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We seek isometric immersions of $\mathrm{E}^{2}$ into $\mathrm{E}^{4}$ . We hope to find them all but at the least we
would like to find some new ones. Such immersions with normal curvature zero will be the
principal focus of this note.

First, let us recall what isometric immersions of $\mathrm{E}^{2}$ into $\mathrm{E}^{4}$ are known to exist. The most
trivial such examples are the following: Let $X$ : $\mathrm{E}^{2}arrow \mathrm{E}^{3}$ be an isometric immersion and
consider $\mathrm{E}^{3}$ as ahyperplane in $\mathrm{E}^{4}$ . Then we have the isometric immersion $X$ : $\mathrm{E}^{2}arrow \mathrm{E}^{4}$ . We
want to rule out this kind of situation occurring, even infinitesimally. The first normal space
of an immersion at apoint of its domain is the span of the range of the second fundamental
form at that point. If at all points of the domain of the isometric immersion

$\dim$ (first normal space of $X$ ) $=2$

we say that the immersion is nondegenerate. By requiring that the isometric immersion of
$\mathrm{E}^{2}$ into $\mathrm{E}^{4}$ is nondegenerate we will indeed rule out that the image even infinitesimally lies
in ahyperplane of $\mathrm{E}^{4}$ .

There are two known classes of nondegenerate isometric immersions. One gets immersions
of one class as follows: Let $\mathrm{Y}$ : $\mathrm{E}^{2}arrow \mathrm{E}^{3}$ and $Z$ : $\mathrm{E}^{3}arrow \mathrm{E}^{4}$ be given isometric immersions,
each with nowhere trivial second fundamental form. Necessarily they are to both cylindrical
immersions. Then $X=Z\circ \mathrm{Y}$ is anondegenerate isometric immersion. Following M. do
Carmo and M. Dajczer [1] we call such immersions trivial immersions.

Asecond class of immersions consists of all isometric immersions of $X$ : $\mathrm{E}^{2}arrow \mathrm{S}^{3}$ which
one can view as mappings into $\mathrm{E}^{4}$ by regarding $\mathrm{S}^{3}$ as asubmanifold of $\mathrm{E}^{4}$ . It is known $[2, 4]$

that there is alarge class of immerisons of flat tori into $\mathrm{S}^{3}$ ;by going to their covering spaces
one gets alarge class of immersions of $\mathrm{E}^{2}$ into the 3-sphere. For example, all Hopf tori
give rise to isometric immersions of $\mathrm{E}^{2}$ into $\mathrm{E}^{4}$ . By the same techniques that produce the
immersions of flat tori, one can get additional isometric immersions of $\mathrm{E}^{2}$ into $\mathrm{E}^{4}$ which are
not covering maps. It is worth mentioning now that all such immersions have trivial normal
curvature (since the normal to the sphere restricted to the immersion is parallel).

To obtain more examples and hopefully all other examples we try the following strategy.

Below $\mathrm{G}_{2,4}$ is the Grassmannian of oriented tw0-dimensional subspaces of $\mathrm{E}^{4}$ .

1. Characterize the image of the Gauss map $G:\mathrm{E}^{2}arrow \mathrm{G}_{2,4}$ of anondegenerate isometric
immersion $X$ : $\mathrm{E}^{2}arrow \mathrm{E}^{4}$ .

2. Given asurface $E\subset \mathrm{G}_{2,4}$ that satisfies the characterization of 1, construct from it a
nondegenerate immersion $X$ : $Earrow \mathrm{E}^{4}$ which induces on $E$ acomplete flat metric, so
that $E$ or its covering space is $\mathrm{E}^{2}$ , and for which the Gauss map is the inclusion map.

Before we investigate the Gauss maps of isometric immersions of $\mathrm{E}^{2}$ into $\mathrm{E}^{4}$ , let’s study
nondegenerate immersions $X$ : $Marrow \mathrm{E}^{4}$ . We wish to introduce aconvenient framing
$\mathrm{e}_{1}$ , $\mathrm{e}_{2}$ , e3, $\mathrm{e}_{4}$ along the immersion $X$ . We do not want to require that it be an orthonor-
mal framing; what we do want to require is the following:
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1. $\mathrm{e}_{1}(p)$ and $\mathrm{e}_{2}(p)$ are tangent to $X(M)$ and $X(p)$ .
2. $\mathrm{e}_{3}(p)$ and $\mathrm{e}_{4}(p)$ are normal to $X(M)$ and $X(p)$ , i.e., $\mathrm{e}_{3}(p)$ , $\mathrm{e}_{4}(p)\in\nu_{p}(M)$ , where $\nu(M)$

is the normal bundle of $X$ .
3. $|\mathrm{e}_{i}|=1$ , for $i=1,2,3,4$ .
We will require more of the framing using the second fundamental form $h$ of the immersion.

Regard $h$ : $TMarrow\nu M$ as aquadratic form. The image of $\{v\in T_{p}M : |v|=1\}$ under $h$ is
an ellipse in $\nu_{p}M$ ;it is called the curvature ellipse. Assuming that $X$ is nondegenerate and
the Gaussian curvature $K=0$ one may show that origin of $vvM$ is in the exterior of the
curvature ellipse and the tangent lines to the ellipse incident with the origin are orthogonal.
Thus we may choose $\mathrm{e}_{3}$ and $\mathrm{e}_{4}$ in the direction of these tangent lines so that $\langle h, \mathrm{e}_{i}\rangle$ is positive
semidefinite, for $i=3,4$, and $\mathrm{e}_{3}$ , $\mathrm{e}_{4}$ (in that order) induce the orientation on $\nu_{p}M$ . These
conditions uniquely determine $\mathrm{e}_{3}$ and $\mathrm{e}_{4}$ .

Let A3 and $A_{4}$ be the Weingarten maps associated to $\mathrm{e}_{3}$ and $\mathrm{e}_{4}$ , respectively. These
Weingarten maps clearly are rank 1operators; in fact, they are positive semidefinite. Choose
$\mathrm{e}_{2}\in \mathrm{k}\mathrm{e}\mathrm{r}A_{3}$ and $\mathrm{e}_{1}\in \mathrm{k}\mathrm{e}\mathrm{r}A_{4}$ so that $\mathrm{e}_{1}$ , e2 (in that order) induce the orientation on $M$ . This
determines $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ up to arotation by $\frac{\pi}{2}$ .

In general, p12 $=\langle \mathrm{e}_{1}, \mathrm{e}_{2}\rangle\neq 0$ . Introduce 41 : $Marrow(0, \pi)$ so that $\cos\theta=\mathrm{c}\mathrm{j}32$

It is easy to show the following where $N$ is the normal curvature of the immersion $X$ .

Lemma 1. $N=0$ if and only if $g_{12}=0$ .

Let $\mathrm{e}^{1}$ , $\mathrm{e}^{2}$ , $\mathrm{e}^{3}$ , $\mathrm{e}^{4}$ be the dual framing, i.e. $\langle \mathrm{e}_{i}, \mathrm{e}^{g}\rangle=\delta_{i}^{j}$ . Of course, for this framing $\mathrm{e}_{3}=\mathrm{e}^{3}$

and $\mathrm{e}_{4}=\mathrm{e}^{4}$ . Notice that $\mathrm{e}^{1}[perp] \mathrm{e}_{2}$ and e2 is aprincipal direction of A3, since $A_{3}(\mathrm{e}_{2})=0$ .
Therefore, $\mathrm{e}^{1}$ is the other principal direction of A3. Define $k_{1}$ by $A(\mathrm{e}^{1})=k_{1}\mathrm{e}^{1}$ ; necessarily
$k_{1}>0$ . Similarly $\mathrm{e}^{2}$ is aprincipal direction of $A_{4}$ and we define $k_{2}$ by $A(\mathrm{e}^{2})=k_{2}\mathrm{e}^{1}$ ; again
$k_{2}>0$ .

Let $\omega^{1}$ , $\omega^{2}$ be the framing of $T^{*}M$ dual to $\mathrm{e}_{1}$ , $\mathrm{e}_{1}$ , i.e., $dX=\mathrm{e}_{1}\omega^{1}+\mathrm{e}_{2}\omega^{2}$ . Then by a
straightforward computation one can show that

$A_{3}=\sin^{2}\theta k_{1}\mathrm{e}^{1}\omega^{1}$ and $A_{4}=\sin^{2}\theta k_{2}\mathrm{e}^{2}\omega^{2}$ .
We introduce connection forms $\omega_{i}^{j}$ defined by $d\mathrm{e}_{i}=\mathrm{e}_{j}\omega_{\dot{l}}^{j}$ . Also define $\omega_{j:}=g_{jk}\omega_{i}^{k}$ . The

next lemma follows from our previous assertions about A3 and $A_{4}$ .
Lemma 2.

$\omega_{31}=\sin^{2}\theta k_{1}\omega^{1}$ , $\omega_{32}=0$

$\omega_{41}=0$ , $\omega_{42}=\sin^{2}\theta k_{2}\omega^{2}$

Definition 1. We call $k_{1}$ and $k_{2}$ the principal curvatures and $\omega_{31}=0$ and $\omega_{42}=0$ the null
directions.

In what follows $i,j$ , $k$ range over 1, 2and $\alpha$ , $\beta$ range over 3, 4. Also recall that $g_{12}\neq 0$ , in
general, but $g_{i\alpha}=0$ and $g_{34}=0$ .

Remark 1. The normal curvature $N$ can be easily computed using this framing: For any
vector $v\in T_{p}M$ , let $B_{v}$ : $T_{p}Marrow\nu_{p}M$ be defined by $B_{v}(w)=h(v, w)$ . Both $T_{p}M$ and
$\nu_{p}M$ carry an element of area; hence $\det(B_{v})$ makes sense. Thus define $F^{\nu}$ : $TMarrow \mathbb{R}$ by
$F^{\nu}(v)=\det(B_{v})$ . This is aquadratic form and now let $F^{\nu}$ also denote its polarization. If
$F_{ij}^{\nu}=F^{\nu}(\mathrm{e}_{i}, \mathrm{e}_{j})$ , then

$N=\mathrm{t}\mathrm{r}F^{\nu}=g^{ij}F_{ij}^{\nu}$ .
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It is easy to show that $F_{i\dot{l}}^{\nu}=\sin\theta|h_{\alpha i}^{j}|$ , where $\omega_{ai}=h_{\alpha ij}^{j}\omega$ , and of course, $\omega j$
$=gjk\omega^{k}$ . Then

$F_{12}^{\nu}$ can be obtained using the standard tricks associated with the polarization.
Remark 2. As long as the immersion $X$ is nondegenerate at $p\in M$ and the origin of $\nu_{p}M$

is not on the curvature ellipse we can obtain the kind of framing that we obtained above,
in particular, aframing for which for which $\omega_{32}=0$ and $\omega_{41}=0$ . In general, $\mathrm{e}_{3}$ is not
orthogonal to $\mathrm{e}_{4}$ . However if the origin is inside the curvature ellipse one has to complexify
both the tangent space and normal space to do this.

Now let’s consider the Gauss map $G:Marrow \mathrm{G}_{2,4}$ associated to the immersion $X$ : $Marrow \mathrm{E}^{4}$ .
We may show the following:

Lemma 3. Suppose the Gaussian curvature $K$ of the immersion $X$ is zero. Then $X$ is
nondegenerate if and only if $G$ is an immersion.

Identify $\mathrm{G}_{2,4}$ with the set of unit decomposable 2-vectors so that we may regard $\mathrm{G}_{2,4}\subset$

$\mathrm{s}^{5}\subset\wedge^{2}\mathrm{E}^{4}$ . Using the framing introduced above we may write

$G= \frac{\mathrm{e}_{1}\wedge \mathrm{e}_{2}}{\sin\theta}$ .

Then

$dG= \frac{1}{\sin\theta}[\mathrm{e}_{3}\wedge \mathrm{e}_{2}\omega_{31}+\mathrm{e}_{1}\wedge \mathrm{e}_{4}\omega_{42}]$ .

Note that the image $dG(T_{p}M)$ contains two one-dimensional subspaces of decomposable 2-
vectors. Necessarily any of these decomposable 2-vectors is of the form (tangent vector) $\wedge$

(normal vector). Using the orientations of $G(p)$ and its orthogonal complement we obtain,
easily and directly, the pair $\mathrm{e}_{1}$ , $\mathrm{e}_{2}$ up to sign, the pair $\mathrm{e}_{3}$ , $\mathrm{e}_{4}$ up to sign and the pair $\omega_{31},\omega_{42}$

up to sign, for each point $p\in M$ . The angle $\theta$ and hence 512 are uniquely determined. One
can not hope to obtain $\mathrm{e}_{3}$ , $\mathrm{e}_{4}$ uniquely since $-X$ has the same Gauss map as $X$ . The only
things we cannot directly obtain from the Gauss map are $k_{1}$ and $k_{2}$ . (With aknowledge of
these we could obtain $\omega^{1}$ and $\omega^{2}$ and reconstruct the immersions $\pm X.$ )

Remark 3. In the more general case where the curvature $K$ might vary but the origin of
normal space is in the exterior of the curvature ellipse, the case where $K=0$ is characterized
by the two subspaces of decomposable 2-vectors being orthogonal.

As is well-known $\mathrm{G}_{2,4}=\mathrm{S}_{1}\cross \mathrm{S}_{2}$, where $\mathrm{s}_{:}$ are round 2-spheres, for $i=1,2$ . Therefore,
any Gauss map $G$ : $Marrow \mathrm{G}_{2,4}$ may be represented as $G=G_{1}\cross G_{2}$ , where $G_{:}$ : $Marrow \mathrm{S}_{i}$ .
If $\Omega_{1}$ and $\Omega_{2}$ are “appropriate” area elements on $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ , respectively, then the following
holds [3]:

$K=0\Leftrightarrow$ $G_{1}^{*}(\Omega_{1})+G_{2}^{*}(\Omega_{2})$

$N=0\Leftrightarrow$ $G_{1}^{*}(\Omega_{1})-G_{2}^{*}(\Omega_{2})$

Thus we have the following result.

Lemma 4. For a nondegenerate immersion $X$ : $Marrow \mathrm{E}^{4}$ ,

K $=N=0\Leftrightarrow G_{1}$ and $G_{2}$ are rank 1maps
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In fact, given an isometric immersion $X$ : $\mathrm{E}^{2}arrow \mathrm{E}^{4}$ with $N=0$ , in terms of the framing
introduced above

$dG_{1}$ $=$ $\frac{1}{2}(\mathrm{e}_{1}\wedge \mathrm{e}_{4}+\mathrm{e}_{2}\wedge \mathrm{e}_{3})(\omega_{3}^{1}-\omega_{4}^{2})$

$dG_{2}$ $=$ $- \frac{1}{2}$ ( $\mathrm{e}_{1}\wedge \mathrm{e}_{4}$ –e2 $\wedge \mathrm{e}_{3}$ ) $(\omega_{3}^{1}+\omega_{4}^{2})$

Since $N=0$ , $\mathrm{e}_{1}$ , $\mathrm{e}_{2}$ , $\mathrm{e}_{3}$ , $\mathrm{e}_{4}$ is an orthonormal frame, and $\omega_{3}^{2}=\omega_{4}^{1}=0$ . This follows immedi-
ately from Lemma 1and thus that $\omega_{B}^{A}=\omega_{AB}$ , for all $A$ , $B=1,2,3,4$ .

From now on we consider nondegenerate isometric immersions $X$ : $\mathrm{E}^{2}arrow \mathrm{E}^{4}$ with normal
curvature $N$ identically zero. By Lemma 4, $G_{i}(\mathrm{E}^{2})=C_{i}$ is acurve in $\mathrm{S}_{:}$ , for $i=1,2$ . All
we can say at the moment is that $G(\mathrm{E}^{2})\subset C_{1}\cross C_{2}$ . In fact, $G:\mathrm{E}^{2}arrow C_{1}\cross C_{2}$ need not be
surjective nor injective. We only know it is alocal diffeomorphism.

By Lemma (2) with $\theta=\frac{\pi}{2}$ , we know that there exist functions $u$ , $v$ : $\mathrm{E}^{2}arrow \mathbb{R}$, such that
$dX=\mathrm{e}_{1}u\omega_{3}^{1}+\mathrm{e}_{2}v\omega_{4}^{2}$ . In fact, $u$ and $v$ are just the reciprocals of the principal curvatures.
However, $N=0$ implies that $d\omega_{3}^{1}=d\omega_{4}^{2}=0$ . Thus there exist functions $x$ , $y:\mathrm{E}^{2}arrow \mathbb{R}$ such
that $\omega_{3}^{1}=dx$ and $\omega_{4}^{2}=dy$ . Note that $x$ and $y$ are independent since $dx\wedge dy=\omega_{3}^{1}\wedge\omega_{4}^{2}\neq 0$

because $G$ is an immersion. Thus,

(1) $dX=\mathrm{e}_{1}udx+\mathrm{e}_{2}vdy$ .

Using the fact that $d(dX))=0\Leftrightarrow d(d(X))^{[perp]}=0$ we obtain the following first order linear
system of p.d.\’e $\mathrm{s}$ :

(2) $\{$

$u_{y}$ $=$ $\omega_{2}^{1}(\frac{\partial}{\partial x})v$

$v_{y}$ $=$ $\omega_{1}^{2}(\frac{\partial}{\partial y})u$

This is the normal form for ahyperbolic system of p.d.e’s on $\mathrm{E}^{2}$ . They are all that remain
of the Codazzi equations.

If $\kappa_{i}$ is the geodesic curvature of $C_{i}$ (pulled back to $\mathrm{E}^{2}$ ) then we may write system (2) as
follows:

(3) $\{$

$u_{y}= \frac{1}{2\sqrt{2}}(\kappa_{1}+\kappa_{2})v$

$v_{x}= \frac{1}{2\sqrt{2}}(\kappa_{1}-\kappa_{2})u$

Since $u$ and $v$ are the reciprocals of the principal curvatures, we must have

(4) $\{$

$u>0$
$v>0$

Definition 2. A solution of the system (2), or system (3), is called positive if (4) holds.

The curves $x=const$ , and $y=const$ , are the characteristic curves of the system (3). It
is also clear they are the the null curves of the immersion. These curves make angles of $\frac{\pi}{4}$

with the factors $C_{i}$ in the metric induced on $\mathrm{E}^{2}$ by $G$ . In fact, if $s^{:}$ is the arc length alon$\mathrm{g}$
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$C_{i}$ (pulled back to $\mathrm{E}^{2}$ ), then at straightforward computation shows:

$ds^{1}$ $=$ $\frac{1}{\sqrt{2}}(dx-dy)$

$ds^{2}$ $=$ $\frac{1}{\sqrt{2}}(dx+dy)$ .

However it is especially worth noting that all the structure we have introduced on $\mathrm{E}^{2}$

in fact exists on $C_{1}\cross C_{2}$ and we have pulled it back to $\mathrm{E}^{2}$ . More precisely since $C_{1}\cross C_{2}$

is asurface in $\mathrm{G}_{2,4}$ , the framing $\mathrm{e}_{1}$ , e2, $\mathrm{e}_{3}$ , $\mathrm{e}_{4}$ , the forms $\omega_{3}^{1},\omega_{4}^{2}$ and hence the functions $x$ , $y$

already exist on it. Of course, we may have to go to the simply connected covering of $C_{1}\cross C_{2}$

to achieve this. Moreover $\kappa_{1}$ and K2 exist on $C_{1}\cross C_{2}$ . Thus the system (3) with unknowns
$u$ , $v$ exists on $C_{1}\cross C_{2}$ or its simply connected covering space. What we see on $\mathrm{E}^{2}$ is the
pull-back of this system. Setting $u$ , $v$ to be the reciprocals of the principal curvatures gives
amulti-valued solution on $G(\mathrm{E}^{2})$ . It may be multi-valued since $G$ need not be one-t0-0ne.

We can visualize the characteristic curves as well as the image $G(\mathrm{E}^{2})$ in $C_{1}\cross C_{2}$ ;in this
fashion one “sees how the characteristic curves run” on $\mathrm{E}^{2}$ . Prom this perspective and using
the fact that $\mathrm{E}^{2}$ is complete, i.e., $u^{2}dx^{2}+v^{2}dy^{2}$ determines acomplete metric, we may show
the following:

Proposition 1. The image $G(\mathrm{E}^{2})$ in $C_{1}\cross C_{2}$ (or its simply connected covering) is a convex
set whose boundary in $C_{1}\cross C_{2}$ is a union of characteristic curves of the system (3). Also $G$

is one-tO-One (into the covering space).

If, for example, $C_{1}$ and $C_{2}$ have finite length, Figure 1shows what $G(\mathrm{E}^{2})$ might look
like. The rectangle represents $C_{1}\cross C_{2}$ and the shaded region represents $G(\mathrm{E}^{2})$ . Suppose
we identify $C_{\dot{1}}$ with $(a:, b_{i})\subset \mathrm{R}$ by means of the arclength function $s^{:}$ , for $i=1,2$ . Let
$\overline{C_{1}\cross C_{2}}=[a_{1}, b_{1}]\cross[a_{2}, b_{2}]$ . If the boundary of $G(\mathrm{E}^{2})$ in $\overline{C_{1}\cross C_{2}}$ intersects $\{a_{1}\}\cross C_{2}$ in
more than asingle point as it does in Figure 1, assuming $C_{1}$ is the horizontal factor, then
one may show that $C_{1}$ may not be extended behond $a_{1}$ as a $C^{2}$-curve. Thus also for the
situation depicted in Figure 1, the curve $C_{2}$ can not be extended as a $C^{2}$-curve in either
direction.

FIGURE 1. $G(\mathrm{E}^{2})$ in $C_{1}\cross C_{2}$

In what follows we will identify $C_{\dot{l}}$ with $s^{:}(C_{\dot{l}})\subset \mathbb{R}$ and hence $C_{1}\cross C_{2}$ with arectangular
subset of $\mathbb{R}^{2}$ . Similarly $G(\mathrm{E}^{2})$ will be regarded as asubset of $\mathrm{R}^{2}$ and any statements regarding
the topology of these sets will be relative to the topology on $\mathbb{R}^{2}$ .
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Definition 3. Assume $G$ is the Gauss map of immersion $X$ : $Marrow \mathrm{E}^{4}$ with $K=N=0$ .
We say $G$ is normal if the boundary of $G(\mathrm{E}^{2})$ intersects each bounding edge of the rectangle

$C_{1}\cross C_{2}$ in at most {and hence exactly) one point.

If in both directions $C_{i}$ is either of infinite length or can be extended as a $C^{2}$-curve, for
$i=1,2$ , then necessarily $G$ is normal. Also if $G$ is normal and one of the $C_{i}$ has finite length
then both $C_{1}$ and $C_{2}$ have the same finite length.

Conjecture 1. If X : $\mathrm{E}^{2}arrow \mathrm{E}^{4}$ is nondegenerate isometric immersion with N $=0$ , then its
Gauss map G is normal.

What is particularly nice about normal $G$ is that $G(\mathrm{E}^{2})$ fits acharacteristsic initial value
problem for the system (3) so well, i.e., the domain of determinacy of such aproblem on
$C_{1}\mathrm{x}$ $C_{2}$ contains $G(\mathrm{E}^{2})$ .

Recall that $s^{1}$ , $s^{2}$ and $x$ , $y$ are coordinate systems on $C_{1}\cross C_{2}$ whose coodinate axes make
an angle of $\frac{\pi}{2}$ with each other. It is convenient to assume that $(0, 0)$ are the coordinates
of some point in $G(\mathrm{E}^{2})$ in both coordinate systems. Since $G$ is one-t0-0ne, we may also
regard these as coordinate systems on $\mathrm{E}^{2}$ . Let $(x, y)(\mathrm{E}^{2})=I_{x}\mathrm{x}I_{y}$ where $I_{x}=(a_{x}, b_{x})$ and
$I_{y}=(a_{y}, b_{y})$ . Of course, $a_{x}$ or $b_{x}$ could be $-\infty$ , etc. Since the metric $u^{2}dx^{2}+v^{2}dy^{2}$ on
$I_{x}\cross I_{y}$ is complete,

(5) $\int_{0}^{b_{x}}u(x, \mathrm{O})dx=\int_{a_{x}}^{0}u(x, \mathrm{O})dx=\int_{0}^{b_{y}}v(0, y)dy=\int_{a_{y}}^{0}v(0, y)dy=\infty$.

Can we reverse the process, i.e., starting with asurface in $\mathrm{G}_{2,4}$ that could be the image
of normal Gauss map, can we find an isometric immersion of $\mathrm{E}^{2}$ into $\mathrm{E}^{4}$ with this surface as
the image of its Gauss map?

We begin by choosing curves $C_{i}\subset \mathrm{S}_{i}$ , for $i=1,2$ . Either both are infinitly long in either
direction, both are infinitely long in just one direction, or both have the same finite length.
Let $M=C_{1}\cross C_{2}$ or its simply connected covering space and $G$ : $Marrow \mathrm{G}_{2,4}$ the inclusion
map or covering map. Of course, $M=\mathbb{R}^{2}$ . Give $M$ the metric induced by $G$ ;this is a
flat metric. Introduce coordinates $(x, y)$ : $Marrow \mathbb{R}^{2}$ whose level curves make an angle of $\frac{\pi}{4}$

with the factors of $M$ such that $dx^{2}+dy^{2}$ is the induced metric. Choose arectangle $E$ in
$x$ , $y$-coordinates which projects onto the factors of $M$ . As above we may write $E=I_{x}\cross I_{y}$

and suppose apoint of $E$ has coordinates $(0, 0)$ .
The system (3) exists on $M$ and hence $E$ . We consider acharacteristic initial value

problem on $E$ associated to system (3). We place initial data on $I_{x}$ and $I_{y}$ . It is well-k own
that given positive functions

$\phi$ : $I_{x}arrow \mathbb{R}$ and $\psi$ : $I_{y}arrow \mathbb{R}$ ,

there exists aunique solution of system (3) satisfying

(6) $\{$

$u(x, \mathrm{O})=\phi(x)$ for $x\in I_{x}$

$v(0, y)=\psi(y)$ for $y\in I_{y}$ .

If the characteristic initial value problem consisting of system (3) and initial conditions (6)
has apositive solution $u$ , $v$ , then there exists and immersion $X$ : $Earrow \mathrm{E}^{4}$ whose differential
is given by equation (1) and with Gauss map $G$ . Necessarily the induced metric is flat and
the normal curvature is trivial, since these conditions are determined by the Gauss map. In
general, the solution $u$ , $v$ will not be postive and the resulting differentiable mapping $X$ will
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have singularities. These are “well-behaved” singularities since $X$ has well-defined tangent
planes at all its points. If $X(E)$ has singularities then they are cuspidal edges which may
intersect transversally, generically.

Assuming apositive solution of system (3) exists, one still needs to show it gives rise to a
complete metric. At the very least one must require that conditions (5) hold. If $u^{2}dx^{2}+v^{2}dy^{2}$

determines acomplete metric then $E=\mathrm{E}^{2}$ and our goal is achieved.

Some observations.

1. Replacing $C_{i}$ by congruent curves, for $i=1,2$ , but retaining the same rectangle and
initial data $\phi$ and $\psi$ gives rise to congruent $X$ . So the given data for this problem is
not so much $C_{1}$ , $C_{2}$ but $\kappa_{1}$ , $\kappa_{2}$ as well as $\phi$ , $\psi$ .

2. We may show that for apositive solution to exist for system (3) the following must
hold:

$\int_{0}^{b_{x}}(\kappa_{2}-\kappa_{1})\phi dx$ $<$ oo

$\int_{a_{x}}^{0}(\kappa_{2}-\kappa_{1})\phi dx$ $>$ $-\infty$

$\int_{0}^{b_{y}}(\kappa_{1}+\kappa_{2})\psi dy$ $>$ $-\infty$

$\int_{a_{y}}^{0}(\kappa_{1}+\kappa_{2})\psi dx$ $<$ oo

When considered along with conditions (5) these impose restrictions on the curvatures
near the ends of $C_{1}$ and $C_{2}$ in order that anondegenerate isometric immersion $X$ of
$\mathrm{E}^{2}$ with trivial normal curvature is to exist with these curves as the images of the
factors of the Gauss map of $X$ . For example, if $\kappa_{1}=const$ . and X2 $=const$ . then there
exist no such isometric immersions of $\mathrm{E}^{2}$ unless $\kappa_{1}=\kappa_{2}=0$ . More generally, no
isometric immersions of $\mathrm{E}^{2}$ can be constructed from agiven $C_{1}\cross C_{2}$ if, say, for all
$s^{1}$ , $s^{2}$ , $\kappa_{2}(s^{2})>\kappa_{1}(s^{1})+c$ , where $c>0$ .

3. We may show that the nondegenerate trivial immersions with $N=0$ are characterized
in terms of the Gaussian image by the condition that $\kappa_{1}=\pm\kappa_{2}=const$. In light of
the previous observation, we conclude that the only nondegenerate trivial immersions
with $N=0$ are the sums of two curves in orthogonal 2-planes.

4. Introduce afunction $\beta$ : $Earrow \mathbb{R}$ by

$d \beta=\frac{1}{2}(\kappa_{1}ds^{1}+\kappa_{2}ds^{2})$ .

Of course this only determines $\beta$ up to aconstant. In any case, $\beta_{x}=\overline{2}\tau 21(\kappa_{1}-\kappa_{2})$ and
$\beta_{y}=-\frac{1}{2\sqrt{2}}(\kappa_{1}+\kappa_{2})$ . Hence, system (3) can be written:

(7) $\{$

$u_{y}=-\sqrt vv$

$v_{x}=\beta_{x}u$
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One easily sees that

(8) $\{$

$u$ $=$ $\cos\beta$

$v$ $=$ $\sin\beta$

is asolution of system (3). If $\beta$ can be chosen so that $\cos\beta>0$ and $\sin\beta>0$ on $E$ ,
then we get examples of immersions $X$ : $\mathrm{E}^{2}arrow \mathrm{S}^{3}$ when the metric induced on $E$ by $X$

is complete. In fact we get all such examples in this fashion.
Questions.

1. Is $G(\mathrm{E}^{2})$ indeed normal for all nondegenerate isometric immersions with $N=0$?
2. Assuming Gaussian images of isometric immersions of $\mathrm{E}^{2}$ with $N=0$ are normal, for

which $\kappa_{i}$ do there exist positive solutions of system (3) other than solutions (8)?
3. If system (3) has positive solutions for particular $\kappa_{i}$ , what initial conditions produce

those positive solutions? $\mathrm{t}$

4. Which of these positive solutions induce complete metrics?
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