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§1. Introduction

Let Q! and Q2 be bounded domains in R®, n 2 2, I'! = 8Q!, ' UTI? = 902,
rur? =0, and Q = Q' UN2UT?. We assume that I'' and I'? belong to C3. 1!
is the unit outer normal to the boundary I'! of Q! and v2 is the unit outer normal
to the boundary I'? of Q.

In this paper we consider the generalized Stokes resolvent problem in a bounded
domain with interface condition on the interface I'' and with Dirichlet condition
on the boundary I'%:

| Mt =DivTt(ut, 7)) =, V-ul=0 in Q¢ £=1,2,
(1.1) v Tl nt) — vt - T?(u?,n?) = h' — h2, ul=u? onT?,
u2=0 onT?,
where u¢ = (u!,--- ,u’) are unknown velocities in ¢ (£ = 1,2), 7! are unknown

pressures in Q¢ (£ = 1,2), T¢(u!, 7% = (Tj‘k(u‘,r‘)) are the stress tensors in Qf
(£ =1,2), defined by

Tfk(u‘, 7t) = 2u¢Djk(u’) - 6jk1r‘,

1 [ 0ul ¢ 1 j =k,
Djk(ut)_—_"( J'*'?'wg), 5jk={ 7

where

2 \ 0z~ 9z, 0 j#E,
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and p (£ = 1,2) are viscous coefficients. Let D(uf) and I denote the n X n matrices
whose (j, k) components are Djx(u?) and 6Jk, respectlvely If we use the symbols
D(u®) and I, then

Te(u ,m8) = 2ueD(uf) — 7tI

The resolvent parameter A is contained in the sectorial domain :
Le={A€C|A#£0, largA\|<7—¢€}, 0<e<m/2

= (ff,--, ft) (£ = 1,2) are the prescribed external forces, h¢ = (h¢,---,ht)
(Z =1, 2) are the prescribed boundary forces where f¢(z) and h‘ (x) are deﬁned at
zeQt (£=1,2).

We use the following symbols:
ul(z) z €l ml(z) z e,
w(z) = { u?(r) z€Q?, m(e) = { n(z) =z €2,
Yz) zeql hi(z) =z el
fle) = { ;ZE:B; z € Q2 M=) = { hzgxi z € Q2
We are interested in L, estimates of the unknown velocities u’ and the pressures
7t (£ =1,2). We define the space W}(R) for the pressure 7 by:

(1.2) W,}(Q) = {m € Ly(Q) | /Qﬂ'dx =0,Vrt e L,(0Y,£=1,2},

||7f||vv;(9) = Z ”thwg(m)-
=1

Our main result is stated in the following theorem.

Theorem 1.1. Let 1 < p < 0o and 0 < € < w/2. There ezists a o > 0 such that
the following assertion holds: For every A\ € Z,U{A € C||A\| Lo}, f€ L,,(Q)"
ht € W (24", (1,1) admits a unique solution (u,7) € W} (Q) x W(Q) with ut €
Wz(Qe) which satisfies the estimate:

2 . N
1
(1.3)  Alllellz, @ + Az I Vullp@ + Y lwllwz ey + 7l @)
=1 |

=C (“f”L,,(Q) + A2 ||h||L,,(Q) +Z||h “WI(Q‘))

l_
for some constant C depending essentially only on p, n, €, Q and o.

Given ¢ € Ly(Q), the W;1(Q) norm of ¢ is defined in the following way: Let
® € W2(Q) be a solution to the Neumann problem for (—A + 1) in Q:

®
(1.4) (-A+1)®=¢ inQ, oe =0,
OV |2
which is uniquely solvable. Put
(1.5) el @) = IV, @)-

The following theorem is a key of our argument.
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Theorem 1.2. Let 1 < p < 00 and 0 < € < w/2. Then there exists a positive
constant A\g > 1 depending only on p, n, €, and Q such that for every A € %
with |A| > Ao, f € Lp()", and ht € Wpl(Ql)", if (u,m) € WPI(Q)" X WI}(Q) with
ut € W2(QY) satisfy (1.1), then

2
1
(1.6)  Mllullz @) + A EIVull,@ + Y e llwz@y + Inllw g
=1

2
1
£C (||f||L,(n) + N2 |IAllL,@ + D IRllwa @)
=1

2
1
Himllz, @) + Mllullw-1 @) + M2z, @ + > Hvut"L,,(Q‘)) )
=1

where positive constant C depends essentially only on p, n, € and Q.

We shall prove Theorem 1.2 by using the finite number of the partition of unity
and reducing (1.1) to the whole space problem, the half space Dirichilet problem,
and the interface problem with interface £, = 0 in the whole space. Since we use
the cut off function ¢, divergence free condition is broken such as V-(pu) = (Vo)-u.
In order to reduce the problem to the divergence free case, we use a solution to
the Neumann problem for (—A + 1) like (1.4). After this reduction, we solve the
whole space problem, the half space Dirichlet problem, and the interface problem by
using the Fourier transform. Applying the Fourier multiplier theorem to estimate
the solutions to such model problems and using the standard argument, we can
prove Theorem 1.2. Once getting Theorem 1.2, we can prove Theorem 1.1 by
using the standard argument based on Banach'’s closed range theorem and compact
perturbation method. Our idea is based on Farwig and Sohr [5] where they treated
the Stokes resolvent problem with Dirichlet zero condition, and Shibata and Shimizu
[8] where we treated the Stokes resolvent problem with Neumann condition.

Our problem is the one of the first step to consider a problem with free bound-
ary. Giga and Takahashi (7] constructed global weak solutions of the two-phase
Stokes system, and Takahashi [9] constructed global weak solutions of the two-
phase Navier-Stokes system with inhomogeneous Dirichilet condiditon. Denisova
[1] and Denisova and Solonnikov (2, 3] investigated of the motion of two liquids in
the framework of the Holder function space. We also refer to Tani [10], he studied
two-phase problems for compressible viscous fluid motion in the framework of the
Holder function space.

Throughout the paper we use the following symbols.

L™ = {u= (ug, ,un) | llullz @) = D_ lujllz @) < oo
=1

WEQ) = {m € Ly(@) | lInllwry = Y 1057llz,@) < ook
lal<k

n
W)™ = {u = (u1, - ,up) | llullwx @) = Z lujllwe @) < oo};
i=1



(m,0)q = / n(z)8(z) dz for scalor valued m,6;
Q

(u,u)Q=Z/ u;(z)o;@) dz for u= (w1, - ,un)y v =(v1,- ,n),
j=178%

n
< U, v >pe = z/ uj(z)v;j(x)do, do being the surface element of I'},¢ =1,2.
j=17TI

§2. Weak Solutions in L, Framework

In this section we investigate the weak solutions (1.1). We introduce the following

spaces:

(2.1) HY(Q) = {u € WHQ)" | ulrs = 0},
D}(Q) ={ue H}(Q)" |V-u=0inQ}.

By integration by parts, we have

(2.2) (Au — DivT(u,7),v)o+ < v' - THu!,7t) — v - T?(u?,7%),v >m

2
=A(u,v)a +2 Y p(D(u), D(v*))qe — (7, V - v)q
=1

for any solution (u, ) of (1.1) and v € H*(Q)", where

(D(*), D(v*))ac = Y (Dje(u’), Djx(v"))q:-

k=1
In view of (2.2), we put
2
(2.3) Bilu, 0] = A(,9)a +2 ) _ u*(D(u’), D(v"))qe
=1

for u, v € H}(Q). Using the 1st Korn’s inequality (cf. [4]), we have

(2.4) lullfys ) S CONID(W)llL ()

for every u € H}(Q) with suitable constant C(£2) > 0, where
“u”%vzl(n) = ”u“%,(Q) + ”V'"'”%;(Q)-?

Employing the standard argument, we have the following lemma.-
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Lemma 2.1. Let0 <e < 7/2 and A € . Then B) is a coercive bilinear form on
HY(Q). In particular, there ezists a constant C = C(e,2) > 0 such that

(2.5) |Bal, u]l 2 C(IMlulZ @) + IVullZ, @)

for every A € £ and u € H}(9).

If we take o > 0 such as 0C(2) £ min(u!, x2), then by (2.4), we have for any
A € C with |A\| £ o,

2
(2.6) 1Balw,u]| 22 pilID)Z, ey — Mllullt 0
£

2 2min(p’, 4?)||D(w)||7,(q) — INCOQIDW)|1Z, @)
2 (2min(u!, u?) = sC( )DL, 0
2 min(p!, p?)||D(w)|3, ()
> C(Q) min(u, 1?)llully gy for Vu € HY(®).
By Lemma 2.1 and (2.6), we have
Lemma 2.2. There erist 0 = 0(,¢€) > 0 and C = C(R,€) > 0 such that

2.7) |Balu, u]l 2 C(MllullZ, ) + lullivg @)

for every A€ S, U{A € C | |A| £ o} and u € H}(D).

By Lemma 2.2 and the Lax-Milgram theorem (cf. [11, IIL.7]), we have the fol-
lowing theorem.

Lemma 2.3. Let 0 < € < w/2. There ezists a constant o > 0 such that for every
Ae S . U{reC ||\ £ a}, fe L), h* € WL(QY), there exists a unique
u € D}(R) satisfying the variational equation:

2
(2.8) Mu,v)a+2 ) u'(D(ut), D(v*))qae
=1
=(f,v)o+ < h' —h%,v > for Vv € D}(9).

Concerning the existence of the pressure, we know the following lemma (cf. [6,
III, Theorem 5.2)):

Lemma 2.4. If F € H}(Q)* and F(v) = 0 for any v € D}(R), then there ezxists a
p € La(R) such that

(2.9) F(v) = /pV vdz  for Vv € H}(Q),
where H} (Q)* is the dual space of H} () and
£2(Q) = {v e Ly(@) | / vdz = 0}.
Q

Combining Lemma 2.3 and Lemma 2.4, we have the main theorem in this section.



137

Theorem 2.5. Let0 < € < w/2. There exists some positive constant o = o(,€) >
0 such that for every A € B,U{A € C| || S g}, f € La(Q), ht e Wi(Q4)(£=1,2),
there exist a unique (u, ) € D}(Q) x Lg(Q) wzth fQ7rd:c = 0 which satisfies the
variational equation: .

2 .
(2.10) Mu,v)a +2 ) pé(D(ut), D(v))qe — (7, V - v)q
=1

=(f,v)a+ < k' — k%0 > for Vv € Hy().

Proof. Let u € D}(Q) be a solution to (2.8). If we put

-7'-(”) = )‘(U, 'U)Q + 2ZH£(D(Ut), D(’Uz))gt - (f, 'U)Q— < h! —‘hZ,iJ >
= 1

for v € H}(), then F € H} (Q) and f(v) = 0 for any v € D§(2). Therefore by
Lemima 2.4, there exists a m € Ly(f2) such that

]'-('U) = / 7V -vdx = (7T, VU)Q’
Q

which implies (2.10). This completes the proof the theorem. O

§3. Resolvent estimates for the Stokes System in the whole space

In this section, we consider the Cattabriga problem:
(3.1) M —Divl(u,m)=f, V-u=V-.g inR".
As the class of the pressure n, we set for any D C R"?,
. w € Lne (D)|Vme Ly,(D l1<p<mn,
sy - | FELaDVrELD) 1<
{m € Lpoc(D) | Vi € Lp(D)} n<p<oo.
IVrllz, 0y +lI7lle np (py 1<P<m,
(3.3) I llw (D) = nP
V7L, D) n < p < oo.

We note that W}(D) is a closure of C§°(D) with norm || - "Wg( D)-

We shall show the uniqueness, existence and estimate of solutions to (3.1) (cf.
Shibata-Shimizu [8, Theorem 3.4]).

Theorem 3.1. Let1 <p< oo and0<e< /2.
(1) (Ezistence and Estimate) For every f € L,(R*)", g € W2(R™)" and X € %,

there exists a solution (u,7) € W2(R™)™ x Wz} (R™) of (3.1) satisfying the estimate:
1
(3.4) [MllullL, @ + A2 VullL, @~ + IV?ullL, &)
+[IVallz, @) + 17(dp) " Iz, mm)
1
< C(p,€,n) (”f”L,,(R") + [Alllgllc, @) + A2 IVellL, &) + ||V29||L,,(Rn)) ,



2+ |z| whenp#n,1<p<oo,

d =d =
»= &) { (2 + |z|) log(2 + |z]) ~ whenp=n.

Moreover, when 1 <p <n, 7 € Lyp/(n—p)(R*) and
(3-5) ||7r”an/(n—p)(R“)
1
S C(n,p,¢) (”f”L,,(lR") + [AMllgliz, &) + 1A12[IVllL, &) + ||V29|IL,,(R")) :

(2) (Uniqueness) Let A € Z.. Ifu € &' N Ly(R*) and 7 € D'(R™) satisfy the
homogeneous equation:

(3.6) Au—Div T'(u,7)=0, V-u=0 in R",

then u =0 and w is a constant. In particular, if lim|z_, 7(z) = 0, then 7 = 0.

In order to get the interior estimate, we will use the following theorem (cf. [8,
Theorem 3.5)).

Theorem 3.2. Let1 <p<o00,0<e< /2 and p € C§°(R°). Let u € W}(Q)"
such that V -u = 0 in Q. Then, for every A € X, and f € L,(R")™, there exists a
solution (v, 7) € W2(R")" x W, (R™) to the equation:

(3.7) AW-DivT(v,mr)=f, V-v=V-.(pu) in R".
Moreover, the (v, 7) satisfies the estimate:

(38) AV, @~ + IMFIVYllL,®m + V30]lz, @e)
+ IV, &~ + I7(dp) iz, &) S Cllfllz,®m)
+Cp (Ml gy + Ml ) + lllwzy)
I7llL.,)nepy®™) S ClfllL, @)

+Cy (P\”l“"w;‘(n) + M Hull 2, @) + ||u||w;(n)) ifl<p<n,

with suitable constants C = C(p,¢,n) and C, = C(p,€,n,p, Vo, V3p).

§4. Resolvent estimates for the Stokes System in the half space

In this section, we consider the following problem:

(41) { M —DivI(u,m)=f, V-u=g inR%,

u|3"=0 = 0-

where R} = {z = (21, - ,z,) € R* |z, > 0}.
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As the function class for g, we adopt the following space for D = R} or D =R":

(4.2) W, 1(D)=W2h(D)*, 1<p<oo, 1/p+1/p =1.
Put '
(4.3) lgllw-2(py = sup{| < g, v>|lve W..(D), IVvllz,, Dy = 1}

for g € Wp“l(D). For g € L,(D) with compact support, we put
(4.4) < g,u>= / g(z)v(z)dz for Vv € WI}, (D). -
D

If there exists a constant C(g) > 0 such that
(4.5) [<g,v>|= C(Q)HVU”L;,(D),

then g € W, 1(D) and lgllw-1py < C(9)- ,
The following theorem was proved by Farwig-Sohr [5, Corollary 2.6).

Theorem 4.1. Let1 <p<oo and0<e<w/2. Forevery A€ ., f € L,(R%})",
9 € Wy L (R}) N W) (R?) having compact support, (4.1) admits a solution (u, ) €
W2(R?)™ x W(R?) satisfying the estimate:

1 :
IAlllellz,@y) + M2Vl @) + V2L, @®e) + lI7ellws o)

1
< C@.e,m) (Ifllz,mp) + Mllglhwy1eg) + Nl @) + 19911z, @) -

§5. Resolvent estimates for the Stokes System with interface condition

Let R} = {z = (z1,---,2n) = (¢/,2,) € R* | £z, > 0} and R} = {z =
(z',z,) € R* | zZ, = 0}. In this section, v = (0,---,0,—1) denotes a unit outer
normal of the boundary Rf of R} .

In this section, we consider the following problem:

(5.1) { Mt — DivTE(ut, nt) = f£, V.ut =g* in R},
' v-THut,a%t)—v.-T-(u",77)=h* —h~, ut=u~ onRZ.

where h* is a given function defined on R? and T%(u*, 7%) = 2uy D(ut) — %1
As the function class for the pressure 7, we introduce the following space:

(5.2) X,(R})={r=%+6|dec W, (R"), 0 € X2RY)},
(5.3) I7llx2®g) = ﬁ:i%ia (II<I>IIW;(Rn, + ”0“5{;(5{;)),
PeW)(R™), X (RY)

(5.4) Xp(R}) = {0 € Loo(Ry; L,(R*™1)) | VO € Ly(R2)},

(5.5) 101l 2 7)) = Sue 10C, zn)ll L, ®n-1) + VO, ®7)-
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We use the following symbols:

_ [u*(z) zeRY, _ [ nt(z) TeR}E,
u(m)_{u-(w) xeR'Jir, W(x)—{r‘(x) r €RZ,

ff(z) zeRy, gt(z) zeRY, ht(z) ze€R%,
s@={7. "o ={ 2 ho={ :

f~(z) zeRL, g (x) zeRZ, h~(z) ze€R".
The following theorem is the main result in this section.

Theorem 5.1. Let 1 < p < oo and 0 < € < w/2. For every A € X, f € L,(R")",
g € W, H(R*)NW, (R") having compact support, and hE € WI(RL)", (5.1) admits
a solution (u*,n%) € W2(R2)" x X (R%) satisfying the estimate:

1
(5.6) Mlfullz, @e) + AHIVullz,@m + 3 (IV265 1, @) + 7 lxamy))
+_
1
< 0, &n) (Ifllz, @ + Wy @m) + A lgllz, @)

1
+IVgllz, @) + MFIAlL,@m + D ”Vhi"L,,(R;)) :
+_

First we have to reduce the problem (5.1) to the divergence free case. To do this,
we start with the following lemma.

Lemma 5.2. Let 1 < p < co. For every g € W, 1(R*) N W} (R™) having compact
support, there exists aV € W: (R™)" such that V-V = g in R, which satisfies the
estimates:

IVilL, &) < C@:n)llgllw 1 ®n)»
1YV, & £ Cn)liglle,®,  IV?VilL, @ S Clp,n)IVellL,®n)-

Proof. Let E be a fundamental solution of the Laplace operator given by

log || n=2,
|z|~("=2) n>3.

(5.7 B() =

If we put ® = E * g, then A® = g in R*. Therefore, if we put V = V®, then
V -V = g. By the Fourier multiplier theorem, we see easily that

V28|, &~ < Clon)llgll, @) IVV?@llL,@®") £ CP,n)l|IVYllL,®m)-

Below we shall show that

(5.8) Ve, @) S COgllw;®n)-

It is sufficient to prove that

(5.9) (Ve, ¥)re| < C@)lglly 1y Il )
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for any 1/J € C3°(R%)™. Since 4 is compactly supported, we put ¥(z) = E * (V -
Y)(z) =V -(E*¢). Then AU =V -4 in R? . Moreover we have L

(5.10) ¥(z) = O(|z|~("~V), | V¥(z) = O(z|™") as |:c|—)oo

Ologlz) n=2,
(5.11) (I>(:L') = { O(lml—(n—z)) n >3,

V&(z) =O0(|z|™™) as |z| = oo.
By using (5.10) and (5.11), we have the identity
(VE, P)rn = ~(®, V- Y)n = —(&, AV)gn = —(AT, D)gn = (g, ).
Since g € W, }(R") = W;,‘ (R*)* and g is compactly supported,
(g ©)rn| < llgllw -2 @y IVEIIL, ®)-
By the Fourier ‘multiplier theorem

IV, ® S IVHE * )L, @) £ CoIYL,, @)

Thus we have (5.9), which completes the proof of the lemma. O

Let V* be a restriction of V to R%. If we put ut = vt + V*, then (5.1) is
reduced to :

[ AE —DivTE (v, o) = f+ + 4, Vgt — (A — pe A)VE, V.ot =0 inRE,
v} ovt 8v- - , Ovl
ll’ (awk + E—I_f:) z,=0 N u_ (a&z"- + az":) z,=0
vt av+ - av,~
= [—h;:—ﬂ+ (&tk + Oz, )] z =0+ [h’k +p- (6:ck + oz, )]
< k=1,- -1,
vt v, _
(st = 7))~ (205 =)
n Tp=0
- (h:: + 2N+a—z',';)

{ v le,=0 = 7 |z,=0 = 0.

z,=0

Tp=0

(h + 2u_ T )

n=

,=0

Therefore it sufficies to solve

( Mt —DivT* (v, n%) = f*, V.ot =0 inR?,
av} v}

(BB (35 35)

(5.12) |« k=1,---,n—-1,

vt
(uetz =), o= (-8 -)

\ U+’zn=0 — 7 |g,=0 = 0.

= h;:l:c,‘=0 - h;lzn=0,
z,=0

n=—

= hiflz,=0 — hy |z.=0,
T, =0

In order to prove Theorem 5.1, it sufficies to prove the following theorem.



Theorem 5.3. Let 1 < p < 0o and 0 < € < w/2. For every A € E, f € LZ(R*)"
and h € W}(R")", (5.12) admits a solution (u®,7*) € W2(R})" x X, (R}) satis-
fying the estimate:

1
(5.13)  |Alllull, @) + M7Vl @y + D (”Vzui”L,,(R;) + ||7fi||x;,(1k;))
+—
1
< C(p, fa”)(l“f”L,,(R") LTSS ||Vhi||1;,,(n;))-
+_.

Below, we shall prove Theorem 5.3. Since C§°(R%} ) is dense in L,(R%} ), we may
assume that f* € C°(R%)". Put

f:(x,, xn) Ty > 0,
—-fn_(ib", _zn) Tp <0,

fi@,z.) 0 >0,

fi (&', —zn) za <0,

fi*(=) = { f3°(z) = {

e [ F@ =) za>0, [ —fF(&,~%a) T >0,
f; (x)—{f,-'(z’,xn) 2, <0, fa (x)—{ (e 2n)  zm <0,

where j =1,...,n — 1. Let (U*, ®%) be a solution to the whole space problem:

+ aq)i_ +e n s
5.14) A—p AV UF+ —=f in R*, j=1,---,n-1,
J dz; J
+
(M- meAUE+ 3 = 2 in R,
V.Ur=0 in R".

Here we remark that U (z’,0) = 0 as was stated in Farwig-Sohr [5, Proof of
Theorem 1.3]. By Theorem 3.1, for every A € X, there exists a solution (U*, &%) €
W2(R")" xW, (R") of (5.14) satisfying the estimate:
1
IANUE L, @y + A IVUE (L, @) + VU] L, ®m) + IVE||L,&")
S C(p, & n)lfll L, ®m)-

Moreover when 1 < p < n, it holds that
8%z, 0oy ®") S C(ny 0, )| fllL, )

If we put u* = v* + U*, 7% = 6% + &%, then (5.12) is reduced to
(5.15)
r Wt —DivT*(vE,nt)=f*, V.u¥ =0 inR},

avt vt v "
B+ (5;‘,': —“az.,) suzo  H- (a—z‘: + 32 )|,

Tp,=0

(.35

v:|3n=0 - v;lzn=0 = b;c*-lzn=0 - b':lzn=07 k = 17 et ,N — 17

Tn=

\ v:|2n=0 - vr_l‘|$h=0 = 07
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* +
alfzhl:::_“i(aUn‘{'aUk), k:11'“,n_13

0Ty oz,
+
of = h¥ (maU - @*) ,
oz,

b =-UE, k=1,---,n-1.

We put at = (af,---,a¥) and b* = (bt,--. ,bE_,0). In order to prove Theorem
5.3, it is sufficient to show that for every A € X, the following estimate holds:

Alllellz, ey + A} uwa|L,,<Rn)+Zj(||v2 *lz, @y + 1651 2 wy))
< Clp,e, n)Z(w lo* 1z, ®y) + IVa* |z, @y)

A%, ®y) + |/\|5||Vbi||L,,(R;) + ||V2bi||L,,(R;)) '

By the scaling argument, it is sufficient to show that for every A € X, with

Al = 1, a* € W (R2)" and b* € WZ(R2)", (5.15) admits a solution (v*,8%) €

W2(R2)™ x X}(R%) satisfying the estimate:

(5.16) ,

> (“Ui”Wp?(]R;) + ||0i||5(;(mi)) <C(p,en) Y (“ai”W,}(R;) + Ilbillwg(ua;)) :
+_

+—

Taking the divergence of the first formula of (5.15) and using the condition V-v* =
0, we have A% = 0in R% . Applying the Laplace operator to the n-th component of
the first formula of (5.15), we have (A — p+ A)AvE = 0 in R}. By using V-v* =0,
finally we arrive at the following equations for (v, §%):

(5.17)

r (A - yiA)Avif =0, A =0 in R%,
v:|$n=0 - U;Izn=0 - 0’
vt ov, - -
(2/‘+a_:JL - 7f+) - (2ﬂ—# — ) = ay |z,=0 — a5 |z, =0,
n ,=0 n Tp= : :
vt v’ n—1 bt n—1 8b
ovy, _ 9v, = D5
oz, —0 Oz, =0 - Zj:l oz; + ZJ =1 6:1:, ’
¢ Tn= Tn= To=0 Tn=0
vf n132+ vy n132
K+ ( a2 — b Tt — 2=
z,,.=0 n=0
-n—1 3a+ n—1 6a
_— —71
== 21 3 + X0 Bz, ,
‘ z,=0 z,=0
_ + , o6% —
\ [()‘ HeA)vi + 83:,.,] Ta=0 0




After solving (5.17), we shall solve the equations for v,f, k=1,---,n—-1,
(5.18)

+
()\—uiA)v,:f=—g% in R},

vt dv, ( + 8v+) ( - 311_)
—k_ —_— _ —k_ —_ a — —_—Tlt f— Qa -— ____&
P+ Bz, 2,20 K- Bz, - k — M+3z, .20 k — K-35z, =0’

’U;:Iznzo - vk_|zn=0 = b;c{—'zn=0 - b;lxn=0'
Now we solve (5.17). Applying the partial Fourier multiplier theorem with respect
to z’ to (5.17), we have
(( A+ p ') — p203)(— €' + )0 =0, (|¢')>-62)0* =0 in Ry,
'7rf|z,.=0 - ﬁ;l::,,:o =0,

(2u40a0F —6%)  — (2u_805; —67)

= &;’z—lzn=0 - af—llxn=07
z,=0

Tn=
(5.19) { a"ﬁr-“tn=0 - aﬂﬁ;lzn=0 = _i€, : B+I|3n=0 + '1:6, : 5—, Izn——'o’
pt (OFud +1€'170%)|, _o — m- (8207 +1€'1%v7) |, o

. ad! N P
= _z£I ‘ a+ lz,.=0 + ZE, -a lz,.=01

[(A+ pel€'? - p283)0E + 8.6%]

=0,
Tn=0
where T = 9%(¢',z,) and 0 = 0%(¢',z,). If we put A = |¢/| and By =
v (px)~IA + |€'|2 with Re By > 0, we shall seek the solution (9Z,6%) to (5.19)
of the form:

\

(5.20) o7 = at(e A% — e=B+2n) 4 Ge=Brmn Gt = yte—ATn
97 = a~(eA® — eB-%n) 4 GeB-%n, 6= = y~eA=n,
iFrom the boundary condition in (5.19), we have
0 E1 Rl ger s
() (HEEEEEN) e
B —A(af(¢',0) — a5 (¢',0)) B
where

B, - A B_—-4 —(B; + B_)
L=| p4(A*-B}) -p_(A’-B%) puy(A*+Bi)—p_(A2+B2) |.
—u+(A—By)? —p_(A-B.)? 2(p+ABy +p-AB_)

By direct calculation, we have

(5.21) detL = (A—- B,)(A— B_)f(A, By, B_),

(5.22) f(A,B4,B-) = —(puy — p-)*A°
+{(3p} — pyu-)By + (3u2 — pyp_)B_}A
+{(p+B4 +p-B-)* + pyu_(By + B_)?}A
+ By (43 B+ + prp_B_) + B2 (42 By + pypu-By).

To verify the invertibility of L, we use the following lemma.
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Lemma 5.4. Let 0 < ¢ < m/2. For every A € L, with |A\| =1 and ¢’ € R*™!, we
have the following two inequalities:

(5.23) |£(A, B4, B_)| 2 ele, p) (1 + [€'1%) 2
(5.24) Re By 2 cle, uz)(1+[¢']%)?
with some positive number c(e, py). » .
Proof. First we shall show (5.24). If we put (u+) ' A+|¢'|2 = (ut) 7 A +us]E’|?|e®,
then —m + € £ 0 £ m — € provided that A € £, and ¢’ € R*~!, which implies that
cos(0/2) 2 sin(e/2). Combining this with

A+ s [€1%] 2 sin(e/2) min(1, ) (N + [€),

we have for every A € X,
Re By = (1) 72|\ + p[€'|?|% cos(6/2)
2 () ™% min (1, (ue)? ) (sin(e/2)F (N + |E'2) %,
which implies (5.24) for |A| = 1.

Next we shall show (5.23). First we consider the case Im X # 0. We shall show
that

(5.25) f(A,By,B_)#0 for VA€o, with|A|=1,Im A # 0 and V¢’ € R* 1.

by using the uniqueness of the solution to ordinary differential equation (5.19). Let
(5 (¢, x,),0% (¢, z,)) be a solution to

( (82— B2)(92 - A%)9E =0, (02— A%)H* =0 in Ry,
’i};l}-]zn=0 - ﬁ;lzn=0 = 07

(2p48,07F —0%)|  — (2p_Bnd; —67)

5.26 IS | Fn=0
( ) anv:{lznz() - anvq:la:,,=0 = 0,

e (020F +[€1207)], o — n- (9207 +I€1207) |, _, =0,

\ [ﬂi(Bi — 82)oE + a,,éi] = 0.

Zn=0

=0,

=0

Let 9 (¢',z,) (k=1,--- ,n— 1) be a solution to

p+(BL - af,)v,:ct = —i&0% in Ry,
(527) [l.+an'l),-:|zn=0 - H—an'vl:la:n=0 = —ifk(ﬂ+5i - H_ﬁ;)lzn=0,

U:|x,.=0 — U |z,=0 = 0.

By the first, the second and the 6th formula of (5.26),
(82 — 42) |ps(BY — 02)0 + 8,6%| in R,
|1 (B - 92)% + 0,6+]

=0,

T, =0
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so we have
(5.28) pi(B2 — 82)oF +8,6* =0 in Ry.

Taking 9, of (5.28), multiplying the first formula of (5.27) by i€k and using
second formula of (5.26), we have

n—1
pe(BE — 02) 0,55 + Y i&¥| =0 in Ru.
k=1

So we have
(5.29)

n-1 n-—-1
0= (u+(Bi —82) (Bt + 3 itd}),0n07 + > igkﬁ,’{)k
k=1 k=1 +
n—1 n—1
+ (u-(B2 = 82)(Gaty + Y i€k07), Oy + z'ekﬁ;)k
k=1 k=1 -

Using the 5th formula of (5.26) and the 3rd formula of (5.27), we can proceed

n—1
0= <p+ (026 + Z €007 — p (8207 + 3 i€kidy),
k=1 k=1
n—1
A+ . A+

v, + kgl 1€y 0y, >z"=0

n-1 n—-1

— 1410 (Bndt + ) idP)IIR, — peBLUOOT + ) iadF IR,
k=1 k=1
n—1

— p—|8n(Ondy + Z i€ IR_ — n-B2|10ady + Ziﬁkvk .-

By the 6th formula of (5.26) and the second formula of (5.27), it holds that

n—1 n—1
us (9207 + 3 ity ~ (9207 + Y itwdnty)
k=1 k=1

Tp=0 r,=0

=(—p4s A0} + p_ A0 )|z, =0 + Z i€k (—i&k) (407 — p—97)|z,.=0
k=1
= — A% (uy 0} — p-97)|zn=0 + A2 (s — p_97)|z=0 = 0.
Therefore we have
(5.30)

0= l‘+”an(an + Z zgkﬁ:)“k.,. +u- ”a (anﬁ— + Z z&kﬁ;)”R_
k=1
n—1 n—1

+ p4 BL)|0nt + Z i€k 1R, + p—B2|0a0; + Z i€k IR -
k=1 k=1



We note that
piBY = ps(Mps + (€)= A+ pe €]

Taking the imaginary part of (5.34), we obtain
n—1 ‘

(5.31) OniE + ) i =0 in Ry.
k=1 ‘

By (5.28) and the first equation of (5.27), we obtain

(5.32)
0="> (A +pLle|* — n+2)iE + 8.0%, 05 )k,
+__
n—1 R
+ ) (A + pl€']? - p202)0F + ib*, 6)r,
k=1

=< (u40p07 — %) — (p-0a0; — 6~
n—1
+ < Il«+an'ﬁ]-: - l‘—an'a]:, 'i): >z,=0
1

)1 i}: >xn=0 k

>
I

2

A+ p2l€' D103 1Ry, + pelOnt7 IR,

+_
n—1 n—1
+ 3 { A+ ual€ PGE IR, + peldntE IR, } — (0%,000F + 3 itetIr,
k=1 k=1
where we use that f),:' =19, onz, =0,k=1,--- ,n—1. By the boundary conditions

of (5.26) and (5.27), and (5.31), we have

< (;l,+3n’0;r - é+) — (1-0n by — é_)’f’: >2,=0

n-—1
k=1 ’
n—1
= < —p4OnB} + p_Ondy, 0} >o m0 + < ppdf — poty, Y kD >z.—0
k=1

== (14 — p-) < B, 0F >zp=0 H(uy — 1) < O, —0nbf >z,=0
=—2(uy — p_)Re < Opdf, o >, -0 -

Therefore by (5.31) and (5.32)

(5.33)
0=—2(uy — pu_)Re < Bpd}, 0 >, —o
n-1

n-1
+ Y |+ ple YO IIE IRy + 10EI1RL) + 2O 109 IR, + 10202 11%,)
+-— k=1 k=1
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Taking the imaginary part of (5.33), we obtain
vk =0 in Ry, k=1,---,n.

Thus we prove (5.25). (5.24) is showed in the similar way to [8, Proof of Lemma
4.4].

Next we consider the case Im A = 0, namely A = 1. In this case we calculate
f(A, By, B_) directly. Now we assume that p4 2 p—, and then A < By £ B_.
Since

{343 — w4p-)By + (3u2 — pyp-)B_}A®
+{(u4+Bs+ + u-B_)’ + pyp-(B+ + B-)*}A
2 4(p4 By + pyp_B_ + p2 B)A?,
it holds that

f(A,B4,B_) 2 [-(uy — p-)?By + 4(43 B+ + pyp-B_ + p2 B_)]A?

+ B3 (Wi By + pyp_B_) + B2 (b2 B_ + pyp_By)
> {342 By +2u4p_By +4pyp_By + p2 (4B_ — By)}A? + (uy + p-)*B*?
> (e + )21+ 1D

This completes the proof of the lemma. O

By direct calculation, we have
(5.34)

at —iAg - (b (¢',0) - b'(¢',0)) Ly Ly Ly
o | =L7H| ~idg - @¥'(€,0)-a7'(€,0) |, L7 = | Ly Ly Ly |,
' L

s —A(at(€',0) —a,(£',0)) Ly L3y Ly
where
L = B A BB © b+ — #-)A°+ G- — w4’
+2u4 ABy(A+B_) + A(us B2 + y_B2) + B_(u_B? — py B2)]
=1 _ AB+(p+ —p-) + A(ps By + p-B- )+ p-B-(B+ + B )
iz (A-B4)f(A,By,B-)
Lol = —p+(A? + B}) +p-A(A- By) —p-B_(A+ By)

(A B+)f(A B-H —) ’

-1 _ —H+ _ A3 2 2 +3
L3 (A—-B_)f(A,B+,B_)X[”+( A°+3A°B, + AB; + B™)

+2u_AB_(A+ By) + p-(A%? + B%)(A - By)]
_ —[p- - p4)AB_ +p By(A+ By + B-)]
(A_B—)f(AvB+aB-) ’
_#4A(A-By)—p-B_(A+By) —p-(A+B2)
B (A—B_)f(A,By,B-) ’

-1
L22

-1
L23



149

L3l = 2p4p- (A% — BgrB-), L= p-(A-B_)—p(A- B+),
f(Aa B+’B—) f(A’ B-HB—)
L) = ﬂ+(A+B+)+M—(A+B-) :
f(4,B,, B_)

By insertmg the formula (5.34) into (5.20), we obtain the explicit expression of the
solutions 9% and 6%:

(5.35)

o (¢ x )—e;B+m"‘e_Az"A Mo (s — p)A® + (3 — py)AB
nT B A (A B ) N T R TR T A
+ 24y ABL(A+ B_)+ A(u4+ B2 + u_B%) + B_(p_ B? — p+B2)]
x € (b*'(¢',0) - b~ (¢',0))

+ e B+on _ g=Azn A AB,(py — p_) + A(uy By + p-B_)+p_B_(By + B-)
B+ -A f(A7 B+’B—)
x (i€ - (@' (¢',0) —a~' (¢,0))
+e—B+:l:n_e—A A“+(A2+B )—p-A(A-By)+pu_B_(A+ By)
B+—A f(A’B‘l'?B“‘)

x (a;(¢',0) —a, (£,0))
—_ 7 2 !
IR 7y v G GO L)

4 g-Bemn ZiAlu- (A= B) — py (A= By)] s

1 (gt a= (&'
T £-@¥'(,0) - (€,0)
+ e Bt A[l‘-i—(A "if-;})::g )(A+B )]( :(61,0)_&;(8’0))
(5.36)
ﬁ—(fl,mn) _ eB-%n _ Azn il‘+

B_-A f(A,B;,B_)
x [up(—A%+3A4°B, + AB2 + B¥®) + 2u_AB_(A+ B,)
+p- (A2 + B})(A— By))€ - (57'(¢,0) - 57'(¢',0))
+ eB-m —ef A (2p- —p4)AB_+ pyBL(A+ B, +B_)
B_-A f(A,B;,B_)

x i€l - (@' (¢',0) - a7 (¢,0))

N eB-2n _ gAn 4 —p+A(A—By)+p_B_(A+ B,) + u_(A2 + B?)

B_-A f(A,By,B_)
x (a5 (¢',0) — a, (€',0))
B_z, —2ipyp-A(A> - B4 B_);

anE) ¢ ¢TE.0-7E.0)

+




B_z, —1Au_(A—B-_) — py(A— By

re F(A, Br, B.) £ (a¥'(€,0) -7 (€,0)
—Zn —A[“ (A+B )+U—(A+B—-)] A ' am (ol
+ CB + f(A,-i-.B-}-, B_) (a'r.t(f ,O) —ay (E ’0))
(5.37)

A —tpsp-(A+ B
(€' am) = e~ | HEAE I (4, — )40 4 (3 — 1) A%B-

+2u,AB(A+ B_) + A(uy B2 + u_B2%) + B_(p-B% — p, B})]
x & (b*'(€,0) - b7 (€,0))

+ pr(A+BL){AB(py — p_) + A(p+ By + p-B_) + p_B_(B+ + B_)}
f(Aa B+’B—)

x i - (@*'(€,0) —a~'(¢',0))
L B4t B.){-p+(A2+ B})+p-A(A-B;) - p-B_(A+ By)}
f(Aa B+’B—-)

x (£(€',0) — a3 (€ q))]

(5.38)

i o [ipsn-(A+B
O (€zn) =™ [ T oy

+2u_AB_(A+ By) + u_(A?+ B3)(A - By - (b*'(€,0) - 57 (¢',0))
4 iu-(A+B-)[(2p- - py)AB_ + pyBy(A+ By + B)]

f(A’ B+’B—)
& - (a*'(¢,0)—a"'(¢,0)
_ p—(A+B)[u+A(A— By) —p-B_(A+By) — p_(4% + B2)]
f(A’ B, B—)

(ﬂwm-ﬁwmﬂ

[#+(—A4% +342B, + AB + BY?)

If we put
v::(z) = fgl[ﬁf(ﬁ', .’L‘n)](fl?’)? 0:!:('7:) = fg—'l[éf(g" zn)](z"),
where .7-'{, 1 denotes the inverse partial Fourier transform with respect to &', then

vE and 6% satisfy (5.17). By using the Fourier multiplier theorem and the Agmon-
Douglis-Nirenberg theorem, we can show

(5.39) v lwzrg) < c@e,n) Y (lla*”W,}(R;) + ”bi”W,?(R;)) ;
+.—

(5.40) 16% %, ®y) = P, e; n)y. ("ai"W,}(R;) + ||bi||wg(na;)) ;
+—
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for every A € X, with |A\| = 1. Since the argument is now well-known (cf. Farwi
Sohr [5, Section 2]), we may omit the proof of (5.39) and (5 40).
Finally we shall solve (5.18). Put

agt _
2 z,>0 0 z, >0
g’:-(x) = { O oz n g;:.(x) — { e n

Tp, <0 o5 *n <0,
and
wie (2) = FHA+ p1€'1) 7 37 (©)](2)-
Then the solutions v,f (k=1,---,n—1) are given by

o (2) = wig (2) + 2 (1),

where z,f are the solutions to

(A— uiA)z,‘ct =0 in R},
(5-41) ﬂ+anz:|zn=0 - Il'—anz;'z,.=0 = l;:-lzn=0 - l;:l:::,,:Oy

Z:|3n=0 - z;l::,.:O = h;c'—ltn:() - h;:lzn=07

where

0 dwt
ok - ,&(a’; +a"’7k) BE=bt—wE k=1, n—1

Applying the partial Fourier transform with respect to =’ to (5.41), we have
A+ g2l = pe02) ¢ (€', 20) =0 in R,
(542) § H1Bnzf (€,0) — p-Bnzy (¢€/,0) = T (€',0) - I (€,0), k=1,--- ,n—1,
(.0 - 5 (€,0) = HE,0 - b (€0, k=1n-1
By the first equation of (5.42), .
& (€ an) = (€N (20 > 0), 2 (€, 20) = 7 (£)e"~" (zn <0).
By the interface conditions of (5.42), we have

(5.43)
B¢ an) = e BEER) [ (uy By + p_B_) N (€',0) — i (£, 0))
+ s By (g By + u_B_) 7 (R (€,0) — ki (€,0))].

By Theorem 3.1, (5.40) and the Fourier multiplier theorem, we have

06+

(5.44) llwit lwz®») < Clp, n)|gi Iz, ®y) < C(p, n) .

L,(R%)

< 0o Y (latlwpry) + ¥ lwzmn)) -
+_
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By (5.39), (5.44) and the Fourier multiplier theorem, we have

||Zk ||W2(R 7) < C(p, ")Z(”FHWWR") + ”hi”W"‘(R )
+_

L)Y (la*lhwycmy) + 16¥wzces) ).
when )\ € £, and |A| = 1. Therefore we obtain

Ik s < Co.m) 3 (la*lwp ) + % Iwzcey))

which completes the proof of Theorem 5.3.
Now we shall discuss the uniqueness of solutions to (5.1). To do this we use the
following lemma (cf. Galdi [6, III]).

Lemma 5.5. Let 1 <p < oo, mn € X;(RE), andv € L, (]Ri) with 1/p+1/p = 1.
Put

¢r(z) = Y(In(In|z|)/In(InR)) for any R > 1,

<
wosarm w=(} 1"

Then we have

(5.45) Rlim / ’—aa—d)R(a:) |7(z)||v(z)|dz=0, j=1,---,n

Theorem 5.6. Let 1 <p <00,0<¢<m/2and ) € .. If (u*,n%) € W2(R}) x
X;(R'_{:) satisfies the homogeneous equation:

(5.46) { Mt — DivT*(ut,7t) =0, V.ut= in R},

v - Tt(ut,nt)—v- T~ (u~,77)=0, ut=u" onRf,
then ut = u~ = 0 and there erists a constant ¢ such that ¥ = c.

Proof. Let ¢g be the same function as in Lemma 5.5. For every vt € Wg(R'i)
such that V -v* = 0 in R} and vt = v~ on Rf, we have

0= (’\u+ — Div T+(u+’ 7T+), ¢Rv+)R;'_ + (Au’- —DivT~ (u',1r'), ¢R'U_)R'l
= Au*, orv*)Rn + A(u™, 6RV )R
- <v-T*(u*, nt),¢pvt >pp + < v -T™(u™,77),prv™ >y

+ 3 (@, %), (Vor)v* IRy + 202 (D), Dw*)¢r)ry | -
+_

Since vt = v~ on RY, by the interface condition,

—<v-T*(ut,nt),¢pvt >pp + <v- T (u™,77),¢rv™ >pz=0.
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Since u*, v* € W2(R%) and m € X}(R%), by Lemma 5.5 we have
Jim (7% (u*, 7%), (Vgr)v*)ry = 0.
Therefore by letting R — oo, we have
(5.47) 0= A(w, v)rr + 24 (D(u™), D(v*))ry + 2u—(D(w™), D(v™))Rn -
Theorem 5.1 implies for any f*¥ € C§°(R%), there exists (v¥, 9*) € W2 (R:,:) X
X, (R% ) which satisfies
At — DivT(v¥,0F) = f£, V.ot =0 in R’i,
{ v-Tt(wt,0*)—v-T-(v=,07) =0, vt=v" onRY,
In the same manner as above
(u, f) = lim {(u*, f¥én)ry + (u™, f ¢r)R"}
= 1%520{(¢Ru+,xv+ —DivT*(v*,8%))rn + (ru~, Ao~ = DivT~ (v, 87 ))g= }
= A, v)re + 204 (D(u™), D(v*))ry + 25— (D(u™), D(v7))gn.

By (5.47) we have (u, f)r» = 0. The arbitrariness of the choice of f implies that
u = 0. By (5.46) we have

Vrt=0 in R}, v(rt—7")=0 in R?,
which implies that there exists a constant ¢ such that 7% = c. This completes the
proof of the theorem. O

§6. The bended space for the Stokes System with interface condition

Let w : R*™! — R be a bounded function in C? class whose derivative up to 3
are all bounded in R*~1. Let H* be the bended space defined as

Ht ={z = (z',z,) €R" | 2, > w(z'), ' € R*"1},
H™ ={z=(2',z,) €R" | 2, < w(z'), 2’ € R*1}.
HP® denotes the interface of H* and H~, which is given by
={r=(z',z,) €eR" | 2, = w(z), 2’ € R*'}.
v (z) denotes the unit outer normal to H? of H*, namely
ve(z) = (Viw,-1)/V1+ |Vw|?, V'w=(0w/0z1,- - ,0w/0Zn_1).
Put
X, (H*) = {u*(2) | #*(y) = v* (', 9 + w(¥)) € Xp(RD)},
Wy H(H*) = {u*(z) | 4*(y) = w* (¥, 9 + w(¥)) € W, (RE)}.
We use the following symbles in this section:
ut(z) ze HY, at(z) ze H,
u(z) = m(z) =
v (z) zeH, () ze€H,
i) {f+(:1:) ze HY, () {g"'(x) ze HY, (@) {h*‘(x) ze HT,
) = = —
f(x) zeH™, g (z) zeH™, h=(x) ze H".
For the resolvent problem in H*, we shall show the following theorem.
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Theorem 6.1. Let 1 < p < oo and 0 < € < w/2. Then there exist constants
Ao = Xo(ps €, |lwllgsrn-1),m) 2 1 and Ko = Ko(p,€,n) with 0 < Ko < 1 such that
if |V'w||L ®n-1) £ Ko, then for every A € ¢ with |A| 2 Ao, f* € L,(H%)",
g € WHR*)N W, 1(R") having compact support and h* € Wy (H*)", there exists
a solution (u*,n%) € W2(H*)" x X}(H%) to the equation:

(6.1) { Mt — DipT*(ut, ) = f£, V.ot =g% in H*,
' v - Ttut,nt)—v- T (u",n7)=ht—h~, ut=u" onH
Moreover, the (ut,n%) satisfies the estimate:

1
Z (I’\”I“i“L,,(Hi) + M2 VuE|l g, ey + V20 L, ) + ””i”X;(Hi))
+_

< (111w + Wllglh- s + P Hlglz e

1
+ Vel @y + M Rl @y + 3 nvrz*nL,wi))
+_

with some constant C = C(p, ¢, ||w||gs(r~-1),n) > 0. Here, we set

|lwllss@n-1) = Z 10 wllL . r"-1)-
la’|3

By using the diffeomorphism, we reduce (6.1) to (5.1). Therefore by Theorem
5.1 we can prove Theorem 6.1. :

Now we shall show the uniqueness of (6.1). To do this we start with the following
lemma.

Lemma 6.2. let 1 < p < 00. Put pr(z) = ¢r(z’,zn — w(z')) where ¢gr is the
same as in Lemma 5.5. Then for every # € X}(H*) and v € Ly (H*)" with
1/p+1/p’ =1 we have

|m(z)|[v(z)|dz =0, j=1,---,n.

. 0
(6.2) lim - ’ EEPR(m)

R— 00

Proof. By the change of variables: ' =¥/, z, = yn + w(¥'),

0 o ow

0 )
%;Pn(l‘) = a—y';PR(y) - a—%aTmPR(y), j=1-,n-1,

0 0
EPR(“’) = EPR@)’
so we have

63 [ |gzre@)|m@via)les

<c / Vér@)FW)E@)dy, §=1,-,n,
R}



where 7(y) = n(z), 9(y) = v(z), and C is a positive number. By the definition of
X,(H*) and Ly (H*), # € X}(R}) and ¥ € Ly (R} ). Therefore by Lemma 5.5,

we have ,
(6.4) / Vr(w)|[7(v)15()] dy = 0.
R}

Combining (6.3) and (6.4) implies (6.2). We have thus proved the lemma. [J

Theorem 6.3. Let1 <p < 00,0 <€ <7/2and X € X. If (ut,n%) € W2(H*) x
X;(H +) satisfies the homogeneous equation:

(6.5) { Mt — DivT*(ut, 7)) =0, V-ut= in H*,
' v-Ttur,nt)—v-T-(u",7n7)=0, ut=u" onHO,
then ut = u~ = 0 in H* and there exists a constant ¢ such that #* = ¢ in H*.

Proof. Let v* € WZ(H*) with V-v* =0 in H*and v* = v~ on H°. In the same
manner as the proof of Theorem 5.6, we have ’

0 = A(u, v)rn + 204 (D(u®), D(w*)) g+ + 2u_(D(u™), D(v™)) -,

where we have used Lemma 6.2 and the interface condition of (6.1). For f* €
Ce(H#), let (v,0%) € W2 (H*)™ x X}(H?*) be a solution to

ME — DivTt(vE,0%) = f£, V.ot = in H*,
{ v-Tt(v*,6%)—v-T-(v=,07)=0, vt=v" on H°
Since
(uv f) = (u+7 f+)H+ + (u_a f_)H—
= A(ua U)R" + 2ﬂ+(D(U+),D(U+))H+ + 2’[,_(D(U_),D('U—))H—,

we have (u, f)r~ = 0. The arbitrariness of the choice of f implies that u ——-VO,Iand
by (6.5), 7t = c. This completes the proof of the theorem. [

We end this section with outline of the proof of Theorem 1.2. Let ¢ be a function
in C§°(R"), and then (1.1) is reduced to the equation:

Meut) = DivTi(pul,prt) = fE, V- (puf) =g, mQf =12,
vi-TH(pul, o) — v - T?(pu?, on®) = b, —h2  onT!,
pul = pu? on Il

pu? =0 on I'?,

where f& = (f,,---,fL ), b = (S, -+ KL ),
£ _ (P 2 0 c')(p P 8(,0 ¢ _Qio_ ¢
(O1) fon =i - MZ [ oy D)+ Oz; (3$k Ut ozx; uk)] " By,

dy
¢ ul + e
hwk = <Ph + pe E ( Uy + szuj) ’

gﬁ,=V-(<pul)=(V<p)-u

(6.6)
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for £ = 1,2. v! is suitably extended into R™ as a vector of functions in C3(R™)
having the compact supports. Applying the standard argument to (6.6) by using
Theorem 3.2, Theorem 4.1 and Theorem 6.1, we shall derive Theorem 1.2.

§7. A proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. By Theorem 6.1, we obtain the
following lemma.

Lemma 7.1. Let1<p<o0,0<e<n/2, A€ B, U{A€C||A\Sa}, feL,(Q)"
and ht € W}(QH)". If (u,7) € D§(Q)" x Ly(Q) satisfies [, mdz =0 and

2
(7.1)  (Au,v)a+2) (D), D(v*)qe — (7,V - v)q
=1

= (f,v)a+ <ht —h%v>m for Yve WI},(Q),

then (u,7) € Wy ()" x Wx} (Q) with u® € W2(QY)™. Moreover (u’,n%) satisfies the
equation (1.1).

By Lemma 7.1 and the Sobolev imbedding theorem, we have the following lemma.

Lemma 7.2. Let1<p<o00,0<e<n/2, A€ EU{A € C||A| S o}. Then for
any f € C°(Q)", h € C(Q)", (1.1) admits a solution (u,7) € Wy ()" x W1(Q)
with u® € W2(Q4)".

By Lemma 7.2, we obtain the following lemma.

Lemma 7.3. Let 1 <p< o0, 0<e<n/2, A€ EU{AeC ||\ Lo} If
(u, ) € W3(Q)" x Wy (Q) with u' € W2(Q!)" satisfies the homogeneous equation:

At — DivT (ub,7n8) =0, V-ut=0 inQf, (=1,2,
(7.2) v T (ul,7t) =0 - T2(u2,72) =0, ul=u? onTl,
u2=0 on I'2,

then ut = 0 and 7t = 0.
Now we shall show the a prioi estimate, following Farwig-Sohr [4, Lemma 4.2].

Lemma 7.4. Let1 <p<o00,0<e<m/2, A€ EU{Ae C||\ = o} Let
(u,m) € W ()" x WH(Q) with u® € W2(QH)™ satisfy V-ul =0 in Q, u' = u? on
I'Y, and u?> = 0 on I'2. Put

A= Mt — DivT(ub, 7%, hE=0' Tl n?), €=1,2.

Then (1.3) holds.

Proof. By Theorem 1.2, there exists a A\g = Ao(p, 1, €,€2) 2 1 such that (1.6) holds
when A € ¥, with [A| 2 Ag. If we take A\; 2 Ao so large that )\1_1/20 £ 1/2, then
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from (1.6) we have

2
1
(7.3)  llullz,@ + A2 IIVullz,@ + D :||“e||wg_(s_zt)+“7f”vv;(m
' =1

2 ' .

1

£C (“f”Lp(sz) + |AI2]|AllL, @) + Z ”h{“W;(Q‘)|’\|“u”W;1(Q) + ||7THL,,(Q))
=1

for A € X, with |[A] 2 A\;. When 0 < |A| £ Ay, observing that (u,n) satisfies the
equation: 7 _

Mt —DivTé(ub,nt) = fA+ (M - Auf, V-ut=0 inQfe=1,2,
vV THul, ) — vt -T2 (u?,72) =h' —h2, ul=wuw? onll,

u? =0 on I'2,

and noting that ||(A; — A)uzlle(Qt) < 2)\1||u‘HLP(Q¢) (£ = 1,2), we have (7.3) for
0<|A €A1 v

To prove the lemma, it suficies to show that there exists a constant C =
C(p,€,n,,0) such that

(74)  Mllellw;1 @) + llullz,@ + Il @
2
1
=C (||f||L,,(Q) + |AIZ||RllL, @) + Z Hhtnw;(m))
=1

for \ e Z.U{A € C| |\ £ o}. To show (7.4), it sufficies to derive a contradiction
from the following condition: For every integer k there exist ux € W} (Q)™ with

ug € W2QH™, V-uf = 0in Q4 (£ = 1,2), uf = ul on T}, u2 = 0 on I'?,
T € WI}(Q) and Ay € L, U{X € C||A| £ o} such that if we put

(7.5) Muf — DivTé(uf, nf) = f£,

v T (ug, ) | = 1 - T2 (ug, )| = b — A%,

then
. . 2
(7.6) I fillz, @) + Al 2 1kl @ + D IIVRENL, @) < 1/,
=1
(7.7) IAellluelly-1 ) + lluellz, @) + 17kl @ = 1.

Combining (7.6), (7.7) and (7.3) we have

2
1
(7:8)  elllurllz, @) + el Vurlln,@ + D lugllwz e + lIm&llvi2 @)
=1

<C(1/k+1)£2C, VkeN.
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Since Q is bounded, passing to the subsequence if necessary, we may assume that
there exist v € L,(Q)", u € WHQ)™ with u! € W2(Q2%)", and m € W}(Q) such that

(7.9) uf - u® weakly * in Wﬁ(Q‘)", L=1,2,
Axug — v weakly * in Ly(Q2)",
me —m  weakly * in W, (9),
(7.10) ug —u strongly in W}(Q),
7 — ®  strongly in L,(9),
Akup — v strongly in W, L)n.

In particular the last assertion of (7.10) was showed in [8, Proof of Lemma 7.4].
By (7.7) and (7.10), we have

(7.11) vl -1y + llullz, @) + lI7llz, @) = 1.
p ()

Now studying two cases, we shall derive a contradiction to (7.11).
Case 1. |Ax| = o0 as k — oo.

By (7.8), we have |lux||z, (@) S |A|~'2C, and therefore u; — O strongly in L,(2)
which conbined with (7.9) and (7.11) implies v = 0 in 2 and

(7.12) lvllws1 (@) + 7z, @ = 1.

Letting k¥ — oo, by (7.5), (7.6) and (7.9) with u = 0, we have

(7.13) {v+V1r=0, V-v=0 in Q

v? . v|r2 = 0.

By the uniqueness of the Helmholtz decomposition to (7.13), we obtain v = 0 and
Vr = 0. Since [, 7dz = 0, we have = = 0. This leads to a contradiction to (7.11).

Case 2. Ay = X as k — oo.

Since Ay € ZU{A € C| |\ £ o}, we have A € E,U{X € C| |A| £ o}. Letting
k — oo, by (7.5), (7.6) and (7.9) we see that (u,7) € W, (Q)" x W‘}(Q) with
ul € W:(Q‘)” satisfy the homogeneous equation (7.2). By lemma 7.3, we have
u =0 and m = 0. By (7.10), we have Axur — Au = 0 strongly in W} ()", which
combined with the last assertion of (7.10) implies that v = 0. Therefore we have
u =0, v =0 and 7 = 0, which leads to a contradiction to (7.11). This completes
the proof of the Lemma. [

A proof of Theorem 1.1. Since C$°(Q) and C*°({2) are dense in L,(2) and W5 (Q),
respectively, by Lemma 7.2, Lemma 7.3 and Lemma 7.4 we can show Theorem 1.1.
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