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A remark on the 2D-Euler equation

In this paper we revisit the initial value problem for the 2D-Euler equation on a
bounded domain. The main object is to streamline the proof of the global existence and
uniqueness of a classical solution, given in the old paper [K], although there is nothing
essentially new. In particular we use the vorticity { = 8 A u (= curl(u)) as a basic
ingredient of the theory. However, instead of assuming that the initial velocity a is C'1*+?
as in [K], we simply assume that o = dAa is C and construct a unique weak solution u(t)
in L, to be define below. Afterwards it is shown that if a € C*¢ then u(t) € C*¢. Almost
all the necessary material is in‘[K]j the change is only in the order of their arrangement.
Naturally we follow the notation of [K] as much as possible.

As in [K], we consider a bounded domain Q C R?; for simplicity we assume that € is
smooth and simply connected, and that there is no external force. (The modification nec-
essary for a multiply connected €2 will be commented on later.) Moreover, for notational
convenience we assume that €2 is closed. (If necessary we use £2° to denote the interior of

We denote by || || the C(2)-norm, indiscriminately for scalar or vector valued func-
tions. L(; R2) is the set of all vector valued functions on  such that

fewW?(Q;R?) for 1<p<oo, and

|f(2) — f(y)| < const.w(|z —yl), =,y€

where w(s) = s(1 + log*(1/s)). The associated norm is denoted by || f||q-
The initial value problem for the Euler equation is given by

Ou+0.(uv) +dp=0, Ou=0, u(0)=a. (1)

Here uu is a tensor with jk component u;u; 0.(uu) is a vector with £ component 9;(u;uz);
0.u = div(u) = 0;u;. (Summation convention is used throughout.)

Theorem I. Let 9Aa € C(Q;R) and T > 0. Then there is a unique weak solution {u,p}
to (1) such that

u € C(I; L(%R?), dpe , I=[0,T). (2)

If in particular d A a € C%(;R) for some 8 € (0,1), then {u,p} is a classical solution
with the properties .

u € C(I; CY(; R2)) N B(I; C*(R?)), du € C(I;C(%LR?), dpe
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where B denotes the class of bounded functions.

For the proof we introduce the (scalar) vorticity
C =0Au= (61u2 — azul). (4)

As is well known ( should satisfy the vorticity equation, which is a system consisting of
(4) and
0(+90.(u¢)=0, ¢(0)=a=0Aa. ' (5)

Our plan is to start with a function ¢ in a certain subset S of C(Q), where Q = I x Q,
and determine v € C(Q), which are q.L. in z, such that A u = ¢. We then solve (4)
for ¢, which is shown to be in a certain compact subset of S. Furthermore, we show that
the map ¢ +— ( is continuous in C(Q). A fixed point of the map, which exists by the
Schauder fixed point theorem, gives a solution of the vorticity equation. u will then be
shown to be the unique solution of (1) together with a certain gradient 9p.

Lemma 1. For each ¢ € C(Q;R), there is a unique » € C(I; L) such that
Ou(t)=0 and OAu(t)=¢(t) on Q, |.u(t)=0 on b,

lu@®)llz < clle@®ll, tel, (6)

where c is a constant depending only on 2.
Proof. This follows immediately from [K,Lemma x.x]; note that C(Q; R) = C(I;C(Q2)).

Lemma 2. Let » € C(Q;R?) such that u(t) € L(R), d.u(t) = 0 on  and v.u(t) = 0 on
bQ. Then the ordinary differential equation dz/dt = u(t,z) is uniquely solvable for any
initial time s € I and any initial condition z(s) = y € Q, with the solution (characteristic
function) z = ¥, ,(y) € Q existing for all t € I. The map ® : ¢,s,y — z is continuous in
the three variables. For fixed ¢, s, it is a homeomorphism of €2 onto itself, satisfying the
chain rule ®;,0 ®,, = ®,.

Proof. The existence of the solution for all ¢,s is due to the fact that d.u = 0 and
v.u = 0 (see [K]). The uniqueness follows from the theorem of Osgood, since 1/w(r) is
not integrable near r = 0. For the continuity properties, see e.g. [H].

Lemma 3. Let u,, n = 1,2,..., be a sequence of functions satisfying the assumptions
of Lemma 2, with the associated map ®,,. Moreover, assume that u, — u in C(Q;R?).
Then ®,, — ® in C(Q;R?).
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Proof. This is a continuous dependence theorem for the characteristic function. Usually
it is stated as continuous dependence on a auxiliary continuous parameter u (see e.g.[H]),
but there is no difference in the proof when p is replaced by a discrete parameter n.

Lemma 4 The homeomorphisms ®; ; are measure preserving.

Proof. Approximate u in L by C* functions, for which & becomes C"! in all three variables
and the result is classical (see e.g.[H]). The required result follows on passing to the limit
using Lemma 3.

Lemma 5 ®; ,(y) is uniformly Holder continuous in the three variables for ¢,s € I, y € Q.

Proof. The result is due to the quasi-Lipashitzian property of u, see [K|, Lemma x.x. The
Holder exponent may be very small when 7' is large.

Lemma 6 Let u be as in Lemma 2. Then the linearized vorticity equation (2) has a weak
solution ¢ given by
C(t) =ao®,, tel. (7)

Proof. This is well known for a classical solution if u and « were C!. As it is, it
requires a proof. Obviously (7) satisfies ((0) = «, since @ is the identity on Q. Thus it
suffices to show that for any smooth scalar function x on @), one has

at < C,X >=< C’U;, aX >=< C,uaX >, (8)

where < , > denotes the scalar product on € for scalar or vector valued functions. In
view of (7) and the measure preserving property of the map ®,,, (8) is equivalent to

O < a,x 0 Prp >=< @, (u.0x) 0 Br o >; 9)
note that @, is the inverse map of ®(,. Here the left member equals
< a(z), Ox(Pro(z) >=< a(x), Ox(Pro(z)).0:Peo(z) >
=< a(x), Ox(Pro(z)).ult, Dro(z)) >

which is the right member of (9), q.e.d.

Remark. It appeares that Lemma 4 is nontrivial; it would be hard to prove it without the
condition d.u = 0, which implies the measure preserving property.
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Lemma 7 There is u € C(I; L(€; R?) such that ¢ = & A u is in C(Q;R) and is a weak
solution of the vorticity equation ( ).

Proof. Let a € C(Q) be fixed. Let S be the ball in C(Q) with center 0 and radius
la||. For each ¢ € S, construct » and then { according to Lemmas 2 and 5. Then it is
obvious that ||¢|| < ||e||, hence { € S. Thus the map F': ¢ +— ( sends S into itself. F
is continuous in the topology of C(Q), as is seen from Lemmas 2,3. Moreover, the range
of F is compact in C(Q), since ((t,z) = a(®os(z)), where a € C(R) is fixed and P, (x)
is uniformly Holder continuousin ¢,z by Lemma 5. It follows from Schauder’s fixed point
theorem that F' has a fixed point ¢, which is a solution of the vorticity equation.



