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Abstract

Role of resolvent formulas in determining perturbed generators is reviewed and
some results presented in [6], [7], and [5] are summarized. Given aparticular self-
adjoint operator $H_{0}$ , all selfadjoint operators are parameterized through resolvent
formulas by some objects to be specified. Two approaches, one by perturbation
theory and the other by extension theory, are presented and their close relation is
discussed.

1. Introduction In the present note, we shall look at the s0-called resolvent formulas
from ageneral viewpoint. It is not directly connected with evolution equations, the main
theme of this conference, inasmuch as no time variable $t$ appears. Rather, it is related
to methods of constructing perturbed generators (selfadjoint operators) and tries to put
these constructions in one perspective through ageneral form of resolvent formulas. Two
approaches to resolvent formulas, perturbation theoretic one and extension theoretic one,
will be presented and shown that they are almost equivalent. We may emphasize that the
perturbation approach in this note is in the sphere of influence of Tosio Kato’s principle,
in particular of [3].

This note is based on joint works with H. Nagatani ([6], [7]) and P. Kurasov ([5]) and
we shall leave most of the proof to these works.

2. Resolvent formulas We shall consider two selfadjoint operators $H_{0}$ and $H$ and put
for simplicity

$R_{0}(z)=(H_{0}-z)^{-1}$ , $R(z)=(H-z)^{-1}$ , (1)

$\Delta(z)=R(z)-R_{0}(z)$ . (2)

When $H=H_{0}+V$, two resolvents $R(z)$ and $R_{0}(z)$ are related as

$\Delta(z)=-R(z)VR_{0}(z)=-R_{0}(z)VR(z)$ , $z\in\rho(H_{0})\cap\rho(H)$ . (3)

Here, $\rho(H)$ denotes the resolvent set of $H$. This formula is called the second resolvent
equation. In this form the formula is symmetric with respect to $H_{0}$ and $H$. However, in
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the situation that $H_{0}$ is regarded as the unperturbed operator and $V$ aperturbation, it

is desirable not to have $R(z)$ on the right hand side so that arelation like (3) expresses

$R(z)$ in terms of known quantities $R_{0}(z)$ and $V$.
The simplest and well-known example is the perturbation of rank one:

$H=H_{0}+c(\cdot, \varphi)\varphi$ , $c\in \mathrm{R}$, $||\varphi||=1$ . (4)

In this case adirect computation shows that

$\Delta(z)=-\frac{1}{D(z)}(\cdot, R_{0}(\overline{z})\varphi)R_{0}(z)\varphi$ , (5)

where $D(z)$ is afunction defined as

$D(z)=1+c(R_{0}(z)\varphi, \varphi)$ , $z\in\rho(H_{0})$ . (6)

As expected, (5) describes $\Delta(z)$ only by known quantities. We call generally such a
formula aresolvent formula. (A prototype of this computation is in [2].)

Only obscure point on the right hand side of (5) is that when $1/D(z)$ makes sense, i.e.

that when $D(z)$ $=0$ . In this respect, it is known that

$\{z \in\rho(H_{0})|D(z)=0\}=\sigma_{p}(H)\cap\rho(H_{0})$ , (7)

where $\sigma_{p}(H)$ denotes the point spectrum (the set of all eigenvalues) of $H$. Moreover, the

eigenspace is the one-dimensional space spanned by $R_{0}(z)\varphi$ .
Another example in which $\Delta(z)$ is of rank one occurs in the theory of extension of

asymmetric operator with the deficiency indices $(1, 1)$ . Let $A$ be aclosed symmetric

operator with the deficiency indices $(1, 1)$ and let $\mathcal{M}$ $=(A-i)D(A)^{[perp]}$ be the deficiency

subspace of $A$ . Here, $D(A)$ denotes the domain of $A$ . Suppose that $\mathcal{M}$ is spanned by $\varphi$ ,

$||\varphi||=1$ . Let $H_{0}$ be one particular selfadjoint extension of $A$ . Then, other selfadjoint

extensions of $A$ is parameterized by areal parameter $\gamma$ so that the following resolvent

formula holds:

$\Delta(z)=-\frac{1}{\gamma+q(z)}(\cdot, (H_{0}+i)R_{0}(\overline{z})\varphi)(H_{0}-i)R_{0}(z)\varphi$, (8)

where $q(z)$ is the function defined as

$q(z)$ $=((1+zH_{0})R_{0}(z)\varphi, \varphi)$ . (9)

Again relation (7) holds with $D(z)$ replaced by $\gamma+q(z)$ . (8) is celebrated Krein’s formula
and there are many subsequent generalizations ([8], [1], and others cited in [5]).

Let us proceed to amore general situation. From (3) it follows immediately that

$\Delta(z)=-R_{0}(z)(1+VR_{0}(z))^{-1}VR_{0}(z)$ . (10)
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This is valid if $V$ is bounded, or more generally, relatively bounded with respect to $H_{0}$

(i.e. $D(V)\supset D(H_{0})$ ).
In all of these examples the perturbed operator $H$ has been defined before resolvent

formulas are discussed at all. In more delicate problems, however, the perturbed operator
itself is defined by the resolvent formula. Anotable example occurred in the theory
of smooth perturbations due to Kato ([3]). There, the perturbation is given formally
as afactorized form $V=B^{*}A$ , but only operators $AR_{0}(z)$ and $BR_{0}(z)$ are rigorously
defined and one cannot define the perturbed operator $H(\kappa)=H_{0}+\kappa B^{*}A$ directly. Under
hypotheses which express the smoothness of $A$ and $B$ with respect to $H_{0}$ Kato defined
$R(z, \kappa)$ by

$R(z, \kappa)=R(z)-\kappa[R(z)B^{*}](1+\kappa Q(z))^{-1}AR(z)$ , (11)

where $Q(z)$ is an operator valued function defined as

$Q(z)=[AR(z)B^{*}]^{\mathrm{c}1\mathrm{o}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}}$, (12)

and proceeded to prove that $R(z, \kappa)$ is the resolvent of aclosed operator $H(\kappa)$ for complex
$\kappa$ with sufficiently small $|\kappa|$ . Thus, the resolvent formula is akey to define perturbed
generators.

It is seen in these examples that, given $H_{0}$ and aclass of perturbations, perturbed
generators of the corresponding class are parameterized by asuitable object, in (5) and
(8) by complex numbers $c$ and $\gamma$ , respectively, and in (11) by pairs $\{A, B\}$ of operators.
Another common point is the appearance of characteristic (operator valued) functions
which determine singular points of $R(z)$ . They are $D(z)$ in (6), $\gamma+q(z)$ in (8), and
$1+\kappa Q(z)$ in (11).

In what follows we shall pursue this approach to an extreme and parameterize all
selfadjoint operators by suitable objects. In the perturbation approach they are bounded
operators from $D(H_{0})$ to $D(H_{0})^{*}$ and in the extension theoretic approach they are pairs
$\{\mathcal{M}, \gamma\}$ of asubspace $\mathcal{M}$ and aselfadjoint operator in U.

3. $H_{-2}$-perturbation We shall work in a Hilbert space $7\{_{0}$ and fix aselfadjoint oper-
ator $H_{0}$ . Let $H_{2}=D(H_{0})$ with the graph norm and let $\mathcal{H}_{-2}=H_{2}^{*}$ , the adjoint space of
$H_{2}$ . As usual we denote by $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ the set of all bounded operators from $\mathcal{X}$ to $\mathcal{Y}$ . We
regard the unperturbed resolvent either as Rq(z) $\in$ $\mathrm{H}-2)?t_{0})$ or as $R_{0}(z)\in \mathcal{L}(H_{0}, H_{2})$ .
The space $H_{2}$ is used in [4] to discuss ageneralized rank one perturbation formally given
as

$H=H_{0}+c(*, \varphi)\varphi$ , $\varphi\in H_{-2}$ . (13)

The following theorem is an outcome of our effort to generalize it and uses asubset of
$\mathcal{L}(H_{2}, H_{-2})$ to parameterize all selfadjoint operators.
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For $T\in \mathcal{L}(H_{2}, H_{-2})$ we consider the following two conditions:

$N(1-TR_{0}(i))=0$ , where $1-TR_{0}(i)\in \mathcal{L}(H_{0}, H_{-2})$ , (14)

$T-T^{*}=-2iT(H_{0}^{2}+1)^{-1}T^{*}=-2iT^{*}(H_{0}^{2}+1)^{-1}T$ , (15)

where $N(T)$ denotes the nullspace (kernel) of $T$. We call (14) admissibility condition and
(15) selfadjoint condition.

Theorem 1Let $H_{0}$ be fixed. Then the relation

$\Delta(i)\equiv R(i)-R_{0}(i)=-R_{0}(i)TR_{0}(i)$ (16)

determines a bijective $co$ respondence between the set of all $T\in \mathcal{L}(H_{2}, H_{-2})$ satisfying
conditions (14), (15) and the set of all selfadjoint operators $Hin$ H. Furthermore, $H$ and
$H_{0}$ satisfy the following resolvent fomula:

$\Delta(z)=-R_{0}(z)(1+(z-i)TR_{0}(z)R_{0}(i))^{-1}TR_{0}(z)$ . (17)

The approach expressed in Theorem 1is referred to as $H_{-2}$-perturbation. Aproof of
Theorem 1is found in [7].

Hereafter we denote by $H(T)$ the operator $H$ determined by (16).
Let us compare (17) with (10). If one replaces $V$ by $T$ and $R_{0}(z)$ by $(z-i)R_{0}(z)R_{0}(i)$

in (10), then one arrives at (17). Acrucial point is that, as $T\in \mathcal{L}(H_{2}, H_{-2})$ , one need
to have the iterated resolvent $W(z, i)=(z-i)R_{0}(z)R_{0}(i)\in \mathcal{L}(H_{-2}, H_{2})$ to couple with
$T\in \mathcal{L}(H_{2}, H_{-2})$ to obtain an operator acting in one space $H_{-2}$ . Note that in $\mathcal{L}(H_{-2}, H_{2})$

$W(z, i)$ cannot be expressed as $R_{0}(z)-R_{0}(i)$ .
When $D(H)=D(H_{0})$ , then $V=H-H_{0}\in \mathcal{L}(H_{2}, H_{0})$ and $H=H_{0}+V$. This case is

called the additive perturbation. It is seen that $T$ and $V$ is related as

$T=(1+VR_{0}(i))^{-1}V$, $V=(1-TR_{0}(i))^{-1}T$. (18)

Using the first relation of (18) in (17) we recapture (10).
Finally, we observe auseful relation between Theorem 1and the extension theory of

symmetric operators. Let $A$ be aclosed symmetric operators in $H_{0}$ and let $H_{0}$ and $H$ are
selfadjoint extensions of A. $A$ is said to be the maximal common restr iction of $H_{0}$ and $H$

if
$\{u\in D(H)\cap D(H_{0})|Hu=H_{0}u\}=D(A)$ . (19)

Theorem 2Let $A$ be a closed symmetric operator in $H_{0}$ . Fix an extension $H_{0}$ of $A$ and
construct $H(T)$ by Theorem 1. Then $H(T)$ is a selfadjoint extention of $A$ if and only

if $N(T)\supset D(A)$ . $A$ is a maximal common restriction of $H_{0}$ and $H(T)$ if and only if
$N(T)=D(A)$ .
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For the purpose of illustration let us take up atrivial example of first order differential
operators which is formally expressed as

$H=- \dot{i}\frac{d}{dx}+\mathrm{a}\delta(x)$ . (20)

We with in $L^{2}(\mathrm{R})$ . Let
$H_{0}=- \dot{\iota}\frac{d}{dx}$ , $D(H_{0})=H^{1}(\mathrm{R})$ , (21)

where $H^{1}(\mathrm{R})\equiv H^{1}$ is the Sobolev space. Let $H^{-1}=H^{-1}(\mathrm{R})=(H^{1})^{*}$ .
Let $\mathrm{R}_{+}=(0, \infty)$ and $\mathrm{R}_{-}=(-\infty, 0)$ . Every $f\in H^{1}(\mathrm{R}_{\pm})$ has the boundary value

$f(0\pm)$ . Selfadjoint operators corresponding to formal expression (20) is taken to be self-
adjoint extensions of $H_{0}|_{C_{0}(\mathrm{R}\backslash \{0\})}\infty$ . It is well-known that such extensions are given by $H_{t}$ ,
$0\leq t<2\pi$ , whose domain is given as

$D(H_{t})=$ { $f\in H^{1}$ (R-) $\oplus H^{1}(\mathrm{R}_{+})|f(0+)=e^{:t}f(0$ -)}. (22)

In our framework this result may be derived as follows. By Theorem 2such extensions
are given by $H(T)$ with $T$ satisfying (i) $T\in \mathcal{L}(H^{1}, H^{-1});(\mathrm{i}\mathrm{i})$ relations (14), (15); (iii)
$N(T)\supset C_{0}^{\infty}(\mathrm{R}\backslash \{0\})$ . Prom (i) and (iii) it follows that $T$ is arank one operator of the
form $T=a(\cdot, \delta)\delta$ (note that $\delta$ $\in H^{-1}$ ). Relation (14) is automatically satisfied because
the range of $T$ does not contain non-zero elements of $L^{2}$ . By an easy computation it
is shown that (15) is satisfied if and only if $|a+i|=1$ . Such $a$ is expressed as $a(t)=$
$e^{i(t+\pi/2)}-i$ , $0\leq t<2\pi$ . Thus, we have seen that all selfadjoint extensions of $H_{0}|_{C_{0}^{\infty}(\mathrm{R}\backslash \{0\})}$

is given by $H_{t}=H(T(t))$ with $T(t)=a(t)(\cdot, \delta)\delta$ , $0\leq t<2\pi$ . Prom (16) it follows that
$D(H_{t})=(1-R_{0}(i))H^{1}$ and hence $D(H_{t})=\{g-a(t)g(0)R_{0}(i)\delta|g\in H^{1}(\mathrm{R})\}$ . (22) follows
from this at once, because $(R_{0}(i)\delta)(x)=ie^{-x}\Theta(x)$ , $\Theta(x)$ being the Heaviside function.

4. Relation to extension theory After the completion of the preprint version of [7]
Pavel Kurasov (private conversation) pointed out that resolvent formula (17) must have
close connections with Krein’s formula. This issue has been investigated in [5].

In the extension theory one usually fixes aparticular selfadjoint extensions of aclosed
symmetric operator $A$ and tries to characterize all selfadjoint extensions of A. (An example
of rank one case was discussed in paragraph 1(see (8)). )Looking from adifferent
viewpoint we may proceed as follows. Fix aselfadjoint operator $H_{0}$ . Let Abe aclosed
subspace of $D(H_{0})$ with the graph norm and consider all selfadjoint extensions $H$ of
$A=H_{0}|N$ such that $A$ is the maximal common restriction of $H_{0}$ and $H$. If we vary $N$ and
collect all such extensions $H$, we would obtain all selfadjoint operators. Instead of $N$ we
use the deficiency subspace $\mathcal{M}$ $=(A-i)N^{[perp]}$ . Then, our result is summarized as follows.
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Apair $\{\mathcal{M}, \gamma\}$ of aclosed subspace $\mathcal{M}$ of $H_{0}$ and aselfadjoint operator $\gamma$ in $\mathcal{M}$ is

called admissible if
$N( \frac{1}{H_{0}+i}-\frac{1}{\gamma+i}P_{\mathcal{M}})=\{0\}$ . (23)

Theorem 3Let $H_{0}$ be fixed. Then the relation

$\Delta(i)\equiv R(z)-R_{0}(z)=-\frac{H_{0}+i}{H_{0}-i}\frac{1}{\gamma+i}P_{\mathcal{M}}$ , (24)

where $P_{\mathrm{A}4}$ is the orthogonal projection onto $M$ , determines a bijective correspondence

between the set of all admissible pairs $\{\mathcal{M}, \gamma\}$ and the set of all selfadjoint operators $H$

in $H_{0}$ . Furthermore, $H$ and $H_{0}$ satisfy the following resolvent formula:

$\Delta(z)=-(1+(z+i)R_{0}(z))(\gamma+Q(z))^{-1}P_{\mathcal{M}}(1+(z-i)R_{0}(z))$ , (25)

$Q(z)=P_{\mathrm{A}4}(1+zH_{0})R_{0}(z)|_{\lambda 4}$ . (26)

Hereafter, we denote by $H(\mathcal{M}, \gamma)$ the operator $H$ determined by (24). Relations of

Theorem 4to the extension theory may be more clearly seen in the following theorem.

Theorem 4Let $N$ be a closed subspace of $D(H_{0})$ with the graph norm and put $\mathcal{M}_{N}=$

$\{(H_{0}-i)N\}^{[perp]}$ . Then, $H(\mathcal{M}, \gamma)$ is a selfadjoint extension of $H_{0}|N$ if and only if $\mathcal{M}$ $\subset \mathcal{M}_{N}$ .

$H_{0}|N$ is the maximal common restriction of $H_{0}$ and $H(\mathcal{M}, \gamma)$ if and only if $\mathcal{M}$ $=\mathcal{M}\mathrm{g}$ .

Finally, we shall discuss relations between Theorems 2and 3, or relations between $T$

and $\{\mathcal{M}, \gamma\}$ . Suppose $H(T)=H(\mathcal{M}, \gamma)$ . Then, it is immediately seen from (16) and (24)

that
$R_{0}(-i)TR_{0}(i)=(\gamma+i)^{-1}P_{\mathrm{A}I}$ . (27)

Hence, $T$ is expressed by $\{\mathcal{M}, \gamma\}$ as

$T=(H_{0}+i)(\gamma+i)^{-1}P_{\lambda 4}(H_{0}-i)$ . (28)

On the other hand it follows from (27) that $\mathcal{M}=\{N(TR_{0}(i))\}^{[perp]}$ and we have

$(\gamma+i)^{-1}=R_{0}(-i)TR_{0}(i)P|_{\Lambda 4}$ . (29)

It can be shown that $T$ and $\{\mathcal{M}, \gamma\}$ related in this way satisfy respective admissibility

condition at the same time. Thus, we could derive Theorem 1and Theorem 3from each

other. We think, however, that, since ways of approach in the perturbation theory and the

extension theory are rather different, it may be worthwhile to develop them separately.

Finally, we remark that Theorem 1can be extended to the case that $H(T)$ is not

selfadjoint (see [6])
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