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1 Introduction

It is my great honor to contribute to the proceedings of the international conference
on ‘Tosio Kato’s method and principle for evolution equations in mathematical physics’.
Tosio Kato established mathematical foundations for various important partial differential
equations in physics. For example, he established amethod to solve the Navier-Stokes
equations by asmart application of semigroup theory in his seminal paper with H. Fujita
[17], [5]. These papers are very influential in development of mathematical analysis on the
Navier-Stokes equations. For example, my research career started by extending their $L^{?_{d}}$

type Hilbert theory to $L^{p}$-theory[6], [7], [10]. Of course, Tosio Kato often came back to

the Navier-Stokes equations and established several fundamental and interesting results
based on his smart iteration method $\mathrm{e}\mathrm{g}$ . [13], [14], [18], [19], [15].

In this paper we survey analytic results on the tw0-dimensional nonstationary vorticity
equations for the Navier-Stokes flow. This topic was studied in his last paper on the
Navier-Stokes equations [15]. We consider the Navier-Stokes equations

$u_{t}-\Delta u+(u, \nabla)u+\nabla\pi=0$ in $\mathrm{R}^{n}\cross(0, T)$ , (1.1)

$\mathrm{d}\mathrm{i}\mathrm{v}u=0$ in $\mathrm{R}^{n}\cross(0, T)$ , (1.2)

where $u=u(x, t)$ represents the velocity field and $\pi$ $=\pi(x, t)$ represents the pressure
field. The kinematic viscosity and density are normalized to one; $(u, \nabla)=\Sigma_{j=1}^{n}u^{j}\partial/\partial x_{j}$

and $u_{t}=\partial_{t}u=\partial u/\partial t$ where $u=$ $(u^{1}, \ldots, u^{n})$ . If $n=2$ , we take curl of (1.1) to get

$\omega_{t}-\Delta\omega+(u, \nabla)\omega=0$ in $\mathrm{R}^{2}\cross(0, T)$ (1.3)

with the vorticity $\omega$
$=\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}u$ which is regarded as ascalar function
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$-\Delta v=\nabla^{[perp]}$ curl $v-\nabla \mathrm{d}\mathrm{i}\mathrm{v}v$

for avector field $v$ in the plane, (1.2) implies

$-\Delta u=\nabla^{[perp]}\omega$ ,

where $\nabla^{[perp]}\omega=(\partial\omega/\partial x_{2}, -\partial\omega/\partial x_{1})$ . The last relation is formally equivalent to the $\mathrm{B}\mathrm{i}\mathrm{o}\mathrm{t}arrow$

Savart law

$u=\nabla^{[perp]}(-\Delta)^{-1}\omega$ . (1.4)

The system (1.3)-(1.4) in called the vorticity equations and it is formally equivalent to
the Navier-Stokes system (1.1)-(1.2).

We consider the initial-value problem of (1.3), (1.4) for the vorticity especially when

initial data $\omega_{0}$ is merely afinite Radon measure or $L^{1}$ function. The global existence result
is first proved by [11] and later improved by [15], [1]. This does not follow from afamous

result of J. Leray [22] since the initial kinetic energy may not be finite. The uniqueness

is still open unless point mass part of $\omega_{0}$ is small [11], [15]. Large time behaviour

$\omega(x, t)\sim m\frac{1}{4\pi}e^{-|x|^{2}/4t}$ , $m= \int_{\mathrm{R}^{2}}\omega_{0}$ $(tarrow\infty)$

is established for small total variation of $\omega_{0}[9]$ and later for small $m[3]$ . It is well-known
that solution $\omega$ becomes smooth for $t>0$ even if $\omega_{0}$ is just ameasure since the problem

is parabolic. However, no one quantified this effect until Tosio Kato [15] derived the
following smoothing rate estimate for $L^{p}$-norms of derivatives:

$\sup_{t>0}t^{k+1+\frac{|\alpha|}{2}-\frac{1}{p}}||\partial_{t}^{k}\partial_{x}^{\alpha}\omega||_{p}(t)<\infty$ , $1<p<\infty$ , $k=0,1,2$ , $\ldots$ (1.5)

for multi-index $\alpha=$ ( $\alpha_{1}$ , a2), $|\alpha|=\alpha_{1}+\alpha_{2}$ , $\partial_{x}^{\alpha}=(\partial/\partial x_{1})^{\alpha_{1}}(\partial/\partial x_{2})^{\alpha_{2}}$ , This is also viewed
as adecay estimate of derivatives which is new. His proof is rather sophisticated by using
estimates on fractional derivatives of products of functions (e.g. [20], [21]). Here we give

an elementary proof for (1.5) including $p=1$ and $p=\infty$ by deriving anew form of the

Gronwall inequality. We shall also apply the inequality to derive smoothing rate estimate
for the Navier-Stokes equation. Except the last application the contents of this paper is

taken from the book [8]
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2Existence

We consider the initial value problem for the vorticity equations (1.3), (1.4). Let $M(\mathrm{R}^{2})$

denote the space of all finite Radon measures on $\mathrm{R}^{2}$ equipped with the total variation
norm $||\cdot||_{1}$ . The space $L^{1}(\mathrm{R}^{2})$ is regarded as aclosed subspace of $M(\mathrm{R}^{2})$ .

Theorem 2.1. Let $\omega_{0}\in M(\mathrm{R}^{2})$ . Then there exists global solution(u, u) of (1.3), (1.4)
such that

(i) $\omega\in C((0, \infty);L^{q}(\mathrm{R}^{2}))$ for $1\leq q\leq\infty$ satisfying

$t^{1-1/q}||\omega||_{q}(t)\leq\kappa^{-(1-1/q)}||\omega_{0}||_{1},1\leq q\leq\infty$. (2.1)

with anumerical constant $\kappa$;

(ii) $\omega(t)arrow\omega_{0}$ in the $weak*topology$ of $M(\mathrm{R}^{2})$ as $tarrow \mathrm{O}$ ;

(iii) $\omega(x, t)$ is smooth for $t>0$ .

The existence of asmooth solution for $\omega_{0}\in M(\mathrm{R}^{2})$ satisfying (i), (ii), (iii) goes back
to [11] where the constant $\kappa^{-(1-\frac{1}{q})}$ in (2.1) is replaced by aconstant $C_{o}$ dependending on
$q$ and $||\omega_{0}||_{1}$ . The key to prove the global existence is to prove apriori estimate (2.1). In
[15] and [1] improved apriori estimate of [11]. They prove the estimate of solution $W$ of
aperturbed heat equation

$W_{t}-\Delta W+(v, \nabla)W=0$

with divv $=0$ of form
$t^{1-1/q}||W||_{q}(t)\leq\kappa^{-(1-1/q)}||W|_{t=0}||_{1}$

with the best possible constant $\kappa$ in the Nash inequality

$||\nabla\psi||_{2}^{2}||\psi||_{1}^{2}\geq\kappa||\psi||_{2}^{4}$ .

Their methods differ from each other. For $W$ one is able to prove that $||W||_{q}(t)$ is
nonincreasing in time $t$ . Thus $||\omega||_{q}(t)$ in Theorem 2.1 is also nonincreasing in $\mathrm{t}$ . We refer
[8] for more details as well as original papers [15], [1].

The existence of aglobal weak solution of (1.3), (1.4) with $\omega_{0}\in M(\mathrm{R}^{2})$ has been
proved in [4].

Open problem. Existence of solutions for measure initial vorticity is not known when
we consider the Navier-Stokes equations (1.1), (1.2) on the half space with Dirichlet
boundary condition $u=0$ .
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3Uniqueness

The situation of uniqueness is unsatisfactory.

Theorem 3.1. For each $q\in[4/3,2)$ there exists aconstant $\epsilon_{q}>0$ such that if

$\varlimsup_{tarrow 0}t^{1-\frac{1}{q}}||e^{t\Delta}\omega_{0}||_{q}<\epsilon_{q}/2$ , (3.1)

then it is possible to construct asolution $\omega$ in Theorem 2.1 satisfying

$\varlimsup_{tarrow 0}t^{1-\frac{1}{q}}||\omega||_{q}(t)<\epsilon_{q}$. (3.2)

Tie solution $\omega$ satisfying (3.2) is unique provided that (i), (ii) of Theorem 2.1 is fulfilled
where (2.1) is replaced with boundedness of $t^{1-1/q}||\omega||_{q}^{(t)}$ on $[0, T)$ , $T>0$ . Here $e^{t\Delta}\omega_{0}=$

$G_{t}*\omega_{0}$ , $G_{t}(x)=(4\pi t)^{-1}\exp(-|x|^{2}/4t)\mathrm{a}\mathrm{n}\mathrm{d}*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the convolution on $\mathrm{R}^{2}$ . Such akind
of uniqueness goes back to [11]. It is shown that if point mass part of $\omega_{0}$ is small then
(3.1) is fulfilled, so the uniqueness holds for example for $\omega_{0}\in L^{1}(\mathrm{R}^{2})$ . In [15] Tosio Kato
clarified the explict value of eq. Especially, he proved that $\epsilon_{4/3}\approx 0.4922$ . If $||\omega_{0}||_{1}$ is
small, the uniqueness (among small solution) is easy to prove (cf. [4]).

Open problem. Unfortunately, the uniqueness of solution is not known even when
$\omega_{0}=m\delta(x)$ , aconstant multiple of Dirac’s delta function when $|m|$ is not small. For such

an inital data
$\omega(t, x)=m(4\pi t)^{-1}\exp(-|x|^{2}/4t)$

is asolution of (1.3) and (1.4) satisfying (3.2). According to [15] if $|m|<\epsilon_{q}/2c_{q}$ with
$c_{q}=(4\pi)^{-(1-1/q)}q^{-1/q}$ then such asolution is unique and satisfies (3.2) with $q=4/3$ . (The

value $\epsilon_{q}/2c_{q}\approx 0.5749$ for $q=4/3$) Atypical question is whether $\omega$ is aunique solution
when $|m|$ is large.

Remark 3.2. In Theorem 3.1 the uniqueness is actually proved for solutions of the
integral equation

$\mathrm{u}(\mathrm{t})=e^{t\Delta}\omega_{0}-\int_{0}^{t}e^{(t-s)\Delta}(u, \nabla)\omega ds$ (3.3)

with (1.4). This is formally equivalent to (1.3), (1.4) with initial data $\omega_{0}$ . Here $\omega(t)$ is

interpreted as afunction on $[0, \infty)$ with values in some space of functions of x-variables.

Even if $\omega_{0}\in L^{1}(\mathrm{R}^{2})$ the method (originally due to [17]) provides uniqueness for (3.3)

among the class of $\omega$ satisfying

$\omega$ $\in C([0, T),$ $L^{1}(\mathrm{R}^{2}))$ and $t^{1-1/q}\omega\in L^{\infty}(0, T;L^{q}(\mathrm{R}^{2}))$
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$\lim_{tarrow 0}t^{1-1/q}||\omega||_{q}(t)=0$ (3.4)

for some $q\in[4/3,2)$ . The last assumption (3.4) is very convenient when the space of
initial data is scaling-invariant under the rescaling $\omega_{0\lambda}(x)=\lambda^{2}\omega_{0}(x)$ , $\lambda>0$ . The extra
assumption (3.4) turns to be removed by aremark of Brezis [2]. See also [16].

4Large time behaviour

If (Jo is radially symmetric, then $G_{t}*\omega_{0}$ is asolution of (1.3), (1.4) with initial data and
for large $t$ it is asymptotically like $\int\omega_{0}dxG_{t}$ . For the nonradial $\omega_{0}$ we still have such a
result provided that $||\omega_{0}||_{1}$ is small. Let $\omega$ be asolution of (1.3), (1.4) satisfying (2.1)
with $\omega|_{t=0}=\omega_{0}$ .

Theorem 4.1. For each $\delta\in(0,1/2)$ there exists $\epsilon=\epsilon(\delta)>0$ such that $of||\omega_{0}||_{1}<\epsilon$

then

$||\omega-mG_{t}||_{p}(t)\leq CNt^{-1+1/p-\delta}$, $m= \int_{\mathrm{R}^{2}}\omega_{0}$

$||\omega-e^{t\Delta}\omega_{0}||_{p}(t)\leq CNt^{-1+1/p-\delta}$ , $1\leq p\leq\infty$ , $t>0$

with auniversal constant C and N $=|||x|\omega_{0}||_{1}$

This result is first proved in [9]. Later the smallness assumption is weakened by the small
ness of $|m|$ in [3] as follows.

Theorem 4.2. Let $\omega$ be asolution of (1.3), (1.4) satisfying (2.1) with $\omega|_{t=0}=(\mathrm{J}\mathrm{o}$ If
$|m|<\epsilon_{q}/2c_{q}$ with $c_{q}=(4\pi)^{-(1-1/q)}q^{-1/q}$ for some $g\in[4/3,2)$ , then

$\lim_{tarrow\infty}t^{1-1/p}||\omega$ $-mG_{t}||_{p}(t)=0$ .

The constant $\epsilon_{q}$ is taken as in Theorem 3.1.

We apply the perturbation argument to prove Theorem 4.1 while we use the scaling
argument to prove Theorem 4.2. Indeed we consider

$\omega_{\lambda}(x, t)=\lambda^{2}\omega(\lambda x, \lambda^{2}t)$ , $u_{\lambda}(x, t)=Xu(Xx, \lambda^{2}t)$

and study the behaviour of $(\omega_{\lambda}, u_{\lambda})$ as $\lambdaarrow\infty$ . The limit satisfies the vorticity equation
with initial data $m\delta(x)$ . If the uniqueness result aPPly, then the limit must equal $mG_{t}$ .
This yields the convergence. Unfortunately, the proof in [3] needs more explanation since
the estimate (3.2) is not proved for the limit. We have given afull proof in [8] at leas
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5Smoothing rate estimates

Theorem 5.1. Let $(\omega, u)$ be asolution of (1.3), (1.4) in Theorem 2.1 with initial data
$\omega_{0}\in M(\mathrm{R}^{2})$ . For multi-index $\beta$ and $b=0,1,2$ , there is aconstant $C=C(\beta, b, ||\omega_{0}||_{1})$

such that
$t^{b+\frac{|\beta|}{2}+1-\frac{1}{\mathrm{p}}}||\partial_{t}^{b}\partial_{x}^{\beta}\omega||_{p}(t)\leq C||\omega_{0}||_{1},1\leq p\leq\infty$. (5.1)

There is aconstant $C’=C’(\beta, b,p, ||\omega_{0}||_{1})$ such that

$t^{b+_{2}^{\mathrm{u}\beta}+\frac{1}{2}-\frac{1}{p}}||\partial_{t}^{b}\partial_{x}^{\beta}u||_{p}(t)\leq C’||\omega_{0}||_{1},2<p\leq\infty$. (5.2)

Tie constants $C$, $C’$ can be taken so that it is nondecreasing in $||\omega_{0}||_{1}$ .

The estimates (5.1) and (5.2) are first proved by Tosio Kato [15] excluding the case $p=1$

and $p=\infty$ . His method is based on asophisticated application of interpolation theory

and fractional derivatives estimates of product of functions. We shall give an elementary

proof based on the next Gronwall type inequality.

6Anew Gronwall type inequality

Lemma 6.1. Let $\psi$ be acontinuous function on $(0, T)$ , where $T\in(0, \infty]$ . Let $\alpha$ , $\gamma$ , $\delta$

be real numbers such that $\gamma>0$ , $\delta>0$ , $\gamma+\delta=1$ and $0<\gamma<1$ . Let $\beta_{\epsilon}>0$ be anumber

depending on $\hat{\mathrm{c}}\in(0,1)$ . (For simplicity, assume that $\mathit{6}\mapsto b_{\epsilon}$ is nonincreasing. Assume

that there is $\sigma>0$ such that

$0 \leq\psi(t)\leq\sigma(b_{\epsilon}t^{-\alpha}+\int_{t(1-\epsilon)}^{t}\frac{\psi(s)}{(t-s)^{\gamma}s^{\delta}}ds)$ (6.1)

for all $t\in(0, T)$ , $\epsilon$ $\in(0,1)$ . Tien there exists aconstant $C=C(\sigma, \alpha, \delta, \gamma, b_{\epsilon})$ such that

$\psi(t)\leq C\sigma t^{-\alpha}$ for all $t\in(0, T)$ . (6.2)

Tie constant $C$ can be taken so that it is nondecreasing in $\sigma$ .

Proof. By (6.1) we have

$\psi(t)t^{\alpha}\leq\sigma(b_{\epsilon}+t^{\alpha}\int_{t(1-\epsilon)}^{t}\frac{\psi(s)s^{\alpha}}{(t-s)^{\delta}s^{\delta+\alpha}}ds)$ , $t\in(0, T)$ .

For $\eta\in(0, T)$ we set
$\varphi(t)=\sup_{\eta\leq\tau\leq t}\tau^{\alpha}\psi(\tau)$

.
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(Note that $\sup_{0\leq\tau\leq t}\tau^{\alpha}\psi(\tau)$ may be infinite so we truncate near $\tau=0.$ ) Then for $t>$

$\eta/(1-\epsilon)$ we observe that

$\varphi(t)$ $\leq\sigma(b_{\epsilon}+t^{\alpha}\varphi(t)\int_{t(1-\epsilon)}^{t}\frac{ds}{(t-s)^{\gamma}s^{\delta+\alpha}})$

$= \sigma(b_{\epsilon}+\varphi(t)\int_{1-\epsilon}^{1}\frac{d\tau}{(1-\tau)^{\gamma}\tau^{\delta+\alpha}})$

since $\gamma+\delta=1$ by changing the variable $s=t\tau$ . Since $\delta\in(0,1)$ ,

$I( \epsilon)=\int_{1-\epsilon}^{1}(1-\tau)^{\gamma}\tau^{\delta+\alpha}d\tau$

converges for $\epsilon$ $\in(0,1)$ . Moreover $I(\epsilon)$ is continuous on $[0, 1)$ and $I(0)=0$. Since $\epsilon\mapsto \mathrm{I}(\mathrm{e})$

is increasing, there is aunique $\epsilon$ $=\epsilon(\sigma)<1$ such that

$I( \epsilon)=\min(\frac{1}{2\sigma},$ $I(1))$ .

(The value $I(1)$ may $\mathrm{b}\mathrm{e}+\infty.$ ) For such an $\epsilon(\sigma)$

$\varphi(t)\leq\sigma b_{\epsilon(\sigma)}+\frac{1}{2}\varphi(t)$ , $t\in(\eta/(1-\epsilon(\sigma)), T)$ .

Sending $\etaarrow 0$ to get
$t^{\alpha}\psi(t)\leq 2\sigma b_{\epsilon(\sigma)}$ , $t\in(0, T)$ .

This estimate yields (6.2) with $c=\mathrm{v}\mathrm{b}\mathrm{e}\{\mathrm{a})$ . $\square$

Although there are various tyPe of the Gronwall tyPe estimate, truncated integral in (6.1)
is not usual. The estimate (6.2) also gives the decay estimate by taking $T=\infty$ . The
Gronwall type inequality yielding decay is known for example in $[12, \mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}2,1]$ . It says
that

$0 \leq\psi(t)\leq(1+t)^{-\gamma}+a\int_{0}^{t}\frac{\psi(s)}{(t-s)^{\gamma}(1+s)^{\delta}}ds$, $t\geq 0$

implies $\psi(t)\leq C(1+t)^{-\gamma}$ for $a>0$ , $\gamma\in[0,1)$ , $\gamma+\delta>1$ with $C=C(a, \gamma, \delta)$ . However,
clearly, it is different from ours, since decay rate $\gamma$ is restricted. The author is grateful to
Professor Tohru Ozawa for pointing [12, Lemma 2.1].

7Indication of the proof of smoothing rate estimates
Instead of giving the full proof of Theorem 5.1 we only indicate its strategy by showing
atypical situation: $|\beta|=1$ , $b=0,2\leq p\leq\infty$ . In this situation $||\nabla\omega||_{p}(t)$ is expected
to be nonintegrable near $t=0$ so usual argument fails to work. By (2.1) it is standard to
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observe that $||\mathrm{a}\mathrm{P}\mathrm{a}\ovalbox{\tt\small REJECT} \mathrm{w}||_{p}(\mathrm{t})$ is bounded in any interaval (5, $7^{\ovalbox{\tt\small REJECT}}$ if T $>6$ $>0$ . The proof for
p $\ovalbox{\tt\small REJECT} oc\ovalbox{\tt\small REJECT}$ is actually written in [11] but the proof for other p $\ovalbox{\tt\small REJECT}$ 1 is the essentially the same.
So we may assume that $||^{\ovalbox{\tt\small REJECT}}7\mathrm{w}||_{p}(t)$ is continuous on (0, oo) as afunction of time t.)

We first note that
$||u||_{\infty}(t)\leq C_{1}||\omega||_{1}t^{-1/2}$ (7.1)

by applying the GagliardO-Nirenberg inequality

$||u||_{\infty}\leq C_{2}||u||_{r}^{1-2/r}||\nabla u||_{r}^{2/r}$ , $2<r<\infty$ ,

the Calder\’on-Zygmund inequality

$||\nabla u||_{r}\leq C_{3}||\omega||_{r}$ , $1<r<\infty$

the Hardy-Littlewood-Sobolev inequality

$||u||_{r}\leq C_{4}||\omega||_{q}$ , $1/r=1/q-1/2,1<q<2$

and (2.1) with $C_{q}$ independent of $u$ , $\omega$ , $\omega_{0}$ and $t$ . Our $\omega$ solves the integral equation

$\omega(t)=e^{t\Delta}\omega_{0}-\int_{0}^{t}e^{(t-s)\Delta}(u, \nabla)\omega ds$ .

We differentiate in space and estimate its $L^{p}$ note to get

$|| \nabla\omega||_{p}(t)\leq||\nabla e^{t\Delta}\omega_{0}||_{p}+\int_{0}^{t}||\nabla e^{(t-s)\Delta}(u, \nabla)\omega||_{p}ds:=I(t)+J(t)$ . (7.2)

By $L^{p}-L^{1}$ estimate of derivate for the heat equation we observe

$I(t)\leq C_{5}t^{-\alpha}||\omega_{0}||_{1}$ , $\alpha=\frac{1}{2}+1-\frac{1}{p}$ . (7.3)

To estimate $J(t)$ we divide the interval of integration into two parts $(0, t(1-\epsilon))$ , $(t(1-\epsilon), t)$ ,
$\epsilon$ $\in(0,1)$ :

$J(t)= \int_{0}^{t(1-\epsilon)}\ldots+\int_{t(1-\epsilon)}^{t}\cdots:=J_{1}(t)+J_{2}(t)$. (7.4)

To estimate $J_{1}$ we use the property $(u, \nabla)\omega=\mathrm{d}\mathrm{i}\mathrm{v}(u, \omega)$ to get

$J_{1}(t)= \int_{0}^{t(1-\epsilon)}||\mathrm{d}\mathrm{i}\mathrm{v}\nabla e^{(t-s)\Delta}u\omega||_{p}ds\leq\int_{0}^{t(1-\epsilon)}\frac{C_{6}}{(t-s)^{1+1-1/p}}||u\omega||_{1}ds$

by $L^{p}-L^{1}$ estimate $:||\partial_{x}^{\beta}e^{t\Delta}f||_{p}\leq C_{6}t^{-|\beta|-1+1/p}||f||_{1}$ . We now apply (7.1) and (2.1) to
get

$J_{1}(t) \leq C_{7}\int_{0}^{t(1-\epsilon)}\frac{ds}{s^{1/2}(t-s)^{2-1/p}}||\omega_{0}||_{1}^{2}=A_{\epsilon}t^{-\alpha}||\omega_{0}||_{1}^{2}$ (7.5)
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with $A_{\epsilon}$ depending only on $\epsilon$ and $p$ . Contrary to $J_{1}$ the singularity of $||\nabla\omega||_{p}(\mathrm{s})$ near
$s=0$ is excluded in $J_{2}$ from the interval of integration. We thus directly estimate $J_{2}$ to
get

$J_{2}(t) \leq\int_{t(1-\epsilon)}^{t}\frac{C_{8}}{(t-s)^{1/2}}||u||_{\infty}||\nabla\omega||_{p}ds$

$\leq C_{9}\int_{t(1-\epsilon)}^{t}\frac{1}{(t-s)^{1/2}s^{1/2}}||\nabla\omega||_{p}(s)ds||\omega_{0}||_{1}$ (7.6)

by (2.1). Combining (7.2)-(7.6) yields

$|| \nabla\omega||_{p}(t)\leq C_{10}||\omega_{0}||_{1}(B_{\epsilon}t^{-\alpha}||\omega_{0}||_{1}+\int_{t}^{t(1-\epsilon)}\frac{1}{(t-s)^{1/2}s^{1/2}}||\nabla\omega||_{p}(s)ds)$ . (7.7)

For all $t>0$ , $\epsilon$ $\in(0,1)$ with $B_{\epsilon}$ depending only on $p$ and $\epsilon$ . (It is easy to see that $A_{\epsilon}$ is
nonincreasing in $\epsilon$ so is $B_{\epsilon}$ ). We now apply Lemma 6.1 to (7.7) to get (5.1) for $|\beta|=1$ ,
$b=0,2\leq p\leq\infty$ .

In asimilar way to derive (7.2) we estimate $||\nabla u||_{\infty}(t)$ . Using this and estimate for
$||\nabla\omega||_{p}$ we just obtained, we are able to estimate $||\partial_{x}^{\beta}\omega||_{p}(t)$ with $|\beta|=1\mathrm{l}\mathrm{i}\mathrm{k}\mathrm{e}$ the estimate
of $||\nabla\omega||_{p}$ . The remaining estimates for $b=0$ can be proved inductively. The estimates
with $b>0$ easily follows from (5.1), (5.2) with $b=0$ and the vorticity equation (1.3).
The reader is referred to [8] for more detailed argument.

8Smoothing rate estimate for the Navier-Stokes flow

In [13] it has been shown that for $u_{0}\in L^{n}(\mathrm{R}^{n})$ (with $\mathrm{d}\mathrm{i}\mathrm{v}u_{0}=0$). there is aunique global
smooth solution of the Navier-Stokes equation (1.1), (1.2) with some $\pi$ for initial velocity
$u_{0}$ provided that $||u_{0}||_{n}$ is small. The solution $u$ is continuous in $[0, \infty)$ with values in
$L^{n}(\mathrm{R}^{n})$ . Without size restriction of $||u_{0}||_{n}$ we only have alocal solution. (When $n=2$ ,
there exists always global smooth solution for $L^{2}(\mathrm{R}^{2})$ data as shown in [22].) We note
our argument aPPlys to get asmoothing rate estimate for velocity.

Theorem 8.1. For $u_{0}\in L^{n}(\mathrm{R}^{n})$ (with $d\mathrm{i}vu_{0}=0$) let $u\in C([0, T),$ $L^{n}(\mathrm{R}^{n}))$ be a
smooth solution of the Navier-Stokes equations (1.1), (1.2) with $u|_{t=0}=u_{0}$ . Assume that
$\sup_{0\leq t<T}||u||_{n}(t):=M<\infty$ . Then there is aconstant $C=C(M)$ such that

$||\partial_{x}^{\beta}u||_{p}(t)\leq C(M)||u_{0}||_{n}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{p})-\mathrm{u}_{2}}\beta$, $t\in(0, T)$ (8.1)

for all $n\leq p\leq\infty$ , multi-index $\beta$ .

For the proof we use the integral equation

$u(t)=e^{t\Delta}u_{0}- \int_{0}^{t}e^{(t-s)\Delta}\mathrm{P}(u, \nabla)uds$

94



for $u$ , where $\mathrm{P}$ is the orthogonal projection to the divergence-free vector space and its
explicit from is

$(\mathrm{P})_{ij}=\delta_{ij}+R_{i}R_{j}$ $(1 \leq i, j\leq n)$

with the Riesz operator $R_{i}=\partial_{x}(:-\Delta)^{-1/2}$ . By the way the idea converting to be original
system to this integral equations for time-dependent functions with values in spaces of
functions of spatial variables goes back to [17]. Tosio Kato derived various important
results by using this integral equations [13]. We estimate $u$ in asimilar way to estimate
$\nabla\omega$ to get the desired result. Here note that $\mathrm{P}$ is bounded in $L^{p}$ to $IP$ for $1<p<\infty$ by
the Calder\’on-Zygmurd inequality. The detail as well as various extension of this estimate
will be discussed elsewhere.

Remark 8.2. If the solution $u$ is aglobal-in-time solution with $\lim_{tarrow\infty}||u||_{n}(t)=0$ ,
our estimate (8.1) implies the decay estimate. In [23] for $n=2$ it has been proved that it
$u_{0}\in H^{m}\cap L^{2}$ , them

$||\partial_{x}^{\beta}u||_{2}(t)\leq C(t+1)^{-(|\beta|+1)/2}$ , $t\geq 1$ ,
$||\partial_{x}^{\beta}u||_{\infty}(t)\leq C(t+1)^{-(|\beta|+1/2)}$ , $t\geq 1$ .

Our estimates are not comparable to theirs but it is likely that our method would give
such estimates.
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