global existence of the solutions in some cases are proved in
section 5. Vortex sheet models are considered in section 6. Finally, concluding remarks
are given in section 7.

2Models
The assumption $\backslash \gamma=F(\omega)$ can be interpreted as follows. In general $3\mathrm{D}$ flows, the
vorticity is highly localized if $\nu$ is small. With this in mind, we assume that many vor-
tex tubes and other vortical structures are distributed in the $3\mathrm{D}$ space. We then
focus on avortex tube located on the $z$-axis. This vortex tube influences othe$\mathrm{r}$
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vortical structures which are distant from the vortex tube. They, in turn, apply
aforce on the vortex tube by inducing astrained velocity field, which is given as
$(-\gamma_{1}(t)x, -\gamma_{2}(t)y$ , $(\gamma_{1}(t)+\gamma_{2}(t))z)$ . The magnitude of the strain-rate is determined
by the magnitude of the vortex tube. Asimilar interpretation can be given to the
vortex sheet.

To choose the strain-rates more specifically, we recall that the strain-rate tensor
$S(x)=(\partial u_{i}/\partial x_{j}+\partial u_{j}/\partial x_{i})_{1\leq i,j\leq 3}$ has the following integral representation (see e.g.
[1] $)$

$S(x)= \frac{3}{8\pi}\mathrm{P}.\mathrm{V}.\int_{\mathrm{R}^{3}}[y\otimes(y\cross\omega(x+y))+(y\mathrm{x} \omega(x+y))\otimes y]\frac{dy}{|y|^{5}}$ ,

where $\mathrm{P}.\mathrm{V}$ . denotes the principal value. We observe that (i) the strain-rate tensor has
the same dimension as $\omega(x)$ and (ii) it is alinear functional of $\omega(x)$ . Those properties
should be reflected in any models.

We here propose two hypotheses on the relation between the strain-rate and the
vorticity. The first one is obtained by assuming

$\gamma(t)=\mu||\omega(t)||_{p}$ , (4)

where $||||_{p}$ denotes the $IP$ norm and $\mu$ is aconstant. $U$ norm is defined as

$||f||_{p}=(2 \pi\int_{0}^{\infty}|f(r)|^{p}rdr)^{1/p}$

for $1\leq p<\infty$ and
$||f||_{\infty}= \sup_{0\leq r<\infty}|f(r)|$

for $p=\infty$ .
The presence of the constant $\mu$ is to adjust the dimension of both sides: $\mu$ has

dimension $L^{-2/p}$ . Accordingly, we are assuming that alength-scale is prescribed. If
$p=\infty$ , then $\gamma$ and $||\omega||_{\infty}$ are of the same dimension, hence there is no need to
introduce the constant. But, for $1\leq p<\infty$ , the constant is necessary, although
this is an unidentified parameter. Now the problem is to study the properties of the
solution $\omega$ of

$\omega_{t}$ $=\mu||\omega(t)||_{p}(r\omega_{r}+2\omega)$ $+ \nu\frac{1}{r}(r\omega_{r})_{r}$ $(0\leq r<\infty, 0<t)$ , (5)

$\omega(0,r)$ $=\omega_{0}(r)$ . (6)

The second hypothesis is obtained by postulating absence of atypical length scale,
which can be accomplished by asuitable combination of $L^{p}$ norm and $L^{1}$ norm:

$\gamma(t)=||\omega(t)||_{p}^{p/(p-1)}||\omega(t)||_{1}^{-1/(p-1)}$ (7)

for $1<p<\infty$ . Here, the dimensions of both sides are the same, and we do not need
to introduce anew dimensional parameter. The evolution equation is now

$\omega_{t}=||\omega(t)|[_{p}^{p/(p-1)}||\omega(t)||_{1}^{-1/(p-1)}(r\omega_{r}+2\omega)$ $+ \nu\frac{1}{r}(r\omega_{r})_{r}$ . (8)
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By similar hypotheses on vortex sheet, we get to

$\omega_{t}=\mu||\omega(t)||_{p}(x\omega_{x}+\omega)+\nu\omega_{xx}$ $(-\infty<x<\infty, 0<t)$ (9)

and

$\omega_{t}=||\omega(t)||_{p}^{p/(p-1)}||\omega(t)||_{1}^{-1/(p-1)}(x\omega_{x}+\omega)+\nu\omega_{xx}$. $(-\infty<x<\infty, 0<t)$ (10)

Note that the positivity is preserved in the sense that $\omega_{0}(r)\geq 0$ everywhere implies
$\mathrm{u}(\mathrm{t}, r)\geq 0$ for all $t$ and $r$ . (This can be verified most easily by looking at (16) and
(17) in section 5. ) We thereby consider only those initial data which are nonnegative
and smooth everywhere and decay sufficiently rapidly to zero as $r$ or $|x|arrow\infty$ . Note
also that the circulation is preserved;

$\int_{0}^{\infty}\omega(t, r)rdr\equiv\int_{0}^{\infty}\omega_{0}(r)rdr$ ,

which can be easily verified. We have therefore obtained avery important proposition
that $||\omega||_{1}$ is conserved. If $p=1$ , the equation (5) becomes linear and no blow-up

occurs. Also, the equation (8) is written as

$\omega_{t}=\lambda||\omega(t)||_{p}^{p/(p-1)}(r\omega_{r}+2\omega)$ $+ \nu\frac{1}{r}(r\omega_{r})_{r}$ , (11)

where Ais aconstant depending on the initial data.
Circulation is also preserved for vortex sheet and we have

$\int_{-\infty}^{+\infty}\omega(t, x)dx\equiv\int_{-\infty}^{+\infty}\omega_{0}(x)dx$ .

Remark. When $p=\infty$ , (7) is the same hypothesis as (4) with $p–\infty$ . The relation
(7), however, tends to anontrivial relation as $parrow 1$ :

$\lim_{parrow 1}\frac{||\omega||_{p}^{p/(p-1)}}{||\omega||_{1}^{1/(p-1)}}=||\omega||_{1}\exp(\frac{1}{||\omega||_{1}}\int_{0}^{\infty}2\pi r|\omega|\log|\omega|dr)$ .

We do not have any result for this hypothesis.

Remark. Nonlinear evolution equations which contains nonlinear terms represented
by $L^{p}$ norms are not new, see for instance $[2, 10]$ . We, however, could not find (5),
(8), (9), or (10) in references.

3Steady-state
Equations (5) and (8) possess asteady-state known as Burgers’ vortex tube, which is
given by $\omega(t, r)=A\exp(-ar^{2})$ , where $a$ and $A$ satisfy

$A= \frac{2a\nu}{\mu}(\frac{ap}{\pi})^{1/p}(1\leq p<\infty)$ , $A= \frac{2a\nu}{\mu}$ $(p=\infty)$
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for (5) and
$A=2a\nu p^{1/(p-1)}$

for (8). The constant $a$ and $A$ are determined if $1\leq p<\infty$ and if we specify the value
of the circulation:

$\Gamma=2\pi$ $\int_{0}^{\infty}\omega(t, r)rdr$ .

Similarly, (9) and (10) possess asteady-state given by $\omega(t, x)=A\exp(-ax^{2})$ ,
where

$A= \frac{2a\nu}{\mu}(\frac{ap}{\pi})^{1/(2p)}$ and $A=2a\nu p^{1/(2(p-1))}$ ,

respectively for (9) and (10).

4Similarity solution
We first consider the equation (5). We assume the solution of the following form:

$\omega(t, r)=(T-t)^{-\alpha}\phi(r/\sqrt{T-t})$ .

Then it turns out that $\alpha=1+p^{-1}$ and $\phi$ satisfies

$\alpha\phi(\xi)+\frac{1}{2}\xi\phi’(\xi)=\mu||\phi||_{p}(2\phi +\xi\phi’(\xi))+\nu\frac{1}{\xi}(\xi\phi’(\xi))’$, (12)

where $\xi=r/\sqrt{T-t}$.
If $p=\infty$ , then

$\nu(\phi’(\xi)+\frac{1}{\xi}\phi’(\xi))+(2A-1)(\phi(\xi)+\frac{1}{2}\xi\phi’(\xi))=0$ , (13)

where
$A= \mu\sup_{0\leq\xi<\infty}\phi(\xi)$ .

The equation (13) can be integrated and we have

$\nu\xi\phi’(\xi)+\frac{2A-1}{2}\xi^{2}\phi(\xi)=k$ ,

where $k$ is aconstant. It turns out that asolution which is bounded near ( $=0$ can
be obtained only if $k$ $=0$ and the solution is given by

$\phi(\xi)=\frac{A}{\mu}\exp(-\frac{2A-1}{4\nu}\xi^{2})$ ,

where $1/2<A$ is assumed. For this blow-up solution, we have $\gamma=\mu||\omega(t)||_{\infty}=$

$A(T-t)^{-1}$ . Thus, we may say that what was assumed in [8] can be derived from our
hypothesis $\gamma=\mu||\omega(t)||_{\infty}$ .
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Now, we have found an explicit blow-up solution for $p=\infty$ . Since there is no
blow-up for $p=1$ , it would be an interesting question to determine which $p$ permits
blow-up solutions and which $p$ does not.

The equation (12) does not seem to admit asolution if $1\leq p<\infty$ . Let us search
asolution $\phi$ , which decays sufficiently rapidly at $r=\infty$ and is positive everywhere.
The equation (12) can be written as

$\nu(\xi\phi’)’+A(\xi^{2}\phi)’=\frac{1}{2}\xi^{2-2\alpha}(\xi^{2\alpha}\phi)’$ , (14)

where
$A= \mu(2\pi\int_{0}^{\infty}\phi(\xi)^{p}\xi d\xi)^{1/p}$

By integrating this equation, we obtain

$\nu\xi\phi’(\xi)+(A-\frac{1}{2})\xi^{2}\phi(\xi)=\frac{1}{p}\int_{0}^{\xi}\phi(\eta)\eta d\eta$.

By letting $4arrow\infty$ , we have
$\int_{0}^{\infty}\phi(\eta)\eta d\eta=0$ ,

which is impossible for positive $\phi$ .
It is therefore natural to suspect that the dynamical system (5) admits blow-up

solutions if $p=\infty$ but not if $1\leq p<\infty$ . This is actually true and will be proved in
the next section.

We now look for similarity solutions of (8): we have a $=1$ and

$\phi(\xi)+\frac{1}{2}\xi\phi’(\xi)=||\phi||_{p}^{p/(p-1)}||\phi||_{1}^{-1/(p-1)}(2\phi+\xi\phi’(\xi))+\nu\frac{1}{\xi}(\xi\phi’(\xi))’$ (15)

Its solution is
$\phi(\xi)=Kp^{1/(p-1)}\exp(-\frac{2K-1}{4\nu}\xi^{2})$ ,

where $K$ is aconstant satisfying $K>1/2$ . Therefore (8) has blow-up solutions for all
$p\in(1, \infty)$ . The strain-rate satisfies $\gamma(t)=C/(T-t)$ with apositive constant $C$ .

It is not easy for us to determine whether blow-up occurs or not for general initial
data. If acomparison theorem such as the one below holds, any initial date which is
larger everywhere than the self-similar blow-up solution blows up in finite time. But
we do not know whether this is true or not.

If $\omega$ and $\zeta$ are two solutions of (5) such that $\omega(0, r)\leq\zeta(0, r)$ for all $r\in[0, \infty)$ . Then
$\omega(t, r)\leq\zeta(t, r)$ for all $t$ and $r$ ?

Souplet [10] proved acomparison theorem for nonlocal parabolic equations, but we
could not apply his theorem; we could not verify, in the case of our equations, one of
the assumption appearing in his theorem
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5Energy estimates
We prove in this section the global existence of the solutions of (5) for $1\leq p<\infty$ .

Before deriving apriori estimates necessary for the global existence, some facts
about the local existence should be noted. Solutions local-in-time is constructed by
the successive approximations; for $n=1,2$ , $\cdots$

$\omega_{t}^{(n+1)}=\mu||\omega^{(n)}(t)||_{p}(r\omega_{r}^{(n+1)}+2\omega^{(n+1)})+\nu\frac{1}{r}(r\omega_{r}^{(n+1)})_{r}$

In doing so, we need to estimate the solutions of the following linear equation:

$\Omega_{t}=A(t)(r\Omega_{r}+2\Omega)+\nu\frac{1}{r}(r\Omega_{r})_{r}$ , (16)

where $A(t)$ is agiven function of $t$ . This linear equation can be solved easily by atrick
originally due to Lundgren (see [4, 7] ). The trick is to use the following change of
variables :

$\Omega(t, r)=a(\tau)^{2}u(\tau, a(\tau)r)$ , (17)

where
$a( \tau)=\exp(\int_{0}^{t}A(s)ds)$ , $\frac{d\tau}{dt}=\exp(2\int_{0}^{t}A(s)ds)$ .

$\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{a}\mathrm{r}\mathrm{y}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{B}\mathrm{y}\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{i}\mathrm{o}\mathrm{n},$

,
$\Omega \mathrm{a}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{d}\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{w}\mathrm{e}1\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{u}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{w}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}u_{\tau}=\nu(u_{\rho\rho}+\frac{1}{\mathrm{f}-}u_{\rho}),\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\rho=a(\tau)r\mathrm{A}\mathrm{c}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{y}$

,

equation.
In this way, we can prove that, for all $\omega_{0}\in L^{1}\cap L^{p}$ , there exists $T>0$ such that

the solution of (5) exists and unique in $C^{0}([0, T];L^{1}\cap L^{p})$ .
We now consider apriori estimates, which are necessary for global existence. Mul-

tiplying (5) by $2\pi\mu(t, x)^{p-1}r$ and integrating by parts, we have

$\frac{d}{dt}||\omega(t)||_{p}^{p}=2(p-1)\mu||\omega(t)||_{p}^{p+1}-2\pi\nu(p-1)p\int_{0}^{\infty}\omega^{p-2}\omega_{r}^{2}rdr$. (18)

We then use the following theorem due to Gagliardo and Nirenberg:

Theorem 1Let $n$ be a positive integer. For $1\leq\alpha,\beta$ , $\gamma\leq\infty$ , we define $s$ by

$\frac{1}{\alpha}=s(\frac{1}{\gamma}-\frac{1}{n})+\frac{1-s}{\beta}$ .

We assume that $0\leq s\leq 1$ . If $n\geq 2$ , we also assume either $\alpha\neq\infty$ or $\gamma$ $\neq n$ . Then
there exists a constant $c$ such that the following inequality holds true for any $f$ defined
in $\mathrm{R}^{n}$ :

$||f||_{\alpha}\leq c||f||_{\beta}^{1-\epsilon}||\nabla f||_{\gamma}^{s}$ , (19)

where
$||f||_{\alpha}=( \int_{\mathrm{R}^{n}}|f(x)|^{\alpha}dx)^{1/\alpha}$
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Proof of this theorem can be found in many textbooks on functional analysis or partial

differential equations. See, e.g., [3] or [5].
From now on, the symbol $c$ is used to denote various positive constant independent

of $t$ . It represents different values in different places. We now use the GagliardO-
Nirenberg theorem for $n=2$ and $f(x)=g(r)$ , $r=|x|$ to obtain

$( \int_{0}^{\infty}|g(r)|^{\alpha}rdr)^{1/a}\leq c(\int_{0}^{\infty}|g(r)|^{\beta}rdr)^{(1-s)/\beta}(\int_{0}^{\infty}|g’(r)|^{\gamma}rdr)^{s/\gamma}$ (20)

This equation is then applied to the solution of (5). We put $g(r)=\omega(t, r)^{p/2}$ and
a $=2$ , $\beta=2/p$ , $\gamma=2$ . Here $2\geq p$ is assumed. Then $s=(p-1)/p$ and

$|| \omega(t)||_{p}\leq c||\omega(t)||_{1}^{1/p}(\int_{0}^{\infty}\omega(t, r)^{p-2}\omega_{r}(t, r)^{2}rdr)^{(p-1)/p^{2}}$

Since $L^{1}$ -norm of $\omega(t)$ is non-increasing, we have

$|| \omega(t)||_{p}^{p^{2}/(p-1)}\leq c\int_{0}^{\infty}\omega(t, r)^{p-2}\omega_{r}(t, r)^{2}rdr$,

where $c$ is independent of $t$ . We therefore obtain

$\frac{d}{dt}||\omega(t)||_{p}^{p}\leq 2(p-1)\mu||\omega(t)||_{p}^{p+1}-c||\omega(t)||_{p}^{p^{2}/(p-1)}$ ,

where $c$ is independent of $t$ . Note that $p+1<p^{2}/(p-1)$ . From this inequality, it is
easy to derive the boundedness of $\omega(t)$ in $L^{p}$ . Therefore we have proved

Theorem 2Consider (5) and assume that $1\leq p\leq 2$ . If $\omega(0, \cdot)\in L^{1}\cap L^{p}$ , then the
solution exists globally in time.

The restriction $p\leq 2$ is actually unnecessary. This is in fact the consequence of
the following lemma.

Lemma 1Consider (5) and assume that $\omega(0)\in L^{1}\cap L^{p}$ . Let $1\leq q\leq p$ and assume
that $M \equiv\sup_{0<t}||\omega(t)||_{q}<\infty$ . Then, for all 6such that $q\leq\delta\leq 2q$ and $\delta$ $\leq p$, we
have $\sup_{0<t}||\omega(t)||_{\delta}<\infty$ .

Proof. Note first that $\omega(t)\in L^{\eta}$ for all $\eta\in[1,p]$ , which is verified by Holder’s
inequality. We have

$\frac{d}{dt}||\omega(t)||_{\delta}^{\delta}=2\mu(\delta-1)||\omega(t)||_{p}||\omega(t)||_{\delta}^{\delta}-2\pi\nu(\delta-1)\delta\int_{0}^{\infty}\omega^{\delta-2}\omega_{r}^{2}rdr$ .

We then use the GagliardO-Nirenberg theorem for $g=\omega^{\delta/2}$ with $\alpha=2$ , $\beta=2q/\delta$, $\gamma=$

$2$ , $s=1-q/\delta$ to obtain

$|| \omega||_{\delta}\leq c(\int_{0}^{\infty}\omega^{\delta-2}\omega_{r}^{2}rdr)^{(\delta-q)/(\delta^{2})}$ ,
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where the boundedness of $||\omega(t)||_{q}$ is used. Similarly we have

$|| \omega||_{p}\leq c(\int_{0}^{\infty}\omega^{\delta-2}\omega_{r}^{2}rdr)^{(p-q)/(p\delta)}$

by choosing $\alpha=2p/\delta$, $\beta=2q/\delta$, $\gamma=2$ , $s=(p-q)/p$. Combining these two inequalities,
we obtain

$|| \omega||_{p}||\omega||_{\delta}^{\eta}\leq c\int_{0}^{\infty}\omega^{\delta-2}\omega_{r}^{2}rdr$ ,

where
$\eta=\frac{\delta^{2}}{\delta-q}(1-\frac{1}{\delta}(1-\frac{q}{p}))$ .

Since $\eta>\delta$ , we have the boundedness of $||\omega||_{\delta}$ .

$\square$

Making repeated use of this lemma, we see that $\omega(t)$ is bounded in $L^{1}\cap L^{p}$ . We
therefore have proved the following

Theorem 3Assume that $\omega(0, \cdot)\in L^{1}\cap L^{p}$ . Then, for all $1\leq p<\infty_{f}$ the solution of
(5) eists for all time and is bounded in $L^{1}\cap L^{p}$ .

6Solutions for vortex sheet
Let us consider (9) again. If we look for asolution of the following form:

$\omega(t,x)=(T-t)^{-\alpha}\phi(x/\sqrt{T-t})$ ,

then it turns out that $\alpha=1+(2p)^{-1}$ , and

$- \alpha\phi(\xi)-\frac{1}{2}\xi\phi’(\xi)=\mu||\phi||_{p}(\phi+\xi\phi’(\xi))+\nu\phi’(\xi)$. (21)

where $\xi=x/\sqrt{T-t}$. No positive function satisfy this equation for any $1\leq p\leq\infty$ .
Therefore, we can expect global existence of the solutions in the vortex sheet models.

In fact, the GagliardO-Nirenberg theorem also holds true in one dimension and we
obtain, in almost the same way, the following theorem.

Theorem 4For any $\omega_{0}\in L^{1}\cap L^{\mathrm{p}}$ , the solution of the equation (9) exists globally in
time. The same conclusion holds true for (10)
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7Conclusion
Existence $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ blow-up of solutions to some model equations are considered. Al-
though we rely on hypotheses about the relation between the strain-rate and the
vorticity, it should be noted that the solutions nevertheless represent exact solutions
of the Navier-Stokes equations. Solutions of the vortex sheet models (9) and (10) exist
globally in time for any choice of $p$ including $p=\infty$ . Vortex tube model (8) has
blow-up solutions for all $p\in(1, \infty]$ . On the other hand, for the model (5), blow-up
exists if $p=\infty$ but not if $1\leq p<\infty$ .

We have derived the same conclusion on the blow-up asymptotics as in Moffatt
[8] but, while he assumes the blow-up strain-rate $\gamma(t)=C/(T-t)$ , we have the same
conclusion from autonomous systems (5) and (8).

Because the model we have considered here are based upon some assumptions
on the choice of strain-rates, the results on the presence or absence of blow-up do not
necessarily carry over to the general Navier-Stokes equations. However, it is interesting
to us that there is aremarkable difference between vortex tube and vortex sheet
solutions within the identical framework, $i.e$ . under the same hypotheses. This may
suggest that geometrical structure of vortices substantially influence the regularity
property, which seems to comply with known theories, see [1].

Many important questions are left unanswered. For instance, stability of the
steady-states and asymptotic behavior of the global solutions need further study. Sim-
ilarity solutions have been sought only in positive solutions. We do not know whether
equation (12) with $\alpha=1+\frac{1}{p}>1$ , or (21) with $\alpha=1+\frac{1}{2p}$ may possess anontrivial
solutions with changing sign.

We have not considered the general, non-axisymmetric solutions, which obey
$\omega_{t}+(-\gamma_{1}x+u)\omega_{x}+(-\gamma_{2}y+v)\omega_{y}-(\gamma_{1}+\gamma_{2})\omega=\nu\triangle\omega$ ,

supplemented by

$u(t, x, y)= \frac{-1}{2\pi}\int_{\mathrm{R}^{2}}\frac{y-\eta}{(x-\xi)^{2}+(y-\eta)^{2}}\omega(t, \xi, \eta)d\xi d\eta$ ,

$v(t, x, y)= \frac{1}{2\pi}\int_{\mathrm{R}^{2}}\frac{x-\xi}{(x-\xi)^{2}+(y-\eta)^{2}}\omega(t, \xi, \eta)d\xi d\eta.$ ,

and
$\gamma_{1}=F_{1}(\omega)$ , $\gamma_{2}=F_{2}(\omega)$ .

Certainly more computations than in the present paper are necessary for studying
this system. The case where $\gamma_{1}$ and $\gamma_{2}$ are constant were considered in $[6, 9]$ . But the
general cases seem to be difficult to analyze.
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