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Introduction

In this note we return to the old subject of the Euler equation for aperfect fluid
in abounded domain $\Omega\subset \mathrm{R}^{m}$ , $m\geq 2$ , with asmooth boundary $b\Omega$ . For notational
convenience we assume that $\Omega$ is closed. The problem is to solve the initial value problem
given by

(E1) $Du\equiv\partial_{t}u+(u.\partial)u=\partial\pi$ for $t\geq 0$ , $x\in\Omega$ ,

(E2) $\partial.u=0$ for $x\in\Omega$ , $\nu.u=0$ for $t\geq 0$ , $x\in\Omega$ ,

(E3) $u(0, x)=a(x)$ for $x\in\Omega$ .

Here $u=u(t, x)$ , $t\in \mathrm{R}$ , $x\in\Omega$ , is the velocity field; $\pi=\pi(t, x)$ is the pressure; $\nu=\nu(x)$

is the unit outer normal on $b\Omega;\partial_{t}=\partial/\partial t;\partial=$ $(\partial_{1}, \ldots, \partial_{m})$ , $\partial_{j}=\partial/\partial x_{j}$ ; $\partial u$ denotes the
tensor (matrix) with $jk$ component $\partial_{j}u_{k};\partial.u=\mathrm{d}\mathrm{i}\mathrm{v}(u)=\partial_{i}u_{i}$, $\nu.u=\nu_{i}u_{i};u.\partial=u:\partial_{*}$.

is adifferential operator acting on scalars or on vectors componentwise. (Summation
convention is used throughout.)

It is our object to prove that the problem is well posed in the space of H\"older continuous
functions (in areasonable sense). This was done for $m=2$ in $[]$ (see also Yudovic []),
leading to aglobal (in time) solution, but it appears that no similar result is not known
for $m\geq 3$ .

First some terminology and notation. We are concerned with functions on $\Omega$ or $I\cross\Omega$

with values in $\mathrm{R}$ , $\mathrm{R}^{m}$ , or $\mathrm{R}^{m\mathrm{x}m}$ , etc., where $I=[0, T]$ for some $T>0$ . We call them
simply scalars, vectors, tensors, etc. Avector $v$ is called atangential flow, or simply a
flow, if $\partial.v=0$ and $\nu.v=0$ . (Whenever $\nu$ appears, it is understood that the condition
holds on $\Gamma=b\Omega.$ ) Aflow $v$ is irrotational if $\partial\wedge v=0$ in addition. Irrotational flows are
smooth on $\Omega$ and form afinite dimensional space, which we denote by H. If $\Omega$ is simply
connected, then $\mathrm{H}=\{0\}$ .

Avector of the form $\partial\phi$ for some scalar $\phi$ is called agradient. Aflow $v$ and agradient
$\partial\phi$ are orthogonal, $v[perp]\partial\phi$ in symbol; it means that $<v$ , $\phi>=0$ , where $<,$

$>\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}L^{2}$

scalar product.
In what follows we consider the classes of functions on $\Omega$ such as

$\underline{X}=C(\Omega;\mathrm{R})$ , $\underline{\mathrm{Y}}=C^{1}(\Omega;\mathrm{R})$ , (1.1)

$X=C(\Omega;\mathrm{R})$ , $\mathrm{Y}=C^{1+\lambda}(\Omega;\mathrm{R})$ , with A6 $(0, 1)$ fixed. (1.2
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Vector [matrix] valued functions with components in these spaces will be denoted by
$\underline{X}^{m}$ , $X^{m}[\underline{X}^{m\mathrm{x}m}, X^{m\mathrm{x}m}]$ , etc. We denote by $||$ $||$ the $\sup$-norm, by $[]_{\lambda}$ the Hodlder
A-seminorm, indiscriminately for scalar, vector, or matrix valued functions.

For time dependent functions, it would be natural to work with the class $C(I;\mathrm{Y})$ ,

since we seek solutions $u$ of (E1-3) with values in Y. However, it is often difficult to
establish continuity in time of H\"older continuous functions. For example, the free wave
$u=\phi(x-t)$ on $\mathrm{R}$ is not necessarily in $C(I;C^{1+\lambda}(\mathrm{R}))$ when $\phi\in C^{1+\lambda}(\mathrm{R})$ .

For this reason we find it convenient to use the classes such as

$\hat{C}(I;X)=C(I;\underline{X})\cap B(I;X)$ , $\hat{C}(I;\mathrm{Y})=C(I;\underline{\mathrm{Y}})\cap CB(I;\mathrm{Y})$ , 1.3

where $B$ denotes the class of bounded functions. We shall seek the solution in the class
$\hat{C}(I;\mathrm{Y})$ , rather than $C(I;\mathrm{Y})$ , assuming $a\in \mathrm{Y}$ .

Regarding the $\hat{C}$ spaces, we note that we can still define the integral

$\phi=\int_{s}^{t}f(\tau)d\tau\in X$ for $f\in\hat{C}(I;X)$ .

Indeed, the integral exists in $\underline{X}$ since $f\in C(I;\underline{X})$ ;then it is easy to estimate $|\phi(x)-$

$\phi(y)|/|x-y||^{\lambda}$ using the property $f\in B(I;X)$ , to show that $\phi\in X$ with

$|| \phi||\leq\int_{s}^{t}||f(\tau)||d\tau$, $[ \phi]_{\lambda}\leq\int_{s}^{t}[f(\tau)]_{\lambda}d\tau$,

where the second integral should be interpreted as the upper integral (in case the integrand
is not measurable). Similar results hold for $f\in\hat{C}(I;\mathrm{Y})$ .

Remark. There is nothing intrinsically wrong with the space $C(I;\mathrm{Y})$ . In fact $\hat{C}(I;\mathrm{Y})$ is a
subspace of $C(I;\mathrm{Y}’)$ where $\mathrm{Y}’=C^{1+\lambda’}(\Omega)$ with any $\mathrm{A}’\in(0, \mathrm{A})$ . Thus our solution of the
Euler equation will belong to $C(I;\mathrm{Y}’)$ , but changing the Holder exponent is not desirable
in our problem. On the other hand, some regularity results can be obtained by working
with $C(I;\mathrm{Y}’)$ , see e.g. [K].

Our main $\alpha \mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{s}$ ate now given by

Theorem I. For each flow $a\in \mathrm{Y}^{m}$ , there is $T>0$ and aunique solution $(u, \partial\pi)$ of
(E1-3) such that

$u\in\hat{C}(I;\mathrm{Y}^{m})$ , $\partial u\in\hat{C}(I;X^{m\mathrm{x}m})$ , $\partial\pi\in\hat{C}(I;\mathrm{Y}^{m})$ , $u(0)=a$, $I=[0, T]$ . (1.4)

If $m=2$ , the solution is global ( $\mathrm{T}$ may be taken arbitrarily large)
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One of our main tools in the proof of Theorem Iis the following lemma (the Helmholtz
decomposition), which is well known for Sobolev spaces. The proof is contained in the
basic results of Morrey [M], see Theorem 7.5.2 in particular (cf. also [K]).

Lemma 1.1. There is abounded, linear projection $P$ on $X^{m}$ such that $PX^{m}$ is the set
of all flows in $X^{m}$ and $(1-P)X^{m}$ is the set of all gradients in $X^{m}$ . $P$ sends $\mathrm{Y}^{m}$ into
itself, and acts also as abounded projection. $PX^{m}$ and $(1-P)X^{m}$ are orthogonal (in
the $L^{2}$ -metric).

Since $u=Pu$ for aflow $u$ and since $P(\partial\pi)=0$ (anticipating $\partial\pi\in X^{m}$), we can
eliminate the pressure term in (E1) by applying $P$ , obtaining

$\partial_{t}u+P(u\partial)u=0$ , $u=Pu$ , $u(0)=a$ . (1.5)

In what follows we shall solve (1.5) for $u\in\hat{C}(I;\mathrm{Y}^{m})$ , where $I=[0, T]$ with sufficiently
small $T$ depending on $a$ . The pressure term will then be determined by $\partial\pi=(1-P)(u.\partial)u$ .

Remark. Unfortunately, our method does not yield aglobal (in time) solution, which is
known to exist if $m=2$ (see [K]).

2. The linearized equation

We shall solve (1.5) by afixed point theorem based on linearization; we fix aflow
$v\in\hat{C}(I;P\mathrm{Y}^{m})$ and solve the linearized initial value problem

$\partial_{t}u+P(v.\partial)u=0$ , $u(0)=u^{0}$ . (2.1)

Since the solution $u$ will automatically be aflow, we shall be able to apply some of the
common fixed point theorems to the map $v\mapsto u$ .

For the solution of (2.1) the following observation, due to Lai (see [K]), is essential.
Consider the modified problem:

$\partial_{t}u+(v.\partial)u-Q(v.\partial)Pu=0$ , $u(0)\in u^{0}$ , (2.2)

where $Q=1-\mathrm{F}$ , the projection onto gradients along flows. (Note that the modification
consists only in the extra factor $P$ in the last term). Then we have
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Lemma 2.1. If $u\in\hat{C}(I;\mathrm{Y}^{m})$ with $u(0)\in P\mathrm{Y}^{m}$ , then (2.1) and (2.2) are equivalent. In
particular $u$ is aflow $(u=Pu)$ .

Proof. (2.1) implies that $\partial_{t}Qu=Q\partial_{t}u=0$. Since $Qu(0)=0$ , it follows that $Qu=0$ ,
hence $u=Pu$ and (2.2) holds. Conversely, assume (2.2). Denoting by $|$ $|$ the $L^{2}$ note

and by $<,$ $>\mathrm{t}\mathrm{h}\mathrm{e}$ inner product on $\Omega$ , we have

$\partial_{t}|Qu(t)$ $|^{2}/2=<\partial_{t}u$ , $Qu>=<-(v.\partial)u+Q(v.\partial)Pu$ , $Qu>$

$=<-(v.\partial)(1-P)u$ , $Qu>=-<(v.\partial)Qu$ , $Qu>=0$ ,

since $v.\partial$ is askew symmetric operator due to the fact that $v$ is aflow. It follows that
$Qu(0)$ $|$ is constant in $t$ . But since $Qu(0)=0$ , we conclude that $Qu=0$ , hence $Pu=u$

and (2.2) reduces to (2.1).

(2.2) is easier to handle than (2.1). The reason lies in the following lemma, due
essentially to Temam [T].

Lemma 2.2. The bilinear operator $v$ , $w\mapsto Q(v.\partial)w$ is bounded from $P\mathrm{Y}^{m}\cross P\mathrm{Y}^{m}$ into
$QYm$ , with abound depending only on $\Omega$ and A. (There is no loss of derivative.)

Proof. Let v, w $\in P\mathrm{Y}^{m}$ . Obviously $Q(v.\partial)w$ is in $QX^{m}$ , so it can be written as $\partial\phi$ with
a $\phi\in C^{1+\lambda}(\Omega)$ . Then we have

Act) $=\partial.(1-P)(v.\partial)w=\partial.(v.\partial)w=\partial_{j}[(v_{k}\partial_{k})w_{j}]$

$=(\partial_{j}v_{k})(\partial_{k}w_{j})\in C^{\lambda}(\Omega)$ . (2.1)

because $\mathrm{d}.\mathrm{w}=0$ for $w\in P\mathrm{Y}^{m}$ .
Similarly we have

$\nu.\partial\phi=-\rho_{jk}v_{k}w_{j}\in C^{1+\lambda}(b\Omega)$ , (2.2)

where $\rho_{jk}=\partial_{j}\partial_{k}\rho$, with $\rho(x)=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x, b\Omega)$ . $\rho$ is asmooth geometric function on acertain
boundary strip of $\Omega$ , and we have

$\nu=\partial\rho$ (2.3)

on $\mathrm{b}\mathrm{Q}$ , whereby $\nu$ is also extended into that boundary strip. To see that (2.2) is true,
note that

$\nu.(1-P)(v.\partial)w=\nu.(v.\partial)w=(v.\partial)(\nu.w)-v_{k}w_{j}\partial_{k}\nu_{j}=-PjkVkWj$ , (2.1)

where $v.\partial$ is atangential derivative on $b\Omega$ and $\nu.w=0$ on $b\Omega$ , so that $(v.\partial)(\nu.w)=0$

while $\partial_{k}\nu_{j}=\rho_{jk}$ .
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(2.2) and (2.4) show that $\phi$ is asolution of the Neumann problem, with $\Delta\phi\in C^{\lambda}(\Omega)$

and $\nu.\partial\phi\in C^{1+\lambda}(b\Omega)$ . It follows from the standard elliptic theory that $\phi\in C^{2+\lambda}(\Omega)$ .
Hence $Q(v.\partial)w=\partial\phi\in QYm$ , as required. (The compatibility condition in the Neumann
problem is automatically satisfied.)

Lemma 2.3. Let $v_{n}$ , $w_{n}\in \mathrm{Y}$ , $n=1,2$ , $\ldots$ , be bounded sequences in $P\mathrm{Y}^{m}$ such that
$v_{n}arrow v$ , $w_{n}arrow w$ in $\underline{\mathrm{Y}}$ . Then $v$ , $w\in \mathrm{Y}$ , and $z_{n}=Q(v_{n}.\partial)w_{n}$ tends in $\underline{\mathrm{Y}}$ to $z=Q(v.\partial)w$ .

Proof. It is obvious that $v$ , $w\in \mathrm{Y}$ . Moreover, the $z_{n}$ are bounded in $\mathrm{Y}$ , by Lemma 2.1,
and therefore relatively compact in $\underline{\mathrm{Y}}$. Thus, it suffices to show that any subsequence of
$z_{n}$ that is convergent in $\underline{\mathrm{Y}}$ has limit $z$ . We may assume that $z_{n}$ itself is convergent in $\underline{\mathrm{Y}}$.
Then for any $\phi\in \mathrm{Y}$ , we have

$<z_{n}$ , $\phi>=<(v_{n}.\partial)w_{n}$ , $Q\phi>=-<w_{n}$ , $(v_{n}.\partial)Q\phi>arrow-<w$ , $(v.\partial)Q\phi>$

$=<Q(v.\partial)w$ , $\phi>=<z$ , $\phi>$ .

Since $\mathrm{Y}$ is dense in $L^{2}(\Omega)$ , we conclude that the limit of $z_{n}$ in $\underline{\mathrm{Y}}$ (assumed to exist) must
equal to $z$ .

3. Solution of the linearized equation

Theorem 3.1. Assume that

$v\in\hat{C}(I;P\mathrm{Y}^{m})$ , $||v(t)||_{\mathrm{Y}}\equiv||v(t)||+||\partial v(t)||+[\partial v(t)]_{\lambda}\leq R$ , $t\in I=[0, T]$ , (3.1)

where $R$ , $T$ are positive constants. For each $a\in \mathrm{Y}^{m}$ , the linearized Euler equation (2.1)
has aunique solution $u\in\hat{C}(I;P\mathrm{Y}^{m})$ such that

$||u(t)||_{\mathrm{Y}}\leq e^{(2R+\mu)t}||a||_{\mathrm{Y}}$ , $u(0)=a$, (3.2)

where $\mu$ is aconstant depending on $\Omega$ and A.

Proof. According to Lemma 2.1, (2.1) is equivalent to (2.2), which we write in the form
of alinear evolution equation in $\mathrm{Y}^{m}$ :

$\partial_{t}u+A(t)u+B(t)u$ $=0$ , where .\prime $\mathrm{A}(\mathrm{t})$ $=v(t)_{i}\partial$ , $\mathcal{B}(|t)=Q(v(t).\partial)P$. (3.3)

Lemma 2.2 shows that $B(t)$ is abounded linear operator on $\mathrm{Y}^{m}$ . $A(t)$ is afirst order linear
differential operator acting separately on $\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}‘ \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}$ of the unknown $u(t)$ , and can be
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handled by aclassical method. Consider the ordinary differential equation $dx/dt=u(t, x)$

on $I\cross\Omega$ . Since $v\in C(I;P\mathrm{Y}^{m})$ , the solutions exist on all of $I\cross\Omega$ (see [1]; it is crucial
that $v$ is tangential on $b\Omega$ ). Let $x=\Phi_{t,s}(y)$ be the characteristic function, the solution
satisfying $x=y$ at $t$ $=s$ . According to the classical theory (see e.g. Courant-Hilbert [C]),
the family $A(t)$ formally generates afamily of evolution operator –(-t, $s$ ) given by

— $(t, s)f=f\mathrm{o}\Phi_{s,t}$ , $f\in \mathrm{Y}^{m}$ , (3.4)

where $\circ$ denotes composition of functions. (Notice the order of the parameter pair $t$ , $s.$ )
To deduce the continuity properties of the —$(t, s)$ , we have to study those of the map

$\mathit{1}\mathit{1}arrow x=\Phi_{t,s}(y)$ .

Lemma 3.2. $\Phi_{t,s}$ is afamily of $C^{1+\lambda}$ diffeomophisms satisfying the transitivity rule
$\Phi_{t,t}=\Phi_{r,s}\circ\Phi_{s,t}$ , with the estimates

$||\partial\Phi_{t,s}||\leq e^{R|t-s|}$ , $||\partial\Phi_{t,s}-\mathrm{i}\mathrm{d}||\leq e^{R|t-s|}-1$ , (3.5a)

$[\partial\Phi_{t,s}]_{\lambda}\leq|t-s|Re^{R|t-s|}$ , (3.5b)

where id is the $m\mathrm{x}$ $m$ identity matrix.

Proof. It is well known (see e.g. Hartman [H]) that $\Phi$ is $C^{1}$ in all three variables; this is
true if only $v\in C(I;C^{1}(\Omega))$ . Since we have astronger assumption $v(t)\in P\mathrm{Y}^{m}\in C^{1+\lambda}$ ,
$\Phi_{t,s}$ has stronger properties shown in (3.5a).

We sketch the proof, suppressing the variables $t$ , $s$ for simplicity. We have $\partial_{t}\Phi(y)=$

$v(\Phi(y))$ and so $\partial_{t}\partial\Phi(y)=(\partial v(\Phi(y))(\partial\Phi(y))$ , where $||\partial v(t, y)||\leq R$ , hence $||\partial\Phi(y)||\leq$

$e^{R(t-s)}$ . If we use the fact that $\partial\Phi=\mathrm{i}\mathrm{d}$ for $t=s$, we obtain asharper estimate for
$||\partial\Phi(y)-\mathrm{i}\mathrm{d}||$ as shown in (3.5a).

Again,

$(d/dt)((\partial\Phi(y)/\partial y)-(\partial\Phi(y’)/\partial y’))=(\partial v(\phi(y))(\partial\Phi(y))-(\partial v(\phi(y’))(\partial\Phi(y’))$

$=(\partial v(\phi(y))(\partial\Phi(y)-\partial\Phi(y’))+(\partial v(\phi(y)-\partial v(\phi(y’))(\partial\Phi(y’))$ .
Take the absolute value of this expression and divide by $|y-y’|^{\lambda}$ . Since

$|\partial v(\Phi(y)-\partial v(\phi(y’)|/|y-y’|^{\lambda}$

$=|\partial v(\Phi(y)-\partial v(\phi(y’)|/|\Phi(y)-\Phi(y’)|^{\lambda}.(|\Phi(y)-\Phi(y’))/|y-y’|)^{\lambda}$

$\leq[\partial v]_{\lambda}||\partial\Phi||^{\lambda}\leq[\partial v]_{\lambda}e^{\lambda R|\mathrm{t}-s|}\leq Re^{R|t-s|}$,

we obtain
$\partial_{t}^{[}\partial\Phi]_{\lambda}\leq R[\partial\Phi]_{\lambda}+Re^{R|t-s|}$.

266



(3.5b) follows on solving this inequality.

Lemma 3.3. The –$(-t, s)$ form astrongly continuous evolution operator on $\underline{\mathrm{Y}}$. Moreover,
they are bounded on $\mathrm{Y}$ , with the operator norm

$|||_{-}^{-}-(t, s)|||_{\mathrm{Y}} \leq\sup\{(1+|t-s\}R\}e^{R|t-s|},$ $e^{(1+\lambda)R|t-s|}\}\leq e^{2R|t-s|}$ . (3.6)

Proof. The chain rule —$(t, r)$ $=_{-}--(t, s)_{-}^{-}-(s, r)$ is obvious from the relation $\Phi_{r,t}=\Phi_{t,s}\circ\Phi_{s,t}$ .
The strong continuity of — $(t, s)$ in $\underline{\mathrm{Y}}$ is easy to verify since $v\in\underline{\mathrm{Y}}$. To deduce the estimates
(3.6), let $f\in \mathrm{Y}$ . Then it follow from (3.5a) that

$||_{-}^{-}-(t, s)f||\leq||f||$ ,

$||\partial_{-}^{-}-(t, s)f||=||(\partial f\mathrm{o}\Phi_{s,t})(\partial\Phi_{s,t})||\leq||\partial f||e^{R|t-s|}$ .

Moreover,
$[\partial_{-}^{-}-(t, s)f]_{\lambda}\leq||\partial f||[\partial\Phi_{s,t}]_{\lambda}+[\partial f\mathrm{o}\phi_{s,t}]_{\lambda}||\partial\Phi_{s,t}||$ ,

where $[\partial\Phi_{s,t}]_{\lambda}\leq|t-s|Re^{R|t-s|}$ by (3.5b), and

$[ \partial f\circ\Phi_{s,t}]_{\lambda}=\sup\{|\partial f(\Phi_{s,t}(x)-\partial f(\Phi_{s,t}(y)|/|x-y|\}$

$\leq\sup\{\partial f(\Phi_{s,t}(x)-\partial f(\Phi_{s,t}(y)|/|\Phi_{s,t}(x)-\Phi_{s,t}(y)|^{\lambda}$

. $|\Phi_{s,t}(x)-\Phi_{s,t}(y)|/|x-y|)^{\lambda}$

$\leq[\partial f]_{\lambda}||\Phi_{s,t}||^{\lambda}\leq[\partial f]_{\lambda}e^{R|t-s|}$ .

The estimate (3.6) readily follows from these inequalities.

Lemma 3.4. $B(t)$ is abounded operator on $\mathrm{Y}^{m}$ , with the operator norm $|||B(t)|||_{\mathrm{Y}}\leq$

$\mu||v(t)||_{\mathrm{Y}}$ , the constant $\mu$ depending only on $\Omega$ and A. The map $t\mapsto B(t)f\in\underline{\mathrm{Y}}^{m}$ is
continuous on I for each $f\in \mathrm{Y}^{m}$ .

Proof. This follows directly from Lemmas 3.3-4.

Lemma 3.5. There is asolution $u\in\hat{C}(I;\mathrm{Y}^{m})$ of (2.1) such that

$||u(t)||_{\mathrm{Y}}\leq e^{(2R+\mu)|t-s|}||a||_{\mathrm{Y}}$ . (3.7)

Proof. In view of Lemmas 3.3 and 3.4, it can be inferred from the theory of linear evolution
equations that there is asolution of (3.6) given, implicitly, by

$u(t)=—(t, \mathrm{O})a-\int_{0}^{t}---(t, s)B(s)u(s)ds$ . (3.6)
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As was remarked in Section 1, the integral exists in $\hat{C}(I;\mathrm{Y}^{m})$ , with all the estimates
obtained by formal computation remaining true. Thus (3.8) is an integral equation of
Volterra type for the unknown $u\in\hat{C}(I;\mathrm{Y}^{m})$ , and is easily solved by iteration in the form
of aVolterra series. The result can be expressed in asymbolic form (see [KK]):

$u=(\mathrm{v}\mathrm{o}\mathrm{l}(_{-}^{-}-, -B))a=(_{--}^{--}---B_{-}^{-}-+_{-}^{-}-B_{-}^{-}-B_{-}^{-}--\ldots)a\in\hat{C}(I;\mathrm{Y}^{m})$, (3.9)

with the estimate (3.7). This shows that $u\in\hat{C}(I;\mathrm{Y}^{m})\cdot \mathrm{b}\mathrm{u}\mathrm{t}$ we see from Lemma 3.2 that
actually $u\in\hat{C}(I;P\mathrm{Y}^{m})$ . It is easy to see that $u$ is asolution of (2.2)h hence also of (2.1).

Lemma 3.6. Let $u’\in\hat{C}(I;\mathrm{Y}^{m})$ be any solution of (2.1) in which $v$ is replaced by another
function $v’$ satisfying (3.1) and the initial state $a$ replaced by $a’\in PYm$ . Then

$|u’(t)-u(t)| \leq|a’-a|+||a||_{\mathrm{Y}}\int_{0}^{t}e^{(2R+\mu)s}|v’(s)-v(s)|ds$ . (3.10)

In particular, the solution $u$ given in Lemma 3.5 is unique.

Proof. Let $w=u’-u$. Astandard computation gives

$\partial_{t}|w(t)|^{2}/2=<\partial_{t}w$ , $w>=<(v’.\partial)w$ , $w>+<((v’-v).\partial)u,w>$

$\leq||\partial u|||v’-v||w|$ ;

note that $v’.\partial$ is askew symmetric operator. Since $||\partial u||\leq||u||_{\mathrm{Y}}$ , we see from (3. ) that

$\partial_{t}|w|\leq||\partial u|||v’-v|=e^{(2R+\mu)t}||a||_{\mathrm{Y}}|v’-v|$ .

The required estimate follows from this on integration.

4. Proof of Theorem I.

We prove Theorem Iby the contraction map theorem. Choose apositive number $T$

such that
$||a||_{\mathrm{Y}}Te^{(2||a||\mathrm{v}+\mu)T}<1$ . (4.1)

Then we can find $R$ such that

$||a||_{\mathrm{Y}}<R$ , $||a||_{\mathrm{Y}}Te^{(2R+\mu)T}<1$ . (4.2)

Let $S$ be the set of all $v\in\hat{C}([0, T];P\mathrm{Y}^{m})$ such that

$||v(t)||_{\mathrm{Y}}\leq R$ . (4.3)
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According to Theorem 3.1, for each $v\in S$ there is asolution $u\in S$ of (2.1). We shall
show that the map $v\mapsto u$ has afixed point.

Introduce ametric in $S$ by

dist $(v, v’)= \sup\{|v’(t)-v(t)|;0\leq t\leq T\}$ . (4.4)

Then it is easy to see that $S$ becomes acomplete metric space, and (3. ) shows that the
map $v\mapsto u$ is acontraction. Therefore there exists afixed point $u$.of this map, which is
asolution of (2.1).

$u$ is asolution of the Euler equation. To see this, it suffices to set $\partial\pi=-Q(u.\partial)u$ .
Then $\partial\pi(t)\in \mathrm{Y}^{m}$ by Lemma 2.2, and we have $\partial_{t}+(u.\partial)u+\partial\pi=0$, proving the existence
part of Theorem I.

The uniqueness is obvious from the contraction principle, since the solution must be
afixed point of the map $v\mapsto u$ considered above.

It remains to prove the global esistence for $m=2$ . Apparently there is nothing special
about $m=2$ in the considerations given above. Thus we would need some new material.
Such is supplied by the vorticity ( $=\partial\Lambda u(=curl(u))$ . In general $\zeta$ is askewsymmetric
tensor of rank 2, but for $m=2$ it can be identified with ascalar $\zeta=\partial_{1}u_{2}-\partial_{2}u_{1}$ . With
this notation, it is known (and easy to prove) that $\langle$ satisfies the vorticity equation

$\partial_{t}\zeta+(u.\partial)\zeta=0$ . (4.5)

(For $\mathrm{m}\geq 3$ , there is asimilar vorticity equation for the tensor $\zeta$ , but it has an additional
term $(\partial u).\zeta$ that destroys the applicability of the following arguments.)

The following arguments are essentially those of [K1]; in particular we use the rather
subtle estimates for the quasi-Lipschitzian property of flows $v$ with $\partial\wedge v\in C(\Omega)$ . But
the arguments are concepturely simpler inasmuch as the local existence of the solution is
already known.

We start from the knowledge that the solution $u\in\hat{C}(I;P\mathrm{Y}^{2})$ with $u(0)=a$ exists on
acertain interval $I=[0, T]$ . Then the solution of (4.5) is given by

$\zeta(t)=---(t, \mathrm{O})b=\alpha\circ\Phi_{0,t}$, $\alpha=\partial\wedge a\in X=C^{\lambda}(\Omega)\subset C(\Omega)=\underline{X}$ . (4.6)

It follows that
$\mathrm{g}\zeta(t)||\leq[\alpha|.$ (4.7)

Of course $\zeta(t)$ is in $X$ but $||\zeta(t)||_{X}$ has no such simple estimate.
Now we want to recover $u$ from $\zeta$ . This is not trivial since the map $u\mapsto\zeta=\partial\wedge u$

is in general not invertible. But there is abounded linear map $K$ on $\underline{X}$ into the space
$(1-\square )\mathrm{Y}^{\prime 2}$ , where $\mathrm{Y}’\subset\underline{X}$ is the space of quasi-Lipschitzian functions and $\Pi$ denotes the
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270

orthogonal projection of $X^{2}$ onto the (finite dimensional) space of irrotational flow
that $\partial\wedge K\phi=\phi$ for all $\phi\in\underline{X}$ . Then we set

$u=w+K\zeta$ , $w(t)\in\Pi\underline{X}$, $\square (\partial_{t}w+(u.\partial)w)=0$ .
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