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1Introduction

The purpose of this paper is to present some result of our recent study on the stationary
and non-stationary Stokes equations under the nonlinear boundary or interface conditions
of friction type.

The method of analysis is based on the theory of variational inequalities, amodern
branch of the variational calculus which the late Prof. Tosio Kato liked, as well as on
the theory of nonlinear semi-groups to which he contributed much by developing the
pioneering work by Y. K\={o}mura in 1967.

The consequence is the strong solvability (i.e., the unique existence of the $L^{2}$ strong
solution) of the initial value problem for the Stokes equation under the above-mentioned
nonlinear $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}$ conditions. There are various kinds of $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}$

conditions, we shall describe our analysis mostly for the case of Leak-BCF and of Leak-
ICF which means the boundary condition and the interface condition of friction type
respectively. Although we shall formulate specifically Leak-BCF soon, let us say in short
with Leak-BCF that this is aboundary condition for the fluid motion such that leak or
penetration of the fluid through the boundary can take place when the relevant stress on
the boundary reaches athreshold in its magnitude, while no leak occurs as long as the
stream is gentle and the stress is small. The other types of boundary conditions of friction
type, particularly, Slip-BCF can be dealt with similarly or more simply.

In this paper we shall confine our attention to the theoretical aspects of the study,
while introduction of the $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}$ conditions seems to be effective in modelling
and simulating some flow phenomena arising from applications, like flow in adrain with
its bottom covered by sherbet of mud and like flow through atight sieve.

To fix the idea, we describe here our target problem for the case of Leak-BCF in an
exterior domain $\Omega$ in $R^{3}$ , with smooth compact boundary $\Gamma$ , since the case of abounded
flow region is theoretically simpler. The flow velocity and pressure will be denoted by $u$

and $p$ , respectively.
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We expect apossible leak through $\Gamma$ but for simplicity we exclude the possibility of the

slip along $\Gamma$ when we impose Leak-BCF on $\Gamma$ . Thus our Leak-BCF includes the non-slip

condition
(1.1) $u_{t}=0$ on $\Gamma$ ,

where $u_{t}$ means the tangential component of $u$ . Incidentally, $u_{n}$ means the normal com-
ponent of $u$ on the boundary, $\mathrm{i}$ . $\mathrm{e}.$ , $u_{n}=u\cdot$ $n$ , where $n$ stands for the unit outer normal.

The crucial part of our Leak-BCF is the following leak condition which involves agiven

positive function $g$ on $\Gamma$ :
(1.2) $-\sigma_{n}\in g\partial|u_{n}|$ on $\Gamma$ .

Here $\sigma_{n}=\sigma_{n}(u,p)$ is the normal component of the stress on the boundary, and $\partial|\cdot$ $|$

means the sub-differential of the absolute value function of real numbers. Actually, $\mathrm{f}\mathrm{o}\mathrm{T}$

any $x\in R$ , the sub-differential $\partial|x|$ is given explicitly as

(1.3) $\partial|x|=\{$

the closed interval [-1, 1], $(x=0)$ ,
1, $(x>0)$ ,

-1, $(x<0)$ .

We note $\partial|x|$ is multi-value$\mathrm{d}$ at $x=0$ . Also we recall

(1.4) $\sigma_{n}=\sigma(u,p)_{n}=-p+2\nu n\cdot e(u)n$ ,

where $\nu$ is the viscosity and $n$ the outer unit normal to the boundary, and $e(u)$ means the

strain rate tensor $e(u)=(e_{ij}(u))$ :

$e_{ij}=e_{ij}(u)= \frac{1}{2}(\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}})$ .

The given function $g$ is assumed to be continuous for simplicity. It is called the barrier

function for the leak, which determined the threshold for the occurrence of the leak. This

role of $g$ can be read off when we $\mathrm{r}\mathrm{e}$-write(1.2) to the following system of conditions:

(1.5) $|\sigma_{n}(u,p)|\leq g$ on $\Gamma$ ,

and

(1.6) $\{$

$|\sigma_{n}|<g$ $\Rightarrow$ $u_{n}=0$ ,

$|\sigma_{n}|=g$ $\Rightarrow$ $\{\begin{array}{l}u_{n}=0\mathrm{o}\mathrm{r}u_{n}\neq 0u_{n}\neq 0\Rightarrow-\sigma_{n}=g\frac{u_{n}}{|u_{n}|}\end{array}$

Our target problem is the initial boundary value problem, Leak-IVP, for $\{u,p\}\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$

consists of the above mentioned Leak-BCF, the initial condition

(1.7) $u(0)=u(0, \cdot)=a$ in $\Omega$
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and the Stokes equation

(1.8) $\frac{\partial u}{\partial t}=\nu\Delta u-\nabla p$, $\mathrm{d}\mathrm{i}\mathrm{v}u=0$ in $[0, \infty)$
$\cross\Omega$ .

Another target problem, i.e., the initial value problem with the leak interface condition
of friction type, Leak-ICF, will be described as we proceed.

Finally, the content of this paper has been mostly adapted from the author’s previous
presentations ([4, 5, 6]) but it is $\mathrm{r}\mathrm{e}$-organized in view of his forthcoming paper ([7]).

2Preliminaries
Here we prepare further symbols, assumptions and (seemingly well-known)facts which
we shall make use of later.

2.1 Modification of Leak-IVP
As long as we are concerned only with the solvability of Leak-IVP in the exterior domain
0, it is theoretically convenient to reduce the Stokes equation to amodified form below
by means of the transformation $u=e^{l}v$ (and then writing $u$ for $v$ ), since the equations
and boundary conditions are positively homogeneous.

(2.1) $\frac{\partial u}{\partial t}+u=\nu\Delta u-\nabla p$ , $\mathrm{d}\mathrm{i}\mathrm{v}u=0$ .

The target problem Leak-IVP with (1.8) replaced by (2.1) will be denoted by m-Leak-IVP,
with which we shall deal from now on. The boundary value problem for stationary flows
of m-Leak-IVP is the following m-Leak-BVP:
m-Leak-BVP Find $\{u,p\}\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ satisfies the modified steady Stokes equation

(2.2) $-\nu\Delta u+u+\nabla p=f$ , $\mathrm{d}\mathrm{i}\mathrm{v}u=0$,

and is subject to Leak-BCF, i.e., (1.1) and (1.2). I
In m-Leak-BVP, the external force $f$ is assumed to be in $L^{2}(\Omega)$ . The inner product

and norm in $L^{2}(\Omega)$ will be simply denoted by $(\cdot, \cdot)$ and $||\cdot||$ . Also symbols for usual
Sobolev spaces will be made use of, for instance, $H^{1}(\Omega)$ , $H^{1/2}(\Gamma)$ . We shall put

(2.3) $a(u, v)=(u, v)+2 \nu\sum_{i,j=1}^{3}\int_{\Omega}e_{\dot{l}j}(u)e_{\dot{*}j}(v)dx$

for any $u$ , $v\in H^{1}(\Omega)$ . The quadratic form $a(\cdot$ , $\cdot$ $)$ is continuous over $H^{1}(\Omega)$ . Moreover, it
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Lemma 2.1 (Korn’s inequality) There exits positive (domain) constants $\mathrm{q}_{1}$ , $c_{1}$ such
that
(2.4) $c_{0}||u||_{H^{1}(\Omega)}^{2}\leq a(u, u)\leq c_{1}||u||_{H^{1}(\Omega)}^{2}$ (Vu $\in H^{1}(\Omega)$ ). I

We put

(2.5) $H_{0}^{1}(\Omega)$ $=$ {$u\in H^{1}(\Omega);u=0$ on $\Gamma$ },
$H_{0}^{1,bs}(\Omega)$ $=$ { $u\in H_{0}^{1}(\Omega);\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}u$ is bounded.},

$H_{\sigma}^{1}(\Omega)$ $=$ $\{u\in H^{1}(\Omega);\mathrm{d}\mathrm{i}\mathrm{v}u=0\}$ ,

$H_{0,\sigma}^{1}(\Omega)$ $=$ $\{u\in H_{0}^{1}(\Omega);\mathrm{d}\mathrm{i}\mathrm{v}u=0\}$ ,

where $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}u$ means the (essential) support of $u$ .
In our variational arguments below we use the following classes of admissible functions:

(2.6) $K$ $=$ { $u\in H^{1}(\Omega);u_{t}=0$ on $\Gamma$ },
$K^{bs}$ $=$ { $u\in K;\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}u$ is bounded.},

$K_{\sigma}$ $=$ { $u\in H_{\sigma}^{1}(\Omega);u_{t}=0$ on $\Gamma$ },
$K_{\sigma}^{bs}$ $=$ { $u\in K_{\sigma};\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}u$ is bounded.}

Furthermore, in dealing with the stress component on $\Gamma$ , we need

(2.7) $\mathrm{Y}$ $=$ the scalar $H^{1/2}(\Gamma)$ ,

$\mathrm{Y}_{0}$ $=$ $\{\eta\in \mathrm{Y};\int_{\Gamma}\eta d\Gamma=0\}$ ,

$Z$ $=$ { $\zeta\in$ the vector $H^{1/2}(\Gamma);\zeta_{t}=0$ , $\zeta_{n}=\eta$ $(\eta\in \mathrm{Y})$ },
$Z_{0}$ $=$ { $\zeta\in$ the vector $H^{1/2}(\Gamma);\zeta_{t}=0$ , $\zeta_{n}=\eta$ $(\eta\in \mathrm{Y}_{0})$ }.

We state here the following facts which are known or can be easily shown:

Lemma 2.2 Let $D(\overline{\Omega})$ be the set of smooth vector functions with compact supports in $\overline{\Omega}$

and let $D_{\sigma}(\overline{\Omega})$ be the set of smooth solenoidal ($i.e.$ , divergence-free) vector functions with
compact supports in $\overline{\Omega}$ . Then $D(\overline{\Omega})is$ dense in $H^{1}(\Omega)$ and $D_{\sigma}(\overline{\Omega})$ is dense in $H_{\sigma}^{1}(\Omega)$ . 1

Lemma 2.3 If $\zeta\in Z$ , then it can be extended to a function in $K^{bs}$ . And if ( $\in Z_{0}$ , then
it can be extended to a function in $K_{\sigma}^{bs}$ . Namely,

(2.8) $Z$ $=$ $\{v|_{\Gamma} ; v\in K\}=\{v|_{\Gamma} ; v\in K^{bs}\}$

$Z_{0}$ $=$ $\{v|_{\Gamma} ; v\in K_{\sigma}\}=\{v|_{\Gamma} ; v\in K_{\sigma}^{bs}\}$ . 1
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2.2 Weak solutions of the Stokes equation

We give here necessary comments concerning the weak formulation of steady Stokes equa-
tion, although we state it actually for the modified Stokes equation (2.2).

Definition 2.1 $u\in H_{\sigma}^{1}(\Omega)$ is a weak solution of (2.2) for given $f\in L^{2}(\Omega)$ if the following
identity holds true:
(2.9) $a(u, \varphi)=(f, \varphi)$ $(\forall\varphi\in H_{0,\sigma}^{1}(\Omega))$ .

The following lemma is known:

Lemma 2.4 Let $u$ be a weak solution of (2.2). Then there exists a scalar function $p\in$

$L_{loc}^{2}(\Omega)$ such that

(2.10) $a(u, \varphi)-(p, \mathrm{d}\mathrm{i}\mathrm{v}\varphi)=(f, \varphi)$ $(\forall\varphi\in H_{0}^{1,bs}(\Omega))$ .

$p$ is uniquely determined except for an arbitrary additive constant for each $u$ , and is called
the pressure associated with $u$ . 1

Definition 2.2 The couple $\{u,p\}$ , where tz is a weak solution of (2.2) and $p$ is its
associate pressure, is again called a weak solution of (2.2). In this sense, the identity
(2.10) is the defining condition for $u\in H_{\sigma}^{1}$ , $p\in L_{lo\mathrm{c}}^{2}(\Omega)$ to be the weak solution of (2.2). I

2.3 Stress components of weak solutions

When $\{u,p\}\mathrm{i}\mathrm{s}$ aweak solution, its stress component $\sigma_{n}=\sigma_{n}(u,p)$ can be defined by
virtue of the (modified) weak Stokes equation (2.10) as an element in $H^{-1/2}(\Gamma)$ , although
the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of $e(u)$ or of $p$ onto $\Gamma$ cannot be defined in general. To this end , we firstly note
that if $\{u,p\}\mathrm{w}\mathrm{e}\mathrm{r}\mathrm{e}$ asmooth classical solution, then the following identity should hold
true:
(2.11) $\int_{\Gamma}\sigma_{n}\cdot$ $\varphi_{n}d\Gamma=a(u, \varphi)-(p, \mathrm{d}\mathrm{i}\mathrm{v}\varphi)-(f, \varphi)$ $(\forall\varphi\in K^{bs})$ .

Now, suppose that $\{u,p\}\mathrm{i}\mathrm{s}$ aweak solution of (2.2), and take $\eta\in \mathrm{Y}$. Then let $\zeta\in Z$ be
avector function defined on $\Gamma$ as in (2.7): $\zeta_{t}=0$ , $\zeta_{n}=\eta$ . Furthermore, by $\varphi_{\eta}\in K^{bs}$ be
any extension of $\langle$ over to $\Omega$ such that $\varphi_{\eta}|_{\Gamma}=\langle$ and $\varphi_{\eta}\in K^{bs}$ . Then we define alinear
Functional $\Sigma_{n}[\cdot]$ on $\mathrm{Y}$ by setting as

(2.12) $\Sigma_{n}[\eta]=a(u, \varphi_{\eta})-(p,\mathrm{d}\mathrm{i}\mathrm{v}\varphi_{\eta})-(f, \varphi_{\eta})$ .

$\Sigma_{n}[\eta]$ is well-defined, since the right-hand side above does not depend on the way of
extension from $\eta\in \mathrm{Y}$ to $\varphi_{\eta}\in K^{bs}$ , as is verified by means of (2.10). Also, the value of the
right-hand side of (2.12) is seen to depend continuously on $\eta$ in the $H^{1/2}(\Gamma)$ -topology.
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Thus $\Sigma_{n}\in H^{-1/2}(\Gamma)$ . Noting that in the smooth case, $\Sigma_{n}$ is represented by the function
$\sigma_{n}$ as the left-hand side of (2.11), we write in place of $\Sigma_{n}[\varphi_{n}|_{\Gamma}]$

$\int_{\Gamma}\sigma_{n}\cdot\varphi_{n}d\Gamma$

when this can be understood. In this sense, for any weak solution $\{u,p\}\mathrm{w}\mathrm{e}$ can write

(2.11) for all $\varphi\in K^{bc}$ .
Finally, if $\eta$ is in $\mathrm{Y}_{0}$ and if $\varphi_{\eta}$ is an extension of $\zeta$ with $\zeta_{t}=0$ , $\zeta_{n}=\eta$ over to $\Omega$ such

that $\varphi_{\eta}\in K_{\sigma}$ , then we have

(2.13) $\int_{\Gamma}\sigma_{n}\cdot$ $\eta d\Gamma=a(u, \varphi_{\eta})-(f, \varphi_{\eta})$ , $(\eta\in \mathrm{Y}_{0})$ .

3Variational Inequalities for m-Leak-BVP

In order to analyze m-Leak-BVP, we introduce following variational inequalities, m-Leak-
$\mathrm{V}\mathrm{I}$ :
m-Leak-VI Find $u\in K_{\sigma}$ and $p\in L_{loc}^{2}(\Omega)$ such that

(3.1) $a(u, v-u)-(p, \mathrm{d}\mathrm{i}\mathrm{v}(v-u)+j(v)-j(u)\geq(f, v-u)$ $(\forall v\in K^{bs})$ ,

where
(3.2) $j(v)= \int_{\Gamma}g|v_{n}|d\Gamma$ $(\forall v\in K)$ . 1

If $\{u,p\}$ is asolution of m-Leak-VI, then we have

(3.3) $a(u, v-u)+j(v)-j(u)\geq(f, v-u)$ $(\forall v\in K_{\sigma})$ .

This can be verified by means of Lemma 2.2. Furthermore, if $\{u,p\}\mathrm{i}\mathrm{s}$ asolution of m-
Leak-VI, then the couple is aweak solution of (2.2). To see this, we take an arbitrary
$\varphi\in H_{0}^{1,bs}(\Omega)$ and put $v=u\pm\varphi$ . Again by virtue of Lemma 2.2, we see that this $v$ can
be substituted into (3.1), which yields

$\pm a(u, \varphi)\mp(p, \mathrm{d}\mathrm{i}\mathrm{v}\varphi)\geq\pm(f, \varphi)$ $(\forall\varphi\in H_{0}^{1,bs}(\Omega))$ ,

which is nothing but (2.10). Consequently, we can $\mathrm{r}\mathrm{e}$-write(3.1) by means of (2.11) as

(3.1) $\int_{\Gamma}\sigma_{n}\cdot(v-u)_{n}d\Gamma+j(v)-j(u)\geq 0$ ($\forall v\in K^{bs}$ and equivalently $\forall v\in K$).

At this point, let us confirm the definition of weak solution of m-Leak-BVP.

Definition 3.1 $\{u,p\}is$ a weak solution of m-Leak-BVP if the following conditions are
all satisfied;

(i) $u\in K_{\sigma}$ and $p\in L_{loc}^{2}(\Omega)$ .
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(ii) $\{u,p\}is$ a weak solution of (2.2).

(iii) The non-slip boundary condition (1.1) is satisfied in the trace sense, and the leak
condition (1.2) holds true almost everywhere on $\Gamma$ .

By m-Leak-WBVP, we denote the problem to seek a weak solution $\{u,p\}of$ m-Leak-
BVP for given f. I

We note that the last condition in (iii) above requests particularly that $\sigma_{n}$ which is origi-
nally in $H^{-1/2}(\Gamma)$ turns out to be abounded function subject to (1.5) almost everywhere

on $\Gamma$ .

3.1 Theorems for m-Leak-VI

We claim

Theorem 3.1 m-Leak- $VI$ and m-Leak- WBVP are equivalent. I

Before proving the theorem, we prepare

Lemma 3.1 The leak condition (L2) is equivalent to the following set of conditions

(3.5) $|\sigma_{n}|\leq g$ , $\sigma_{n}\cdot u_{n}+g|u_{n}|=0$ on Y. 1

Proof of the Lemma.
In fact, (3.5) follows immediately from (1.5) and (1.6). Conversely, by means of (3.5)

we have for any real number $x$

(3.6) $g|x|$ – $g|u_{n}|+\sigma_{n}\cdot(x-u_{n})$

$=$ $g|x|+\sigma_{n}\cdot x-(g|u_{n}|+\sigma_{n}\cdot u_{n})$

$=$ $g|x|+\sigma_{n}\cdot x\geq 0$ ,

which implies (1.2) in virtue of the definition of the sub-differential. Q.E.D.

Proof of Theorem 3.1
Suppose that $\{u,p\}\mathrm{i}\mathrm{s}$ aweak solution of m-Leak-BVP. We have only to prove the in-

equality (3.4). Prom (1.2) we have

$g|v_{n}|-g|u_{n}|\geq-\sigma_{n}\cdot(v-u)_{n}\mathrm{a}.\mathrm{e}$ . on $\Gamma$ $(\forall v\in K^{b\epsilon})$ .

Integrating the inequality above, we get to

$j(v)-j(u) \geq-\int_{\Gamma}\sigma_{n}\cdot(v-u)_{n}d\Gamma$ ,

which is nothing but (3.4). Thus $\{u,p\}\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{e}\mathrm{s}$ m-Leak-VI
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Conversely, let us suppose that $\{u,p\}\mathrm{i}\mathrm{s}$ asolution of m-Leak-VI. Already we have
seen that $\{u,p\}\mathrm{i}\mathrm{s}$ aweak solution of (2.2). It remains to prove the leak condition (1.2).
From (3.4), we have

(3.7) $- \int_{\Gamma}\sigma_{n}\cdot(v-u)_{n}d\Gamma\leq j(v)-j(u)\leq\int_{\Gamma}g|(v-u)_{n}|d\Gamma$ $(\forall v\in K^{bs})$ .

Namely, we have
(3.8) $- \int_{\Gamma}\sigma_{n}\cdot\eta d\Gamma\leq\int_{\Gamma}g|\eta|d\Gamma$ $(\forall\eta\in \mathrm{Y})$ .

This inequality hold true if we replace $\eta \mathrm{b}\mathrm{y}-\eta$ . Hence we have

(3.9) $| \int_{\Gamma}\sigma_{n}\cdot\eta d\Gamma|\leq\int_{\Gamma}g|\eta|d\Gamma$ (Vy7 $\in \mathrm{Y}$ ).

Here we make aduality argument. Actually, let us consider the Banach space $M$ of $L^{1}-$

type over $\Gamma$ with the weighted measure $\mathrm{g}\mathrm{d}\mathrm{T}$ , i.e., with the norm

(3.10) $|| \eta||_{M}=\int_{\Gamma}g|\eta|d\Gamma$ .

(3.9) means that $\sigma_{n}$ defines alinear functional on $\mathrm{Y}\subset M$ with its functional norm
bounded by 1. Since $\mathrm{Y}$ is dense in $M$ , $\sigma_{n}$ can be viewed as an element in the dual space
$M^{*}$ of $M$ . As amatter of fact, $M^{*}$ is an $L^{\infty}$ -type space with its norm defined by

(3.11) $||\eta||_{M^{*}}=\mathrm{e}\mathrm{s}\mathrm{s}$ . $\sup_{s\in\Gamma}\frac{|\eta(s)|}{g(s)}$ .

Therefore, $\sigma_{n}$ turns out to be abounded function on $\Gamma$ subject to (1.5). We are now going
to show the second equality in (3.5). Coming back to (3.7), we put $v=0$ there, obtaining

$- \int_{\Gamma}\sigma_{n}\cdot u_{n}d\Gamma-\int_{\Gamma}g|u_{n}|d\Gamma\geq 0$ ,

which leads to
$\int_{\Gamma}(\sigma_{n}\cdot u_{n}+g|u_{n}|)d\Gamma=0$,

with the aid of (1.5), and leads furthermore to the second equality of (3.5) in the $\mathrm{a}.\mathrm{e}$ . sense
on $\Gamma$ . Thus we have shown that $\{u,p\}\mathrm{i}\mathrm{s}$ asolution of m-Leak-WBVP, which completes
the proof of Theorem 3.1. Q.E.D.

We proceed to one of our main theorems, by claiming

Theorem 3.2 m-Leak- $VI$ has a solution $\{u,p\}$ , of which $u$ is unique but $p$ is unique
except for an additive constant. The range of the additive constant to $p$ is limited to {0}
or to a finite closed interval. So does m-Leak- WBVP.

Proof of Theorem 3.2
Uniqueness Argument. Let $\{u:,p_{i}\}$ be solutions of m-Leak-VI $(i=1,2)$ . Then by (3.3)
we have

$a(u_{1}, u_{2}-u_{1})$ $+j(u_{2})-j(u_{1})\geq(f, u_{2}-u_{1})$ ,

$a(u_{2}, u_{1}-u_{2})$ $+j(u_{1})-j(u_{2})\geq(f, u_{1}-u_{2})$ ,
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since $\mathrm{d}\mathrm{i}\mathrm{v}u_{1}=0$, $\mathrm{d}\mathrm{i}\mathrm{v}u_{2}=0$ . Adding these two inequalities, we have $a(u_{2}-u_{1}, u_{2}-u_{1})\leq 0$ ,

which gives $u_{2}-u_{1}=0$ by Lemma 2.1 (Korn’s inequality). After obtaining the uniqueness
of $u$ , it is easy to see the uniqueness of $p$ in $L_{lo\mathrm{c}}^{2}(\Omega)/R$. Then the range of the additive
constant can be examined through (1.2).
Existence Proof. We have to start from the following variational inequalities with in
solenoidal functions.
$\mathrm{m}-\mathrm{L}\mathrm{e}\mathrm{a}\mathrm{k}-\mathrm{V}\mathrm{I}_{\sigma}$

Find $u\in K_{\sigma}$ such that

(3.12) $a(u, v-u)+j(v)-j(u)\geq(f, v-u)$ $(\forall v\in K_{\sigma})$ . I

The existence of the solution $u$ of $\mathrm{m}- \mathrm{L}\mathrm{e}\mathrm{a}\mathrm{k}- \mathrm{V}\mathrm{I}_{\sigma}$ can be shown by astandard argument in
the theory of variational inequalities. Then in the same way as before, we can verify that
$u$ is aweak solution of (2.2) and see that there exists an associated pressure $p$ . We fix
this $p$ . $\{u,p\}\mathrm{m}\mathrm{a}\mathrm{y}$ not satisfy (1.2) but we can use (2.11) for $\sigma_{n}(u,p)$ . If $v\in K\mathrm{a}$ , then we
have by (2.11) and (3.12)

(3.13) $\int_{\Gamma}\sigma_{n}\cdot$ $(v-u)_{n}d\Gamma$ $=a(u,v-u)-(p, \mathrm{d}\mathrm{i}\mathrm{v}(v-u))-(f, v-u)$

$=a(u, v-u)-(f, v-u)$
$\geq$ $-j(v)+j(u)$ .

Hence we have
(3.14) $\int_{\Gamma}\sigma_{n}\cdot$ $(v-u)_{n}d\Gamma+j(v)-j(u)\geq 0$ $(\forall v\in K_{\sigma})$ .

Partly repeating the argument in the proof of the preceding theorem, we deduce

(3.15) $| \int_{\Gamma}\sigma_{n}\cdot\eta d\Gamma|\leq\int_{\Gamma}g|\eta|d\Gamma$ $(\forall\eta\in \mathrm{Y}_{0})$ ,

in consideration that $(v-u)_{n}$ ranges over $\mathrm{Y}_{0}$ on $\Gamma$ as $v$ ranges over $K_{\sigma}$ Here, we have
to note that $\mathrm{Y}_{0}$ is not dense in the $L^{1}$ -tyPe Banach space $M$ introduced in the proof of
the previous theorem. We can, however, regard $\sigma_{n}$ as alinear functional defined on the
subspace $\mathrm{Y}_{0}$ of $M$ , and its functional norm is bounded by 1. At this point, we apply the
Hahn-Banach theorem and see that there exist an element $\lambda^{*}$ of the dual space $M^{*}$ such
that
(3.16) $\langle\lambda^{*}, \eta\rangle=\langle\sigma_{n}, \eta\rangle$ (Vy7 $\in \mathrm{Y}_{0}$),

and
(3.17) $||\lambda^{*}||_{M^{*}}\leq 1$ .

Prom (3.17), we see that $\lambda^{*}$ is abounded function on $\Gamma$ and is subject to

(3.18) $|\lambda^{*}|\leq g$ $\mathrm{a}.\mathrm{e}$ . on $\Gamma$ .
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On the other hand, (3.16) implies

(3.19) $\lambda-\sigma_{n}=-k^{*}$

for some constant $k^{*}$ . Let us put $p^{*}=p+k^{*}$ . Then we have

$\lambda^{*}=\sigma_{n}(u,p)-k^{*}=\sigma_{n}(u,p^{*})$ ,

and also in view of (3.18)
(3.20) $|\sigma_{n}(u,p^{*})|\leq g$ $\mathrm{a}.\mathrm{e}$ . on $\Gamma$ .

Furthermore, we can write (3.14) for $\{u,p^{*}\}$ as

(3.21) $\int_{\Gamma}\sigma_{n}^{*}\cdot(v-u)_{n}d\Gamma+j(v)-j(u)\geq 0$
$(\forall v\in K_{\sigma})$ .

From (3.20) and (3.21) with $v=0$ , we can deduce for $\sigma_{n}^{*}=\sigma_{n}(u,p^{*})$

$\sigma_{n}^{*}\cdot u_{n}+g|u_{n}|=0$ ,

in aparallel way as in the proof of preceding theorem. Thus we have shown that $\{u,p^{*}\}$

satisfies (3.5) and is asolution of m-Leak-VI and so of m-Leak-WBVP. Q.E.D.

4Leak-IVP

We study the solvability of Leak-IVP through that of m-Leak-IVP. In doing so we shall

rely on the generation theorem in the nonlinear semigroup theory. In short, this theorem

tells us that the initial value problem is nicely solvable (in an abstract sense to be specified

below), if it is generated by the minus of amaximal monotone ($\mathrm{m}$-monotone)operator $A$

in aHilbert space $X$ . Here we should note that $A$ is possibly multi-valued.

4.1 Monotone operators

Let us recall some fundamental concepts for our later use.

Definition 4.1 A multi-valued operator $A$ in Hilbert space $X$ is monotone (or accretive)

if
(4.1) $(f_{1}-f_{2}, u_{1}-u_{2})\geq 0$ $(\forall u_{1}, u_{2}\in D(A),$ $\forall f_{1}\in Au_{1}$ , $\forall f_{2}\in Au_{2})$ ,

where $D(A)$ is the domain of definition of A. 1

The following definition is concerned with the maximality of monotone property.

Definition 4.2 A monotone operator $A$ is a maximal monotone (or $m$-accretive)oper-

ator, if
(4.2) $R(I+A)\equiv Range$ of $(I+A)=X$. 1
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As for amonotone operator, the condition (4.2) is equivalent to

(4.3) $R(I+\lambda A)=X$,

for all $\lambda>0$ or for some A. If $A$ is amaximal monotone operator, then the subset Au
is anon-empty closed convex set in $X$ for each $u\in D(A)$ , which enables us to make the
following definition.

Definition 4.3 Let $A$ be a maximal monotone operator. Then its canonical restriction
$A^{0}$ is defined by assigning as $A^{0}u$ the element with the smallest nor$rm$ in Au. I
Sometimes, one prefers the following terminology:

Definition 4.4 An operator $B$ in $X$ is dissipative $if-B$ is monotone, and is maximal
dissipative $if-B$ is maximal monotone. I

We shall make use of the following well-known facts concerning an evolution equation
(evolution condition) with amaximal dissipative operator as its generator.
abst-IVP (abstract IVP) :

Let $A$ be amaximal monotone operator and let $a$ be an element in $X$ . The abst-IVP
is to find $u=u(t)$ which is an $X$ -valued absolutely continuous function on $[0, +\infty)$ such
that the evolution condition
(4.4) $\frac{du}{dt}\in$ -Au(t) ( a.e.t),

and the initial condition
(4.5) $u(0)=a$

hold true. I
Then the following theorem is known:

Theorem 4.1 The abst-IVP is uniquely solvable if $a\in D(A)$ . Moreover, the solution
$u(t)\in D(A)$ for every $t$ , and it satisfies

(4.6) $\frac{d^{+}u}{dt}=-A^{0}u(t)$ $(\forall t\in[0, +\infty))$ .

4.2 Stokes operator under Leak-BCF
Having m-Leak-IVP in our mind, we define the modified Stokes operator with the bound-
ary condition Leak-BCF (which corresponds to “the Stokes operator $+\mathrm{I}$ ”) as follows.
The basic Hilbert space $X$ is $L^{2}(\Omega)$ . Then the modified Stokes operator $A$ is defined as
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Definition 4.5 The domain of definition $D(A)$ of the modified Stokes operator $A$ is given
by
(4.7) $D(A)=$ { $u\in K_{\sigma}$ ; $\exists p$ , $\exists f$ such that $u$ is a solution of m-Leak- $Vl$},

and for each $u\in D(A)$ we define the set Au by

(4.8) $f\in Au\Leftrightarrow u$ is the solution of m-Leak- $VI$ for some $p$ and for the very $f$ . I

Then $A$ is easily verified to be monotone. In fact, let $\{u:,p_{i}\}$ be the solution of
m-Leak-VI for $f_{i}$ , $(i=1,2)$ . Then we have

$a(u_{1}, u_{2}-u_{1})$ $+j(u_{2})-j(u_{1})\geq(f_{1}, u_{2}-u_{1})$ ,

$a(u_{2}, u_{1}-u_{2})$ $+j(u_{1})-j(u_{2})\geq(f_{2}, u_{1}-u_{2})$ ,

since $\mathrm{d}\mathrm{i}\mathrm{v}u_{1}=0$ , $\mathrm{d}\mathrm{i}\mathrm{v}u_{2}=0$. Adding these two inequalities, we have $a(u_{2}-u_{1}, u_{2}-u_{1})\leq$

$(f_{1}-f_{2}, u_{2}-u_{1})$ , which gives (4.1) by virtue of the non-negative property of $a(u, u)$ .
Moreover, $A$ is maximal monotone. This can be confirmed easily by repeating the

relevant argument in the preceding section or by making use of aknown theorem (e.g.,
Brezis [1] $)$ which can be applied when Range of $A$ is the whole space and $a(u, u)\geq c_{0}||u||^{2}$

holds true with some positive domain constant $c_{0}$ .
Thus we have

Theorem 4.2 The modified Stokes operator $A$ with Leak-BCF is a maximal monotone
operator. 1

Consequently, the generation theorem in the nonlinear semigroup theory can be ap-
plied to yield the desired solvability of m-Leak-IVP and so that of Leak-IVP.

Theorem 4.3 If $a\in D(A)$ , then m-Leak-IVP is solvable uniquely and strongly in the
sense stated in Theorem 4. 1. I

Remark 1By making use of those theorems in the NSG theory which are concerned
with generators of the sub-differential type, we can relax the condition on the initial value
above so that $a\in K_{\sigma}$ is sufficient instead of the condition $a\in D(A)$ . (see, Brezis [1],
Fujita [7] $)$ . 1
Remark 2The equation (4.6) implies that with some pressure $p$

(4.9) $\frac{d^{+}u}{dt}+u=\nu\Delta u-\nabla p$ in $\Omega$

holds true for every $t$ . At this stage, however, we know only that the distribution $\nu\Delta u-\nabla p$

turns out to be in $L^{2}(\Omega)$ . In order to obtain more regularity like $\Delta u$ , $\nabla p\in L^{2}(\Omega)$ , we
would need alittle more smoothness assumption on $g$ , and also the regularity theorem
due to N. Saito [17]
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5Leak Interface Conditions

In this section we sketch our result on the Stokes flow under an interface condition of
friction type for the case of abounded flow region Q. The methods of analysis are quite
parallel to those for the previous target problems.

5.1 Target problems with Leak-ICF

As to the geometry, however, we assume that our entire (spatial) flow region, where the
velocity $u$ and pressure $p$ are considered, is abounded domain $\Omega$ in $R^{3}$ with its smooth
boundary $\Gamma$ . Moreover, we assume that $\Omega$ is divided transversally into two sub-domain $\mathrm{s}$

$\Omega_{:}$ , $(i=1,2)$ by an interface $S$ . In each sub-domain, $\Omega_{i}$ , $\{u,p\}$ is assumed to satisfy the
Stokes equation. We confine our attention to the interface condition to be imposed on $S$ ,
while we impose the Dirichlet boundary condition on $\Gamma$ , i.e.,

(5.1) $u=0$ on $\Gamma$ ,

for the sake of simplicity. Before describing our leak interface condition, Leak-ICF, let us
specify our notation alittle more.

When $h=h(x)$ is avector function or ascalar function defined on $\Omega$ , its restriction
on $\Omega_{:}$ , $(i=1,2)$ will be denoted by $h^{:}$ .

By Leak-IFC we mean the following set of conditions: firstly, we require the non-slip
property:
(5.2) $u_{t}^{1}=u_{t}^{2}=0$ on $S$,

secondly, the continuity of normal component of velocity is assumed, i.e.,

(5.3) $u_{l}^{1}=u_{l}^{2}$ on $S$.

Here $l$ is the unit normal to $S$ directed from $\Omega_{1}$ to $\Omega_{2}$ , and $u_{l}^{1}$ , $u_{l}^{2}$ are the components
of $u^{1}$ , $u^{2}$ along $l$ . Recalling that we generally denote by $n$ the outer unit normal to the
boundary of the domain of our concern, we note

$u_{l}^{1}=u_{n}^{1}$ , $u_{l}^{2}=-u_{n}^{2}$ .

Thirdly, as the crucial part of Leak-ICF, we impose the following leak condition which
again involves agiven positive continuous function $g$ on $S$ and the notation of sub-
differential:
(5.4) $-\delta\equiv-\delta(u,p)\in\partial g|u_{l}|$ on $S$.
Here $\delta$ is the difference of the ‘normal’ stresses on the both sides of $S$ and is expressed as

(5.5) $\delta=\sigma_{l}(u^{1},p^{1})-\sigma_{l}(u^{2},p^{2})$ .
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In fact, the $l$ -component of stress is expressed as

(5.6) $\sigma_{l}=-pl\cdot n+l\cdot e(u)n$.

The condition (5.4) can be $\mathrm{r}\mathrm{e}$-written as the previous case of (1.2). For instance, it is

equivalent to

(5.7) $\{$

$|\delta|$ $\leq$ $g$ ,
$\delta\cdot u_{l}+g|u_{l}|$ $=$ 0.

Our target problem for the steady flow is now stated:

Leak-ICF-BVP
For given $f$ , find $\{u,p\}\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ satisfy the steady Stokes equation in $\Omega_{1}$ and $\Omega_{2}$ together

with the Dirichlet boundary condition on $\Gamma$ and Leak-ICF on S. 1
In dealing with the initial value problem for non-stationary flows, we again assume

the absence of the external force:
Leak-ICF-IVP

For given initial value $a$ , find $\{u,p\}\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ satisfy the (non-stationary) Stokes equation

in $\Omega_{1}$ and $\Omega_{2}$ together with the Dirichlet boundary condition on $\Gamma$ , Leak-ICF on $S$ and

the initial condition. 1

5.2 Analysis by Variational Inequalities

The method of analysis is in parallel to the previous one, being based on variational

inequalities. This time, however, we can simply put

(5.8) $a(u, v)=2 \nu\sum_{i,j=1}^{3}\int_{\Omega}e_{ij}(u)e_{ij}(v)dx$ ,

keeping the validity of Korn’s inequality, in virtue of the Dirichlet boundary condition

( $\mathrm{e}.\mathrm{g}.$ , see Ciarlet[3], Horgan[11]).
The classes of admissible functions are now defined as

(5.9) $K$ $=$ { $u\in H_{0}^{1}(\Omega);u_{t}=0$ on $S$, },
$K_{\sigma}$ $=$ { $u\in K;\mathrm{d}\mathrm{i}\mathrm{v}u=0$ in $\Omega$ }.

Also the definition of the barrier functional $j$ is renewed.

(5.10) $j(v)= \int_{S}g|v_{l}|dS$ $(\forall v\in K)$ .

We state the formulation of Leak-ICF-BVP in variational inequalities.

Leak-ICF-VI Find $u\in K_{\sigma}$ and $p\in L^{2}(\Omega)$ such that

(5.11) $a(u, v-u)-(p, \mathrm{d}\mathrm{i}\mathrm{v}(v-u)+j(v)-j(u)\geq(f, v-u)$ $(\forall v\in K)$ . I

We skip an explicit definition, but the weak formulation Leak-ICF-WBVP of Leak-ICF-

BVP could be understood. As before we can show the following theorems
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Theorem 5.1 Leak-ICF- $VI$ and Leak-ICF WBVP are equivalent. I

Theorem 5.2 Leak-ICF- $VI$ has a solution $\{u,p\}and$ so does Leak-ICF- WBVP. The
velocity part $u$ of the solution is unique. The pressure part $p$ of the solution is unique
except for an additive step function $k\chi_{1}+(k+c)\chi_{2}$ , where $\chi_{\dot{*}}(i=1,2)$ is the characteristic
function of $\Omega_{\dot{*}}$ , and where the value of the constant $k$ is arbitrary, but the range of the
constant $c$ is limited to {0} or to a finite closed interval. I

5.3 Leak-ICF-IVP

The $L^{2}$ -strong solvability of Leak-ICF-IVP similar to the previous case in \S 4 is again
an immediate outcome of the NSG theory, when we define the Stokes operator $A$ under
Leak-ICF properly so that $A$ is an maximal monotone operator in $X=L^{2}(\Omega)$ . This is
achieved by setting

(5.12) $D(A)=$ { $u\in K_{\sigma};\exists p$ , $\exists f$, $u$ is asolution of Leak-ICF-VI},

and

(5.13) $f\in Au\Leftrightarrow u$ is the solution of Leak-ICF-VI for some $p$ and for the very $f$ .
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