
A remark on the 2D-Euler equation

In this paper we revisit the initial value problem for the $2\mathrm{D}$-Euler equation on a
bounded domain. The main object is to streamline the proof of the global existence and
uniqueness of aclassical solution, given in the old paper [K], although there is nothing
essentially new. In particular we use the vorticity $\zeta=\partial\wedge u(=\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}(u))$ as abasic
ingredient of the theory. However, instead of assuming that the initial velocity ais $C^{1+\theta}$

as in [K], we simply assume that $\alpha=\partial\wedge a$ is $C$ and construct aunique weak solution $u(t)$

in $\hat{L}$ , to be define below. Afterwards it is shown that if $a\in C^{1+\theta}$ then $u(t)\in C^{1+\theta}$ . Almost
all the necessary material is in [K]; the change is only in the order of their arrangement.
Naturally we follow the notation of [K] as much as possible.

As in [K], we consider abounded domain $\Omega\subset \mathrm{R}^{2}$ ; for simplicity we assume that $\Omega$ is
smooth and simply connected, and that there is no external force. (The modification nec-
essary for amultiply connected $\Omega$ will be commented on later.) Moreover, for notational
convenience we assume that $\Omega$ is closed. (If necessary we use $\Omega^{\mathrm{O}}$ to denote the interior of
Q.)

We denote by $||$ $||$ the $C(\Omega)$-norm, indiscriminately for scalar or vector valued func-
tions. $\hat{L}(\Omega;\mathrm{R}^{2})$ is the set of all vector valued functions on $\Omega$ such that

$f\in W^{1,p}(\Omega;\mathrm{R}^{2})$ for $1<p<\infty$ , and

$|f(x)-f(y)|\leq \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.\omega(|x-y|)$ , $x$ , $y\in\Omega$ ,

where $\omega(s)=s(1+\log^{+}(1/s))$ . The associated norm is denoted by $||f||_{\mathrm{q}1}$ .
The initial value problem for the Euler equation is given by

$\partial_{t}u+\partial.(uu)+\partial p=0$ , $\partial.u=0$ , $u(0)=a$. (1)

Here $uu$ is atensor with $jk$ component $u_{j}u_{k};\partial.(uu)$ is avector with $k$ component $\partial_{j}(u_{j}u_{k})$ ;
$\partial.u=\mathrm{d}\mathrm{i}\mathrm{v}(u)=\partial_{j}u_{j}$. (Summation convention is used throughout.)

Theorem I. Let $\partial\wedge a\in C(\Omega;\mathrm{R})$ and $T>0$ . Then there is aunique weak solution $\{u,p\}$

to (1) such that

$u\in C(I;\hat{L}(\Omega;\mathrm{R}^{2}))$ , $\partial p\in$ , $I=[0, T]$ . (2)

If in particular $\partial\wedge a\in C^{\theta}(\Omega;\mathrm{R})$ for some $\mathit{0}\in(0,1)$ , then $\{u,p\}$ is aclassical solution
with the properties

$u\in C(I;C^{1}(\Omega;\mathrm{R}^{2}))\cap B(I;C^{1+\theta}(\Omega;\mathrm{R}^{2}))$ , $\partial_{t}u\in C(I;C(\Omega;\mathrm{R}^{2}))$ , $\partial p\in$
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where $B$ denotes the class of bounded functions.

For the proof we introduce the (scalar) vorticity

($:=\partial\wedge u=(\partial_{1}u_{2}-\partial_{2}u_{1})$ . (4)

As is well known $\langle$ should satisfy the vorticity equation, which is asystem consisting of
(4) and

$\partial_{t}\zeta+\partial.(u\zeta)=0$, $\zeta(0)=\alpha=\partial\wedge a$ . (5)

Our plan is to start with afunction $\varphi$ in acertain subset $S$ of $C(Q)$ , where $Q=I\cross\Omega$ ,

and determine $u\in C(Q)$ , which are $\mathrm{q}.\mathrm{L}$ . in $x$ , such that $\partial\wedge u=\varphi$ . We then solve (4)
for (, which is shown to be in acertain compact subset of $S$ . Furthermore, we show that
the map $\varphi\mapsto\zeta$ is continuous in $C(Q)$ . Afixed point of the map, which exists by the
Schauder fixed point theorem, gives asolution of the vorticity equation, $u$ will then be
shown to be the unique solution of (1) together with acertain gradient $\partial p$ .

Lemma 1. For each $\varphi\in C(Q;$ R), there is aunique u $\in C(I;\hat{L})$ such that

$\partial.u(\mathrm{t})=0$ and $\partial\wedge u(t)=\varphi(t)$ on $\Omega$ , $||.u(t)=0$ on $b\Omega$ ,

$||u(t)||_{L}\leq c||\varphi(t)||$ , t $\in I$ , (6)

where c is aconstant depending only on Q.

Proof. This follows immediately from [K,Lemma x.x];note that $C(Q;\mathrm{R})=C(I;C(\Omega))$ .

Lemma 2. Let $u\in C(Q;\mathrm{R}^{2})$ such that $u(t)\in\hat{L}(\Omega)$ , $\partial.u(t)=0$ on 0and $\nu.u(t)$ $=0$ on
$b\Omega$ . Then the ordinary differential equation $dx/dt=u(t, x)$ is uniquely solvable for any
initial time $s\in I$ and any initial condition $x(s)=y\in\Omega$ , with the solution (characteristic
function) $x=\Phi_{t,s}(y)\in\Omega$ existing for all $t\in I$ . The map 1 $t$ , $s$ , $y\mapsto x$ is continuous in
the three variables. For fixed $t$ , $s$ , it is ahomeomorphism of $\Omega$ onto itself, satisfying the
chain rule $\Phi_{t,s}\circ\Phi_{s,t}=\Phi_{t,\mathrm{r}}$ .

Proof. The existence of the solution for all $t$ , $s$ is due to the fact that $\partial.u=0$ and
$\nu.u=0$ (see [K]). The uniqueness follows from the theorem of Osgood, since $1/\omega(r)$ is
not integrable near $r=0$ . For the continuity properties, see e.g. [H].

Lemma 3. Let un, $n=1,2$ , $\ldots$ , be asequence of functions satisfying the assumptions
of Lemma 2, with the associated map $\Phi_{n}$ . Moreover, assume that $u_{n}arrow u$ in $C(Q;\mathrm{R}^{2})$ .
Then $\Phi_{n}arrow\Phi$ in $C(Q;\mathrm{R}^{2})$ .
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Proof. This is acontinuous dependence theorem for the characteristic function. Usually
it is stated as continuous dependence on aauxiliary continuous parameter $\mu$ (see e.g.[H]),
but there is no difference in the proof when $\mu$ is replaced by adiscrete parameter n.

Lemma 4The homeomorphisms $\Phi_{t,s}$ are measure preserving.

Proof. Approximate $u$ in $\hat{L}$ by $C^{1}$ functions, for which (I becomes $C^{1}$ in all three variables
and the result is classical (see e.g.[H]). The required result follows on passing to the limit
using Lemma 3.

Lemma 5 $\Phi_{t,s}(y)$ is uniformly Holder continuous in the three variables for $t$ , $s\in I$ , $y\in\Omega$ .

Proof. The result is due to the quasi-Lipashitzian property of $u$ , see [K], Lemma $\mathrm{x}.\mathrm{x}$ . The
H\"older exponent may be very small when $T$ is large.

Lemma 6Let $u$ be as in Lemma 2. Then the linearized vorticity equation (2) has aweak
solution $\zeta$ given by

$\zeta(t)=\alpha$ $0\Phi_{0,t}$ , $t\in I$ . (7)

Proof. This is well known for aclassical solution if $u$ and $\alpha$ were $C^{1}$ . As it is, it
requires aproof. Obviously (7) satisfies $\zeta(0)=\alpha$ , since $\Phi_{0,0}$ is the identity on Q. Thus it
suffices to show that for any smooth scalar function $\chi$ on $Q$ , one has

$\partial_{t}<\zeta$ , $\chi>=<\zeta u$ , $\partial\chi>=<\zeta$ , $u.\partial\chi>$ , (8)

where $<$ , $>\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the scalar product on $\Omega$ for scalar or vector valued functions. In
view of (7) and the measure preserving property of the map $\Phi_{t,s}$ , (8) is equivalent to

$\partial_{t}<\alpha$ , $\chi 0\Phi_{t,0}>=<\alpha$ , $(u.\partial\chi)\circ\Phi_{t,0}>$ ; (9)

note that $\Phi_{t,0}$ is the inverse map of $\Phi_{0,t}$ . Here the left member equals

$<\alpha(x)$ , $\partial_{t}\chi(\Phi_{t,0}(x)>=<\alpha(x), \partial\chi(\Phi_{t,0}(x)).\partial_{t}\Phi_{t,0}(x)>$

$=<\alpha(x)$ , $\partial\chi(\Phi_{t,0}(x)).u(t, \Phi_{t,0}(x))>$

which is the right member of (9), q.e.d.

Remark. It appeares that Lemma 4is nontrivial; it would be hard to prove it without the
condition $\mathrm{d}.\mathrm{u}=0$ , which implies the measure preserving property
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Lemma 7There is $u\in C(I;\hat{L}(\Omega;\mathrm{R}^{2})$ such that ($:=\partial\wedge u$ is in $C(Q;\mathrm{R})$ and is aweak

solution of the vorticity equation $()$ .

Proof. Let $\alpha\in C(\Omega)$ be fixed. Let $S$ be the ball in $C(Q)$ with center 0and radius
$||\alpha||$ . For each $\varphi\in S$ , construct $u$ and then $\langle$ according to Lemmas 2and 5. Then it is

obvious that $||\zeta||\leq||\alpha||$ , hence $\zeta\in S$ . Thus the map $F$ : $\varphi\mapsto\zeta$ sends $S$ into itself. $F$

is continuous in the topology of $C(Q)$ , as is seen from Lemmas 2,3. Moreover, the range
of $F$ is compact in $C(Q)$ , since $\zeta(t, x)=\alpha(\Phi_{0,t}(x))$ , where $\alpha\in C(\Omega)$ is fixed and $\Phi_{0,t}(x)$

is uniformly H\"older continuousin $t$ , $x$ by Lemma 5. It follows from Schauder’s fixed point

theorem that $F$ has afixed point (, which is asolution of the vorticity equation
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