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On the two-dimensional nonstationary vorticity
equations
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1 Introduction

It is my great honor to contribute to the proceedings of the international conference
on ‘Tosio Kato’s method and principle for evolution equations in mathematical physics’.
Tosio Kato established mathematical foundations for various important partial differential
equations in physics. For example, he established a method to solve the Navier-Stokes
equations by a smart application of semigroup theory in his seminal paper with H. Fujita
[17], [5]. These papers are very influential in development of mathematical analysis on the
Navier-Stokes equations. For example, my research career started by extending their L?
type Hilbert theory to LP-theory [6], [7], [10]. Of course, Tosio Kato often came back to
the Navier-Stokes equations and established several fundamental and interesting results
based on his smart iteration method eg. [13], [14], [18], [19], [15].

In this paper we survey analytic results on the two-dimensional nonstationary vorticity
equations for the Navier-Stokes flow. This topic was studied in his last paper on the
Navier-Stokes equations [15]. We consider the Navier-Stokes equations

u—Au+ (v, V)u+Vr =0in R" x (0,T), (1.1)

divu =0in R" x (0,7), (1.2)

where u = u(z,t) represents the velocity field and 7 = w(z,t) represents the pressure
field. The kinematic viscosity and density are normalized to one; (u,V) = i1 u!0/ 0,
and u; = Oyu = Ou/dt where u = (u!,...,u"™). If n = 2, we take curl of (1.1) to get

w — Aw + (4, V)w =0in R? x (0,T) (1.3)

with the vorticity w =curl u which is regarded as a scalar function.
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—Av=V*curl v -V div v

for a vector field v in the plane, (1.2) implies

—Au = V4w,

where V41w = (0w/0ze, —Ow/0z;). The last relation is formally equivalent to the Biot-

Savart law

u=Vi(-A)"w. (1.4)

The system (1.3)-(1.4) in called the vorticity equations and it is formally equivalent to
the Navier-Stokes system (1.1)-(1.2).

We consider the initial-value problem of (1.3), (1.4) for the vorticity especially when
initial data wg is merely a finite Radon measure or L' function. The global existence result
is first proved by [11] and later improved by [15], [1]. This does not follow from a famous
result of J. Leray [22] since the initial kinetic energy may not be finite. The uniqueness

is still open unless point mass part of wg is small [11], [15]. Large time behaviour
w(z,t) ~ m—l—e_l"”lz/‘“ m= / w (t — o0)
’ 47]_ ) R2 0

is established for small total variation of wy [9] and later for small m [3]. It is well-known
that solution w becomes smooth for ¢ > 0 even if wy is just a measure since the problem
is parabolic. However, no one quantified this effect until Tosio Kato [15] derived the

following smoothing rate estimate for LP-norms of derivatives:

suptk+l+%[_%||6f3gw||p(t) <00, 1<p<oo, k=0,1,2,... (1.5)
£>0

for multi-index a = (ay, @s), |a| = o1 + a2, 02 = (0/0x1)* (8/0x,)*?, This is also viewed
as a decay estimate of derivatives which is new. His proof is rather sophisticated by using
estimates on fractional derivatives of products of functions (e.g. [20], [21]). Here we give
an elementary proof for (1.5) including p = 1 and p = oo by deriving a new form of the
Gronwall inequality. We shall also apply the inequality to derive smoothing rate estimate
for the Navier-Stokes equation. Except the last application the contents of this paper is
taken from the book [8].
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2 Existence

We consider the initial value problem for the vorticity equations (1.3), (1.4). Let M(R2)
denote the space of all finite Radon measures on R? equipped with the total variation
norm || - ||;. The space L'(R?) is regarded as a closed subspace of M(R2).

Theorem 2.1. Letwy € M(R?). Then there exists a global solution(w, u) of (1.3), ( 14)
such that

(i) w e C((0,00); LY(R?)) for 1 < q < oo satisfying
£ wllg(t) < 6~0YD ]y, 1< g < oo (21)
with a numerical constant k;
(ii) w(t) — wo in the weak * topology of M(R?) ast — 0;
(iii) w(z,t) is smooth for t > 0.

The existence of a smooth solution for wy € M(R?) satisfying (i), (ii), (iii) goes back
to [11] where the constant k~1=3) in (2.1) is replaced by a constant C, dependending on
¢ and ||wol[1. The key to prove the global existence is to prove a priori estimate (2.1). In
[15] and [1} improved a priori estimate of [11]. They prove the estimate of solution W of
a perturbed heat equation

W, - AW + (v, VYW =0

with divv = 0 of form
V9| W ||o(t) < 6~V |W ]|

with the best possible constant « in the Nash inequality

V911 [1911E > i3

Their methods differ from each other. For W one is able to prove that [|W]|4(2) is
nonincreasing in time ¢. Thus ||w||¢(t) in Theorem 2.1 is also nonincreasing in t. We refer
[8] for more details as well as original papers [15], [1].

The existence of a global weak solution of (1.3), (1.4) with wy € M(R?) has been
proved in [4].

Open problem. Existence of solutions for measure initial vorticity is not known when
we consider the Navier-Stokes equations (1.1), (1.2) on the half space with Dirichlet
boundary condition u = 0.
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3 Uniqueness
The situation of uniqueness is unsatisfactory.
Theorem 3.1. For each q € [4/3,2) there exists a constant €, > 0 such that if
I ¢4 woll, < ea/2 (3.1)
then it is possible to construct a solution w in Theorem 2.1 satisfying
Tm £ ||wllq(#) < - (3.2)

The solution w satisfying (3.2) is unique provided that (i), (ii) of Theorem 2.1 is fulfilled
where (2.1) is replaced with boundedness of t*=/9||w||® on [0, T),T > 0. Here e"*wy =
Gy * wy, Gy(x) = (4mt)lexp(—|z|?/4t) and * denotes the convolution on R2. Such a kind
of uniqueness goes back to [11]. It is shown that if point mass part of wg is small then
(3.1) is fulfilled, so the uniqueness holds for example for wo € L*(R?). In [15] Tosio Kato
clarified the explict value of €,. Especially, he proved that e4/3 ~ 0.4922. If ||wo||; is

small, the uniqueness (among small solution) is easy to prove (cf. [4]).

Open problem. Unfortunately, the uniqueness of solution is not known even when
wo = mé(x), a constant multiple of Dirac’s delta function when |m/| is not small. For such
an inital data

w(t,z) = m(4nt) " exp(—|z|*/4t)
is a solution of (1.3) and (1.4) satisfying (3.2). According to [15] if |m| < e4/2¢c, With
cq = (4m)~(1=1/9g=1/4 then such a solution is unique and satisfies (3.2) with ¢ = 4/3. (The

value €,/2¢c, ~ 0.5749 for ¢ = 4/3) A typical question is whether w is a unique solution

when |m| is large.

Remark 3.2. In Theorem 3.1 the uniqueness is actually proved for solutions of the
integral equation _
t
w(t) = ePwy — /0 e (u, V)wds (3.3)

with (1.4). This is formally equivalent to (1.3), (1.4) with initial data wo. Here w(t) is
interpreted as a function on [0, c0) with values in some space of functions of z-variables.
Even if wy € L'(R?) the method (originally due to [17]) provides uniqueness for (3.3)
among the class of w satisfying

w € C([0,T), L'(R?)) and t*~Y%w € L®(0,T; L(R?))
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i #1149 (8) = 0 (34)

for some ¢ € [4/3,2). The last assumption (3.4) is very convenient when the space of
initial data is scaling-invariant under the rescaling wox(z) = A%wo(z), X > 0. The extra
assumption (3.4) turns to be removed by a remark of Brezis [2]. See also [16].

4 Large time behaviour

If wy is radially symmetric, then G * wy is a solution of (1.3), (1.4) with initial data and
for large ¢ it is asymptotically like [wodz G;. For the nonradial wy we still have such a
result provided that [|wo||; is small. Let w be a solution of (1.3), (1.4) satisfying (2.1)

with w|g—o = wp.

Theorem 4.1. For each § € (0,1/2) there exists € = £(6) > 0 such that of ||wy||; < €
then

ko = mGilly(&) S ONES178, m = [ w
Hlw — ePwyl|p(t) KONt P8 1 <p<oo, t>0
with a universal constant C and N = || |z|wp ||1

This result is first proved in [9]. Later the smallness assumption is weakened by the small
ness of |m| in [3] as follows.

Theorem 4.2. Let w be a solution of (1.3), (1.4) satisfying (2.1) with w|i—p = wy. If
Im| < €q/2¢q with ¢q = (47)~(1=1/9g=Y4 for some g € [4/3,2), then

lim 77| w — m Gy||p(t) = 0.

t—o00

The constant €, is taken as in Theorem 3.1.

We apply the perturbation argument to prove Theorem 4.1 while we use the scaling
argument to prove Theorem 4.2. Indeed we consider

wa(z,t) = N2w(Az, A%), ua(z,t) = Au(dz, \%)

and study the behaviour of (wy,u) as A — oo. The limit satisfies the vorticity equation
with initial data mé(z). If the uniqueness result apply, then the limit must equal mG,.
This yields the convergence. Unfortunately, the proof in [3] needs more explanation since
the estimate (3.2) is not proved for the limit. We have given a full proof in [8] at least
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5 Smoothing rate estimates

Theorem 5.1. Let (w,u) be a solution of (1.3), (1.4) in Theorem 2.1 with initial data
wo € M(R?). For multi-index 8 and b = 0,1,2, there is a constant C = C(8,, ||lwol1)
such that

84173 0202wl(¢) < Cllwolh, 1< p < co. (5.1

There is a constant C' = C'(,b,p, ||wol|1) such that
Bl 1
545751080l o(t) < Cllwnly, 2 < p < oo (52)
The constants C, C' can be taken so that it is nondecreasing in ||wo|1.

The estimates (5.1) and (5.2) are first proved by Tosio Kato [15] excluding the case p = 1
and p = oo. His method is based on a sophisticated application of interpolation theory
and fractional derivatives estimates of product of functions. We shall give an elementary

proof based on the next Gronwall type inequality.

6 A new Gronwall type inequality

Lemma 6.1. Let 9 be a continuous function on (0, T), where T € (0, oo]. Let a,7y,6
be real numbers such thaty > 0,6 >0,y+é6=1and 0 <y < 1. Let B > 0 be a number
depending on € € (0,1). (For simplicity, assume that ¢ +— b, is nonincreasing. Assume
that there is o > 0 such that

0<y(t) <o (bet“" Y O ds) (6.1)

t(1—¢) (t — s)7s®

for allt € (0,T), € € (0,1). Then there exists a constant C = C(o,a,6,7,b,) such that
P(t) < Cot™*forallt € (0,T). (6.2)
The constant C can be taken so that it is nondecreasing in o.

Proof. By (6.1) we have

t p(s)s*

t)t* < b, +t* —_—
vt <o ( + t(1—¢) (t — 5)ds0+e

ds) , t€(0,T).

For n € (0, T) we set
@(t) = sup T*P(7).
n<r<t
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(Note that supyc,<; 7*%(7) may be infinite so we truncate near 7 = 0.) Then for ¢t >
n/(1 — €) we observe that

t ds
< @ —_—
(p(t) S0 (be + t ‘,D(t) t(l—E) (t _ 8)786+°’)

=0 (be + (1) /11_5 ﬁm)

since Y + 6§ = 1 by changing the variable s = ¢r. Since § € (0, 1),

1 dr

1= ) a=ryrme

converges for € € (0,1). Moreover I(¢) is continuous on [0, 1) and I(0) = 0. Since e +— I(¢)
is increasing, there is a unique € = £(0) < 1 such that

I(¢) = min (%,I(l)) .

(The value I(1) may be +00.) For such an £(0)

1
¢(t) < abeo) + 50(t), t € (1/(1-&(0)), T)-
Sending 7 — 0 to get
t*Y(t) < 20b€(,), te (0,7).
This estimate yields (6.2) with ¢ = 2b,(4). O
Although there are various type of the Gronwall type estimate, truncated integral in (6.1)

is not usual. The estimate (6.2) also gives the decay estimate by taking T = co. The
Gronwall type inequality yielding decay is known for example in [12, Lemma2,1]. It says

. o<¢(t)<(1+t)‘”+a/t ¥(s) ds, t>0
= = o t—s8)1(1+s) =

implies ¥(t) < C(1+t)™ fora > 0, y€[0,1), v+ 6 > 1 with C = C(a,~, §). However,
clearly, it is different from ours, since decay rate «y is restricted. The author is grateful to

Professor Tohru Ozawa for pointing [12, Lemma 2.1).

7 Indication of the proof of smoothing rate estimates

Instead of giving the full proof of Theorem 5.1 we only indicate its strategy by showing
a typical situation: |8| =1, b =10, 2 < p < oco. In this situation ||Vw||,(t) is expected
to be nonintegrable near ¢ = 0 so usual argument fails to work. By (2.1) it is standard to
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observe that ||0?0Pw]||,(t) is bounded in any interaval (6,T) if T > § > 0. The proof for
p = oo is actually written in [11] but the proof for other p > 1 is the essentially the same.

So we may assume that ||Vw]|,(t) is continuous on (0, 00) as a function of time ¢.)

We first note that
lulloo(t) < Chllw]|l1t™/? (7.1)

by applying the Gagliardo-Nirenberg inequality
[lelloo < Coallully ™/ Vul[2/7, 2 <1 < o0,
the Calder6n-Zygmund inequality
|Vull < Csl|lw||r, 1 <7 <00
the Hardy-Littlewood-Sobolev inequality
lullr < Callwllg, 1/r=1/¢-1/2, 1< g <2

and (2.1) with C, independent of u,w,wp and ¢. Our w solves the integral equation

¢
w(t) = ePwy — / et (4, Vw ds.
0

We differentiate in space and estimate its LP-norm to get
t
IVwllp(t) < Ve 2wl + /0 IVet=2(u, V)wllp ds = I(£) + I (2). (7.2)

By LP — L! estimate of derivate for the heat equation we observe

1 1
I(t) < Cst™||woll1, a= §+1—5- (7.3)

To estimate J(t) we divide the interval of integration into two parts (0,¢t(1—¢)), (t(1—¢), t),
e €(0,1):

t(1-¢) t
I =" [ =0+ B, 74
0= = DO + R (7.4)
To estimate J; we use the property (u, V)w = div (u,w) to get
t(l—e) L t(1-¢) Cs
Jl(t) = /) HdlvVe(t )A’ILWHP ds < /0 m”ﬂ&)”l ds

by LP — L' estimate :||02e*® f||, < Cet™1#I=1+1/P||f||;. We now apply (7.1) and (2.1) to

get
t(l—e) ds 9 —a 9
Jl(t) < C7A 31/2(t — s)?—l/p”w(]”l = A€t ”(‘)0”1 (75)
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with A, depending only on ¢ and p. Contrary to J; the singularity of ||Vw]||, (s) near
s = 0 is excluded in J, from the interval of integration. We thus directly estimate J, to

get
RO < [ el Voll, ds
2= Jiey (t = s)12"™ b

t 1
<G /t(l_e) m”vwnp(s)d«s [lwollx (7.6)
by (2.1). Combining (7.2)-(7.6) yields
o t(l1-¢) 1
IVw]|»(t) < Chollwollx (Bet |wol[x +/t‘ m”vwﬂp(s) ds) . (77
For all t > 0, ¢ € (0,1) with B, depending only on p and e. (It is easy to see that A, is

nonincreasing in € so is B,). We now apply Lemma 6.1 to (7.7) to get (5.1) for |8] = 1,
b=0,2<p< .

In a similar way to derive (7.2) we estimate ||Vu||oo(t). Using this and estimate for
||Vw]||, we just obtained, we are able to estimate ||85w]|,(t) with |3] = 1 like the estimate
of ||Vw||p. The remaining estimates for b = 0 can be proved inductively. The estimates
with b > 0 easily follows from (5.1), (5.2) with b = 0 and the vorticity equation (1.3).
The reader is referred to [8] for more detailed argument.

8 Smoothing rate estimate for the Navier-Stokes flow

In [13] it has been shown that for ug € L*(R") (with div up = 0). there is a unique global
smooth solution of the Navier-Stokes equation (1.1), (1.2) with some = for initial velocity
uo provided that ||ug||, is small. The solution u is continuous in [0, 00) with values in
L™*(R™). Without size restriction of ||uo||, we only have a local solution. (When n = 2,
there exists always global smooth solution for L?(R?) data as shown in [22].) We note
our argument applys to get a smoothing rate estimate for velocity.

Theorem 8.1. For uy € L*(R™) (with div up = 0) let w € C([0,T), L*(R™)) be a
smooth solution of the Navier-Stokes equations (1.1), (1.2) with u|;—o = uo. Assume that
SuPg<t<r ||¢||n(t) := M < co. Then there is a constant C = C(M) such that

118%ull,(t) < C(M)|[uollnt™ 353 t € (0,T) (8.1)
for all n < p < 0o, multi-index f3.

For the proof we use the integral equation

¢
u(t) = ePuy — / et=AP(u, V)u ds
0



95

for u, where P is the orthogonal projection to the divergence-free vector space and its
explicit from is
(P)ij =65+ RiR; (1<4, j<mn)

with the Riesz operator R; = 0,,(—A)~'/2. By the way the idea converting to be original
system to this integral equations for time-dependent functions with values in spaces of
functions of spatial variables goes back to [17]. Tosio Kato derived various important
results by using this integral equations [13]. We estimate u in a similar way to estimate
Vw to get the desired result. Here note that P is bounded in L? to L? for 1 < p < oo by
the Calderén -Zygmurd inequality. The detail as well as various extension of this estimate

will be discussed elsewhere.

Remark 8.2. If the solution u is a global-in-time solution with lim, , ||u||.(t) = 0,
our estimate (8.1) implies the decay estimate. In [23] for n = 2 it has been proved that it
ug € H™ N L?, them

108ul|2(t) < C(t+1)~WRD2 ¢ > 1,
168u||oo(t) < C(t+ 1) UARYD ¢ > 1,

Our estimates are not comparable to theirs but it is likely that our method would give

such estimates.
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